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Abstract— Demand side participation is essential for achiev-
ing real-time energy balance in today’s electricity grid. Demand-
response contracts, where an electric utility company buys
options from consumers to reduce their load in future, are one
of the important tools to increase the demand-side participation.

In this paper, we consider the operational problem of
optimally exercising the available contracts over the planning
horizon such that the total cost to satisfy the demand is mini-
mized. In particular, we consider the objective of minimizing the
sum of the expected `�-norm of the load deviations from given
thresholds and the contract execution costs over the planning
horizon. We present a data driven near-optimal algorithm for
the contract execution problem. Our algorithm is a sample
average approximation (SAA) based and we provide a sample
complexity bound on the number of demand samples required
to compute a (1 + ✏)-approximate policy for any ✏ > 0. Our
SAA algorithm is quite general and can be adapted to quite
general demand models and objective function. For the special
case where the demand in each period is i.i.d., we show that
a static solution is optimal for the dynamic problem. We also
conduct a numerical study to compare the performance of our
SAA based DP algorithm. Our numerical experiments show that
we can achieve a (1+ ✏)-approximation in significantly smaller
number of samples than what is implied by the theoretical
bounds. Moreover, the structure of the approximate policy also
shows that it can be well approximated by a simple piecewise
linear function of the state.

I. INTRODUCTION

Due to an increasing integration of renewable sources such
as wind and solar power on the grid, the supply uncertainty
in the electricity market has increased significantly. Demand-
side participation has become extremely important to main-
tain a real-time energy balance in the grid. There are several
ways to increase the demand-side participation including
time of use pricing, real-time pricing for smart appliances
and interruptible demand-response contracts. In this paper,
we focus on the interruptible demand-response contracts as
a tool for increased demand-side participation. A demand-
response contract is a contract or an option that an electric
utility company can buy from the customers to interrupt or
reduce their load by a specified amount, a specified number
of times until the expiration of the contract.

Typically an electric utility forecasts the day-ahead load
and buys the forecast load in the day-ahead market. If the
actual load turns out to be higher than the forecast, the utility
can buy the difference in the real-time market by paying
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the real-time spot price that can be significantly higher than
the day-ahead price, especially when the supply is scarce.
Alternatively, the utility can exercise the available demand-
response contracts (if any) to offset the imbalance instead
of paying the real-time spot price. Therefore, these contracts
help to achieve the real-time supply-demand balance.

In this paper, we consider the operational problem of
optimally exercising the demand-response contracts over the
planning horizon from the perspective of the utility. At
each time period, the goal is to decide on the number of
contracts to exercise such that the total cost of satisfying
demand is minimized over the planning horizon. As is the
case with all option exercising problems, there is a tradeoff
between exercising the options now or saving them for future
periods. In order to minimize the total cost one needs to
model the dynamics for the real-time electricity price in
addition to the uncertainty in demand. The real-time price of
electricity at any location, also referred to as the locational
marginal price, is computed from the optimal dual prices of
the energy balance constraint corresponding to that location
in a linearized power flow problem. This makes modeling
the real-time price dynamics quite challenging. To avoid
this, we use a different objective function that provides a
good proxy to the total cost. The real-time electricity price
is high typically when the demand is high. Therefore, we
consider the objective of minimizing the expected `

�

norm
of demand deviations above a threshold. When � = 1, the
objective reduces to minimizing the expected peak load. This
provides a good approximation to minimizing the total cost.
Moreover, this allows a data-driven approach with minimal
model assumptions where historical demand data can be used
to model the uncertain future demand.

Interruptible load contracts have been considered in the
literature for improving the reliability of power systems. The
literature is divided in two broad problems: i) designing
and pricing of interruptible load contracts, and ii) optimal
dispatch or exercising of these contracts to minimize costs
or improve reliability. In the regulated markets in the past,
these contracts were used mainly to improve system relia-
bility in situations of supply-demand imbalances (see Oren
and Smith [8] and Caves et al. [2]). With deregulation,
these contracts are used as an ancillary service or as an
equivalent price-based generating resource (see Tuan and
Bhattacharya [11], Yu et al. [12], [13]).

