
Online Appendix: Whom To Lobby? Targeting in Political

Networks

Proof Proposition 5 : Even very biased decision-makers are lobbied

Case 1: Decision-makers i and j are unbiased, k is in favor of L1 Note that i and j

are payoff equivalent. L1 is indifferent between his strategies if

σ2(i) + σ2(j) =
(δ(1− ϕk)− ϕk)(1− ϕk − δϕk)

2(1− δ2)(1− ϕk)ϕk
,

whereas L2 is indifferent if

σ1(i) + σ1(j) = 1− (δ(1− ϕk)− ϕk)(1− ϕk − δϕk)
2(1− δ2)(1− ϕk)ϕk

.

Last, note that (δ(1−ϕk)−ϕk)(1−ϕk−δϕk)
2(1−δ2)(1−ϕk)ϕk

∈ (0, 1) if and only if δ < min{ ϕk

1−ϕk
, 1−ϕk

ϕk
}. There

cannot be a pure strategy equilibrium as again, the lobbyist k favors prefers to be at the

same node as the lobbyist k opposes, whereas the lobbyist k dislikes prefers to be at a

different node. Thus, the set of Nash equilibria given is unique.

Case 2: Decision-makers i and j are biased, k is unbiased We define δi = min{1−ϕi

ϕi
, ϕi

1−ϕi
}

and δ = max{δi, δj, δk} and let δ < δ. We show case by case that the following are the

unique Nash equilibria.

(a)ϕj = ϕk ≡ ϕ > 1
2
: L1 chooses the unbiased decision-maker, L2 mixes between the

biased decision-makers.

(b)ϕk > ϕj >
1
2
:

(i) 1−ϕk

ϕk
< δ <

1−ϕj

ϕj
= δ : Both lobbyists assign positive probability to decision-makers

i and j.

(ii) 1−ϕj−ϕk+ϕjϕk

ϕjϕk
< δ < 1−ϕk

ϕk
: L1 assigns positive probability to decision-makers i and

j, L2 assigns positive probability to j and k.

(iii) 0 < δ <
1−ϕj−ϕk+ϕjϕk

ϕjϕk
: L1 assigns positive probability to i and k, L2 to j and k

(c)ϕj = 1 − ϕk > 1
2
: both lobbyists assign positive probability to the biased decision-

makers.

(d)ϕj > 1− ϕk > 1
2

(i) 1−ϕj

ϕj
< δ < ϕk

1−ϕk
: both lobbyists assign positive probability to i and k
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(ii) ϕk

1−ϕk

1−ϕj

ϕj
< δ <

1−ϕj

ϕj
: L1 assigns positive probability to i and k, L2 to j and k.

(iii) 0 < δ < ϕk

1−ϕk

1−ϕj

ϕj
: both lobbyists assign positive probability to j and k.

(a)ϕj = ϕk ≡ ϕ > 1
2

Choosing the unbiased decision-maker is indeed a best response for L1 to L′2s strategy

if

1

1 + δ
+ ϕ+

δϕ

δϕ+ (1− ϕ)

(σ1(i)σ2(j) + σ1(i)(1− σ2(j)))(
1

1 + δ
+ ϕ+

δϕ

δϕ+ (1− ϕ)
)

+ (σ1(j)σ2(j) + (1− σ1(i)− σ1(j))(1− σ2(j)))(
1

2
+ 2ϕ)

+ (σ1(j)(1− σ2(j)) + (1− σ1(i)− σ1(j))σ2(j))(
1

2
+

ϕ

ϕ+ δ(1− ϕ)
+

δϕ

δϕ+ 1− ϕ
)

Simplifying yields

(1− σ1(i))(
1

1 + δ
+ ϕ+

δϕ

δϕ+ (1− ϕ)
)

(σ1(j)σ2(j) + (1− σ1(i)− σ1(j))(1− σ2(j)))(
1

2
+ 2ϕ)

+ (σ1(j)(1− σ2(j)) + (1− σ1(i)− σ1(j))σ2(j))(
1

2
+

ϕ

ϕ+ δ(1− ϕ)
+

δϕ

δϕ+ 1− ϕ
)

⇔
1

1 + δ
+ ϕ+

δϕ

δϕ+ (1− ϕ)

(xσ2(j) + (1− x)(1− σ2(j)))(
1

2
+ 2ϕ)

+ (x(1− σ2(j)) + (1− x)σ2(j))(
1

2
+

ϕ

ϕ+ δ(1− ϕ)
+

δϕ

δϕ+ 1− ϕ
),

where x = σ1(j)
1−σ1(i)

and 1− x = 1−σ1(i)−σ1(j)
1−σ1(i)