The problem of designing and pricing such contracts
has also been studied extensively (see Fahrioglu and Al-
varado [3], Kamat and Oren [6], and Oren [9]). Strauss and
Oren [10] propose a methodology for designing priority pric-
ing of interruptible load programs with an early notification
option. Oren [9] propose a double-call option which captures



the effects of early notification of interruptions. Kamat and
Oren [6] discuss the valuation of interruptible contracts
with multiple notification times using forward contracts and
option derivatives, for the supply and procurement of inter-
ruptible load programs. Baldick, Kolos and Tompaidis [1]
discuss both the design and execution problem and provide
a good overview of the literature. Most of this work makes
assumptions about the demand model and the real-time price
dynamics. In this paper, we consider a data-driven approach
where we make minimal assumptions about the model of
demand uncertainty.

A. Our contribution

Our main contributions in this paper are the following.
1) We consider the demand-response contract execution

problem to minimizing the . We present a data driven
near-optimal algorithm for the demand-response con-
tract execution problem where the goal is to minimize
the sum of the expected `

�

-norm of the observed load
deviations from given thresholds and the contract exe-
cution costs over the planning horizon. Our algorithm
is based on a sample average approximation (SAA)
dynamic program and we provide a sample complexity
bound of O(T 2/✏2) on the number of demand samples
required to compute a (1 + ✏)-approximate policy for
a planning horizon of T periods (where O(·) is the
standard Big-O notation [4]). The main challenge is
to show that the sampling and discretization error
remains bounded in the multi-period problem. Our
SAA algorithm is quite general and can be adapted to
quite general demand models and objective function.

2) We consider the special case where the demand is i.i.d.
or exchangeable, and the contract execution costs are
zero. For this case, we show that a static solution is
optimal for the dynamic problem of minimizing the
`
�

norm objective of the load deviations from given
thresholds. In particular, we show that executing an
equal number of contracts evenly across the planning
horizon is optimal irrespective of the realized demand.
When either the demands are not exchangeable or there
is a non-zero contract execution costs, a static solution
is no longer optimal.

3) We also conduct a computational study to compare
the performance of our SAA based DP algorithm.
In particular, we compare the performance of our
algorithm with respect to the number of samples. In
our numerical experiments, we observe that we can
obtain a (1+✏)-approximation for significantly smaller
number of samples that the bound of O(T 2/✏2) given
by the theoretical analysis. This is indicated by a fast
convergence of the value function and the cost of
policy as the sample size increases. We also analyze
the near-optimal policy computed by our algorithm and
observe that the policy can be well approximated by a
piecewise linear function of the states with appropriate
rounding to obtain a integer decision on the number of
contracts.

B. Model, Notation and Assumptions

We formulate the contract execution problem in terms of
the following quantities.

S
t

= number of contracts available in period t.
X

t

= random load in period t.
�

t

= threshold base load in period t.

g
t

= execution cost in period t.

n
t

(X
[t�1]

) = number of contracts to exercise at time t.
↵
t

= shortfall penalty in period t

Here, X
[t]

= (X
1

, X
2

, · · · , X
t

) denotes the historical de-
mands up to period t. We assume that the demand is realized
at the end of each period and the contract execution decision
is made at the beginning of the period. Therefore, the number
of contracts n

t

to exercise at time t must only be a function
of X

[t�1]

. Each contract reduces load by �. The threshold
base load �

t

denotes the power the utility has procured in
the day-ahead market for period t. To satisfy demand, X

t

in period t, the utility can either buy (X
t

� �

t

)

+

from the
real-time market or exercise a demand-response contract to
reduce the load (for any x 2 R, x

+

denotes the positive part
of x). Let S

1

denote the total number of demand-response
contracts available in period 1. Therefore, we can formulate
the optimal execution problem as follows.
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The `
�

-norm objective captures the fact that the price grows
faster as the power demand increases. We also include
the function g

t

�

n
t

(X
[t�1]

)