. As 2ϕ > ϕ
ϕ+δ(1−ϕ) +

δϕ
δϕ+1−ϕ , L

′
1s problem is

max
x

(
x(1− σ2(j)) + (1− x)σ2(j)

)
If σ2(j) = 1

2
, any value of x is a solution – i.e., L1 is indifferent between choosing

decision-makers 2 and 3. But in this case, choosing σ1(i) = 1 is the unique best response
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as

1

1 + δ
+ ϕ+

δϕ

δϕ+ (1− ϕ)
>

1

2
(
1

2
+ 2ϕ) +

1

2
(
1

2
+

ϕ

ϕ+ δ(1− ϕ)
+

δϕ

δϕ+ 1− ϕ
)

If σ2(j) < 1
2
, L1 chooses σ1(j) = 0 and if σ2(j) > 1

2
, σ1(k) = 0. If σ2(j) < 1

2
, L1 prefers

decision-maker i to decision-maker k if σ2(j) > 1
2
− δ(2ϕ−1)

2(1−δ2)ϕ(1−ϕ) . And if σ2(j) > 1
2
, L1

prefers decision-maker i to decision-maker j if σ2(j) < 1
2
+ δ(2ϕ−1)

2(1−δ2)ϕ(1−ϕ) , which estab-

lishes the given boundaries. Given L1 chooses σ1(i) = 1, L2 is indifferent between the

biased decision-makers and prefers the biased decision-makers to the neutral ones as

1− 1

3
(

1

1 + δ
+ ϕ+

δϕ

δϕ+ (1− ϕ)
) > 1− 1

3
(
1

2
+ 2ϕ)

for the specified levels of δ.

The question that remains is whether the set of Nash equilibria is unique. To check this

consider the possible strategies of L2. Suppose first that L2 assigns positive probability

to all decision-makers. L1 is never indifferent between all decision-makers in this case

as when he is indifferent between j and k, he strictly prefers the unbiased decision-

maker i to the biased ones. For this same reason it can never be a best response of

L1 to mix between the biased decision-makers alone. It might be a best response for

L1 to mix between either i and j or i and k. But if L1 mixes between i and j (k), L2

chooses k (j) and does not mix anymore. So this can also not be a Nash equilibrium.

If L1 chooses a pure strategy, then L2 also has an incentive to deviate. L2 will then be

better off choosing the decision-makers, L1 assigns zero probability to. Therefore, there

cannot be a Nash equilibrium that involves L2 mixing between all his strategies. Next,

suppose L2 mixes between the unbiased and one of the biased decision-makers. Then,

L1 will never mix between all strategies as he will never be indifferent between the

biased decision-makers. Therefore, he will also not randomize over the biased decision-

makers only. It can be a best response to assign positive probability to the unbiased

decision-maker and the same biased decision-maker L2 chooses. But then, L2 will de-

viate to the decision-maker, L1 does not lobby with positive probability. Last, L1 might

choose a pure strategy. But the best response to a pure strategy is never mixing between

one biased decision-maker and the unbiased one. Thus, it can also not be part of a Nash

equilibrium that L2 mixes between the unbiased and one biased decision-maker. We
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already checked what happened when L2 mixes between the biased decision-makers.

And last, playing a pure strategy can never be part of a Nash equilibrium as L1 will

always have an incentive to choose the same decision-maker, which then leads L2 to

choose a different one. This shows that there is indeed only the specified set of Nash

equilibria.

(b)ϕk > ϕj ≡ ϕ > 1
2

(i) 1−ϕk

ϕk
< δ <

1−ϕj

ϕj

If the discount factor lies in this range, the unique Nash equilibrium is given by

σ1(i) = 1− σ1(j), σ1(j) =
δ + ϕj − 2δϕj − δ2ϕj − ϕ2

j + δ2ϕ2
j

2ϕj − 2δ2ϕj − 2ϕ2
j + 2δ2ϕ2

j

σ2(i) = 1− σ2(j), σ2(j) =
−δ + ϕj + 2δϕj − δ2ϕj − ϕ2

j + δ2ϕ2
j

2ϕj − 2δ2ϕj − 2ϕ2
j + 2δ2ϕ2

j

It is straightforward to verify that the proposed strategies define a Nash equilibrium.

It remains to show that the Nash equilibrium is unique. Suppose L2 assigns positive

probability to all decision-makers. For L1 it is never a best response to mix between

all nodes, as he is never indifferent between them. However, mixing between i and j

can be a best response, but then L2 does not have an incentive to mix between all three

nodes. Mixing between i and k as well as between j and k cannot be a best response

for the given range of δ. And choosing a pure strategy leads L2 to prefer some pure

strategy to mixing. Therefore, L2 can assign positive probability to at most two decision-

makers. Suppose next, L2 assigns positive probability to i and k. In this case, L1 is never

indifferent between i and j and therefore, mixing between all nodes or mixing between

i and j can never be a best response. Also, mixing between i and k is not a best response

for the specified δ. Mixing between j and k is not a best response as choosing i is always

better than choosing j. As before, if L1 chooses a pure strategy, L2 will not mix. Now

suppose, L2 chooses to mix between j and k. As before, mixing between all nodes will

not be a best response for L1. It is a best response for L1 to mix between i and j. But

then mixing between j and k is not a best response for L2. Mixing between i and k or

between j and k is not best response for the given range of δ. So, what remains is that L2

chooses a pure strategy. If L2 chooses i (j), L1 chooses i (j) as well. But given L1 chooses

i (j), choosing i (j) is strictly dominated for L2. For 1−ϕk

ϕk
< δ <

1−ϕj

ϕj
, if L2 chooses k, L1
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chooses i. But L′2s best response is then choosing j. This establishes uniqueness. For all

additional cases uniqueness can be establishes the same way and is therefore omitted.

(ii) 1−ϕj−ϕk+ϕjϕk

ϕjϕk
< δ < 1−ϕk

ϕk

In this case the unique Nash equilibrium is given by

σ1(i) = 1− σ1(j), σ1(j) =
(δ(1− ϕj) + ϕj)(ϕk − ϕj)(−1 + ϕk + ϕj(1− (1− δ)ϕk))

(1− δ)ϕj(3ϕj − 1− 2ϕ2
j)(1− (1− δ)ϕk)

σ2(j) = 1− σ2(k), σ2(k) =
δ + ϕj − 2δϕj − δ2ϕj − ϕ2

j + δ2ϕ2
j

2ϕj − 2δ2ϕj − 2ϕ2
j + 2δ2ϕ2

j

(iii) 0 < δ <
1−ϕj−ϕk+ϕjϕk

ϕjϕk

The unique Nash equilibrium is given by

σ1(i) = 1− σ1(k), σ1(k) =
(ϕk − ϕj)(δ(1− ϕk) + ϕk)(1− ϕk − ϕj(1− (1− δ)ϕk))

(1− δ)(1− (1− δ)ϕj)ϕk(3ϕk − 1− 2ϕ2
k)

σ2(j) = 1− σ2(k), σ2(k) =
−δ + ϕk + 2δϕk − δ2ϕk − ϕ2

k + δ2ϕ2
k

2ϕk − 2δ2ϕk − 2ϕ2
k + 2δ2ϕ2

k

It is straightforward to verify that this is indeed a Nash equilibrium. Uniqueness can be

shown along the same lines as previously and is therefore omitted.

(c)ϕj = 1− ϕk > 1
2

The set of Nash equilibria is given by

σ1(j) ∈ [0,
δ + ϕj − 2δϕj − δ2ϕj − ϕ2

j + δ2ϕ2
j

2ϕj − 2δ2ϕj − 2ϕ2
j + 2δ2ϕ2

j

], σ1(k) = 1− σ1(k)

σ2(j) ∈ [
δ + ϕk − 2δϕk − δ2ϕk − ϕ2

k + δ2ϕ2
k

2ϕk − 2δ2ϕk − 2ϕ2
k + 2δ2ϕ2

k

, 1], σ2(k) = 1− σ2(j)

It is again easy to verify that these are Nash equilibria as well as that these are the only

Nash equilibria and is therefore omitted.

(d)ϕj > 1− ϕk > 1
2

(i) 1−ϕj

ϕj
< δ < ϕk

1−ϕk

The unique Nash equilibrium is given by

σ1(i) =
δ + ϕk − 2δϕk − δ2ϕk − ϕ2

k + δ2ϕ2
k

2ϕk − 2δ2ϕk − 2ϕ2
k + 2δ2ϕ2

k

, σ1(k) = 1− σ1(i)

σ2(i) =
−δ + ϕk + 2δϕk − δ2ϕk − ϕ2

k + δ2ϕ2
k

2ϕk − 2δ2ϕk − 2ϕ2
k + 2δ2ϕ2

k

, σ2(k) = 1− σ2(i)