�

that models the cost for each
execution of the contract. Note that when g

t

= 0, we can
consider the objective as sum of the load deviations raised
to the power of � and ignore the 1/� exponent on the sum.
For � = 1, the `

�

-norm objective reduces to the peak load
and we obtain the following special case of minimizing the
sum of expected peak load and the execution cost.
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II. STRUCTURE OF OPTIMAL EXECUTION POLICIES

In this section, we study the structural property of optimal
execution policies for a special setting when the demand
sequence {X

t

: t � 1} is exchangeable and the cost of



executing the contracts g
t

⌘ 0 for all t = 1, . . . , T . A
sequence of random variables is exchangeable if the joint
probability distribution of every permuted sequence is the
same as the original sequence. We prove that a static solution
is optimal in this case.

Without loss of generality, we assume that �

t

= 0 and
↵
t

= 1 for all t = 1, . . . , T (otherwise, we can appropriately
change the demand distribution). Therefore, at each period,
we can formulate the optimization problem as follows.
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where S
t

is the number of contracts available at time t. We
can reformulate (3) as follows.
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Theorem 1: Suppose demand X
t

is exchangeable and
the execution cost g

t

= 0 for all t = 1, . . . , T . Then
a static solution is optimal for the dynamic problem (3).
Furthermore, for each period, the optimal solution is
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, 8X
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Proof: We denote n
t
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) as n
t

for simplicity. We
prove the claim by a backward induction.

Base Case. For period j = T , since there is only one period
left, we execute all the options available. For time j = T �
1, it is easy to verify that the optimal solution, n
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=

S
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/2.

Induction Step. Suppose the induction hypothesis holds for
j � t+ 1. For period t,
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where the second equality follows from the induction hy-
pothesis. We can show that the above function is convex in
n
t

. Therefore, n
t

=

St
T�t+1

is an optimal solution.
The peak load objective is a special case of `

�

norm
objective with � = 1. The above arguments can be used

to show static policy is optimal if we want to minimize the
expected peak realized load. Theorem 1 indicates that if the
demands are identically distributed and there is no cost of
execution, we shall exercise the available contract uniformly
over the remain time periods. The optimal decision is static
and independent of the history of demand. A static solution
is not necessarily optimal if either of the two assumptions
in Theorem 1 are violated. We provide a counter-example in
the full version of the paper.

III. APPROXIMATE DYNAMIC PROGRAM FOR PEAK
LOAD MINIMIZATION

In this section, we consider the general demand-response
contract execution problem. We present an efficient data-
driven near-optimal algorithm for the execution policy prob-
lem under mild assumptions. For exposition purposes, we
consider the objective of minimizing the sum of expected
peak load and execution cost, for the case of i.i.d. demand.
However, our algorithm can be easily adapted for more
general demand models (including Markovian demand) and
objective functions. We defer the details to the full version
of the paper.

Our algorithm is based on the sample average approx-
imation. We consider an appropriate discretization of the
state space, similar in spirit to the knapsack problem [4]
and approximate the expectation by the empirical mean in
a data-driven approach. Therefore, we have two sources of
error in discretization and sampling, and the main challenge
is to show that the error propagation remains bounded in
the multi-period dynamic program. We give a bound on the
number of samples such that the approximation error remains
bounded over T periods.

To formulate the problem, let us introduce a few notations.
Let Y

t

denote the peak realized load up to time t. i.e.,

Y
t
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�

X
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.

Let n
t

(Y
t

, S
t

) denote the number of contracts to exercise in
period t when the current peak load is Y

t

and the number
of available contracts is S

t

. We can assume without loss of
generality that the optimal decision in period t is a function
of Y

t

and S
t

. The optimization problem in period t can be
formulated as

min

Xu:tuT
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We define the value function V
t

(S
t

, Y
t

) as the minimum
sum of increase in peak realized demand above Y

t

and
the execution cost. For simplicity, let n

t

denote n
t

(X
[t�1]

).
Therefore, we can reformulate (5) as follows.