(ii) ϕk

1−ϕk

1−ϕj

ϕj
< δ <

1−ϕj

ϕj

5



The unique Nash equilibrium is given by

σ1(i) =
(−1 + ϕj + ϕk)(1 + (−1 + δ)ϕk)(δϕj(−1 + ϕk) + ϕk − ϕjϕk)

(−1 + δ)(1 + (−1 + δ)ϕj)ϕk(1− 3ϕk + 2ϕ2
k)

, σ1(k) = 1− σ1(i)

σ2(j) =
δ + ϕk − 2δϕk − δ2ϕk − ϕ2

k + δ2ϕ2
k

2ϕk − 2δ2ϕk − 2ϕ2
k + 2δ2ϕ2

k

, σ2(k) = 1− σ2(j)

(iii) 0 < δ < ϕk

1−ϕk

1−ϕj

ϕj

The unique Nash equilibrium is given by

σ1(j) =
((δ(−1 + ϕj)− ϕj)(1 + (−1 + δ)ϕk)(δϕj(−1 + ϕk) + ϕk − ϕjϕk))

C
, σ1(k) = 1− σ1(j)

σ2(j) =
((1 + (−1 + δ)ϕj)(δ(−1 + ϕk)− ϕk)(−δϕk + ϕj(1 + (−1 + δ)ϕk)))

C
, σ2(k) = 1− σ2(j)

with

C = ((−1 + δ)(2(−1 + ϕj)ϕj(−1 + ϕk)ϕk + 2δ2(−1 + ϕj)ϕj(−1 + ϕk)ϕk

+ δ(ϕk − 2ϕ2
k + ϕ2

j(−2 + 4ϕk − 4ϕ2
k) + ϕj(1− 2ϕk + 4ϕ2

k))))

Case 2: All decision-makers i, j, k are biased Let δ → 0 and let all decision-makers

be biased – i.e., ϕi 6= 1
2
, ∀i ∈ N. If

(a)ϕi > 1
2
, ∀i : in the unique Nash equilibrium, both lobbyists assign positive probability

to all decision-makers.

(b)ϕi ≥ ϕj >
1
2
, 1− ϕi > ϕk > 0 : in the unique Nash equilibrium, both lobbyists assign

positive probability to all decision-makers.

(c)ϕi > ϕj >
1
2
, 1 − ϕj < ϕk : in the unique Nash equilibrium, L1 assigns positive

probability to i and k and L2 mixes between i and j.

(d)ϕi = ϕj >
1
2
, 1− ϕj < ϕk : in the set of Nash equilibria, L1 chooses k, L2 randomizes

between i and j.

(e)1 > ϕi > 1 − ϕk ≥ ϕj >
1
2
: in the unique Nash equilibrium, L1 chooses i and k and

L2 chooses between i and j.

(f) 1 > ϕi = 1 − ϕk > ϕj >
1
2
: in the unique Nash equilibrium, both lobbyists mix

between i and k.

6



We first take the limit of the payoff matrix:

lim
δ→0

A =


ϕ1 + ϕ2 + ϕ3 1 + ϕ3 1 + ϕ2

1 + ϕ3 ϕ1 + ϕ2 + ϕ3 1 + ϕ1

1 + ϕ2 1 + ϕ1 ϕ1 + ϕ2 + ϕ3


Based on this, we find the Nash equilibria.

(a)ϕi > 1
2
, ∀i :

The unique Nash equilibrium ∀x ∈ {1, 2}, ∀i ∈ {1, 2, 3}, is given by

σx(i) =
(−1 + 2ϕi)(−1 + ϕj + ϕk)

3 + 4ϕj(−1 + ϕk)− 4ϕk + 4ϕi(−1 + ϕj + ϕk)

σx(j) =
(−1 + 2ϕj)(−1 + ϕi + ϕk)

3 + 4ϕj(−1 + ϕk)− 4ϕk + 4ϕi(−1 + ϕj + ϕk)

σx(k) = 1− σx(i)− σx(j)

There cannot be another Nash equilibrium where one lobbyist assigns positive proba-

bility to all three decision-makers and the other one does not. A lobbyist can only be

indifferent between all his pure strategies if the other one assigns positive probability

to all three decision-makers. If L1 assigns positive probability to two decision-makers,

then L2 will choose the decision-maker that L1 does certainly not lobby. But then L1 has

an incentive to deviate and to assign positive probability to the decision-maker chosen

by L2. Last, a pure strategy cannot be a part of an equilibrium, as L1 prefers to be at the

same node as L2, but L2 at a different one.

(b)ϕi ≥ ϕj >
1
2
, 1− ϕi > ϕk > 0

The unique Nash equilibrium is the same as given in the previous subcase. Again, there

cannot be another Nash equilibrium, which can be shown along the same lines as for

the previous case.

(c)ϕi > ϕj >
1
2
, 1− ϕj < ϕk

Here, the Nash equilibrium is

σ1(i) =
ϕi − ϕj
−1 + 2ϕi

, σ1(k) = 1− σ1(i)

σ2(i) =
ϕi − ϕk
−1 + 2ϕi

, σ2(j) = 1− σ2(i)

(d)ϕi = ϕj >
1
2
, 1− ϕj < ϕk :
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The Nash equilibria are given by

σ1(k) = 1

σ2(i) ∈ (
−1 + ϕj + ϕk
−1 + 2ϕj

,
ϕj − ϕk
−1 + 2ϕj

), σ2(j) = 1− σ2(i)

(e)1 > ϕi > 1− ϕk ≥ ϕj >
1
2
:

The unique Nash equilibrium is

σ1(i) =
ϕi − ϕj
−1 + 2ϕi

, σ1(k) = 1− σ1(i)

σ2(i) =
ϕi − ϕk
−1 + 2ϕi

σ2(j) = 1− σ2(i)

(f) 1 > ϕi = 1− ϕk > ϕj >
1
2
:

In the Nash equilibria both lobbyists mix between i and k

σ1(i) ∈ (0,
ϕi − ϕj
−1 + 2ϕi

), σ1(k) = 1− σ1(i)

σ2(i) ∈ (
ϕi − ϕj
−1 + 2ϕi

, 1) σ2(k) = 1− σ2(i)

Proof of Proposition 6: Central decision-makers are lobbied

The payoff matrix is given by

A =
1

3


ϕ1 + ϕ2 + ϕ3

ϕ1
ϕ1+δ(1−ϕ1)

+
δϕ2

δϕ2+(1−ϕ2)
+

δϕ3
δϕ3+(1−ϕ3)

ϕ1
ϕ1+δ2(1−ϕ1)

+ ϕ2 +
δ2ϕ3

δ2ϕ3+(1−ϕ3)
δϕ1

δϕ1+(1−ϕ1)
+

ϕ2
ϕ2+δ(1−ϕ2)

+
ϕ3

ϕ3+δ(1−ϕ3)
ϕ1 + ϕ2 + ϕ3

ϕ1
ϕ1+δ(1−ϕ1)

+
ϕ2

ϕ2+δ(1−ϕ2)
+

δϕ3
δϕ3+(1−ϕ3)

δ2ϕ1
δ2ϕ1+(1−ϕ1)

+ ϕ2 +
ϕ3

ϕ3+δ2(1−ϕ3)

δϕ1
δϕ1+(1−ϕ1)

+
δϕ2

δϕ2+(1−ϕ2)
+

ϕ3
ϕ3+δ(1−ϕ3)

ϕ1 + ϕ2 + ϕ3



(a)ϕ1 = ϕ2 =
1
2
, ϕ3 ≤ 1

2

Then choosing decision-maker 2 strictly dominates choosing decision-maker 1 for L1 as

1 +
ϕ3

ϕ3 + δ(1− ϕ3)
> 1 + ϕ3

2

1 + δ
+

δϕ3

δϕ3 + (1− ϕ3)
> 1 +

δϕ3

δϕ3 + (1− ϕ3)

2

1 + δ
+

δϕ3

δϕ3 + (1− ϕ3)
>

1

1 + δ2
+

1

2
+

δ2ϕ3

δ2ϕ3 + (1− ϕ3)
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The same holds for L2 as

1 + ϕ3 > 1 +
δϕ3

δϕ3 + (1− ϕ3)

1 +
ϕ3

ϕ3 + δ(1− ϕ3)
> 1 + ϕ3

δ2

1 + δ2
+

1

2
+

ϕ3

ϕ3 + δ2(1− ϕ3)
>

2δ

1 + δ
+

ϕ3

ϕ3 + δ(1− ϕ3)

Then, for L1 choosing decision-maker two strictly dominates decision-maker three. But

then, also forL2 choosing decision-maker three is strictly dominated by choosing decision-

maker two. Therefore, the unique Nash equilibrium is for both lobbyists to choose

decision-maker two.

(b)ϕ1 = 1− ϕ3

It is straightforward to verify that choosing the central decision-makers is a strictly dom-

inant strategy, independently of his bias.
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