V
t

(S
t

, Y
t

) = min

0ntSt
Xt

"

(X
t

� n
t

� � Y
t

)

+

+ g
t

(n
t

)

+ V
t+1

�

S
t

� n
t

, Y
t

+ (X
t

� n
t

� � Y
t

)

+

�

#

. (6)



for t = 1, 2, · · · , T . We make the following two mild
assumptions.

Assumption 1. Let X
max

= max

1tT

X
t

denote the peak
demand. There is a known constant M 2 R such that

i) (X
max

> M) < ⌘, and
ii) (X

max

) � c
1

M for some constant 0 < c
1

< 1.
Our algorithm requires an estimate of the peak demand for

an appropriate discretization for the approximate dynamic
program. Since this is a random quantity, the above two
conditions suffice for the analysis of our algorithm. This
assumption is not restrictive and holds easily for large T .
For instance, consider the case when P (X

t

> M/2) � 1/T
for all t = 1, . . . , T . For large T , this implies a small lower
bound on the tail probability for demand in each period. In
this case, (X

max

) � (1� 1/e)M/2.

Assumption 2. S
1

 c
2

M , for some constant c
2

< 1.
This assumption is reasonable because demand-response

contracts are used to manage only peak loads and random
variability which is only a small fraction of the total demand.

A. Sample Average Approximation (SAA)

We first discretize the state space. Let K = ✏M/T . We
consider discrete values of Y

t

and X
t

on [0,M ] in multiples
of K. For all t = 1, . . . , T , let
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Note that there are only O(T/✏) possible values of Y
t

and
X

t

. We define our approximate value function, ¯V
t

(S
t

, ˜Y
t

),
on the discrete state space where we approximate the ex-
pectation with the sample average. The detailed description
appears in Algorithm 1.

B. Analysis of algorithm

We make two approximations for an efficient computation
of the dynamic solution. First, we discretize the state space
such that the total number of states become polynomial.
Secondly, we approximate the expectation in each period by
a sample average. These two sources of error can propagate
in the multi-period computation and possibly lead to a
highly suboptimal decision. We show that if the number of
samples is sufficiently large, then the solution computed in
Algorithm 1 gives a (1 + ✏)-approximation of the optimal
execution policy with high probability. In order to analyze the
performance of Algorithm 1, we introduce two more value
functions. For all t = 1, . . . , T , let ˆV
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denote the optimal
dynamic solution on the discrete states. We can compute ˆV
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Algorithm 1: FPTAS for a ✏ - optimal solution
Given ✏ > 0, let K = ✏(1 + a)M/T . Define the
terminal value
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where

N
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: number of samples of X
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.
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: ith sample of X
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end
return {n̄⇤

t

: t = 1, · · · , T}

Also, let ¯U
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denote the true cost of the approximate solution
computed by Algorithm 1. Therefore, ¯U
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where n̄⇤
t

is the optimal solution computed by Algorithm 1.
We prove the following sample complexity bound for Algo-
rithm 1.

Theorem 2: Suppose the number of samples N =

O(T 2

log(TS
1

)/✏2). Then the cost of the execution policy
computed by Algorithm 1 is a (1 + O(✏))-approximation
of the dynamic optimal solution with probability at least
1�O (1/TS

1

)� ⌘.

Using the fact that K = ✏M/T , it is straightforward to
establish that the discretization error is small and we have
the following lemma.
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Next, we show that for N sufficiently large, the sampling
error is small.
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From the union bound over all states, we have that the
value functions ¯V and ˆV are close point-wise with proba-
bility at least (1 � 1/(TS
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)). In the following lemma, we
establish that approximated true cost function ¯U
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The proofs of these results are deferred to the full version.
We are now ready to prove Theorem 2.
Proof of Theorem 2 At time t = 1, Y
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IV. COMPUTATIONAL STUDY

In this section, we present the results of a computational
study to test the performance of our SAA based dynamic
programming algorithm and contrast it with the theoretical
bounds. We also analyze the structure of the near-optimal
policy computed by our algorithm.

TABLE I
RELATIVE ERROR OF VALUE FUNCTION AND TRUE COST FOR

✏ = 0.1(10%). RELATIVE ERROR = V̂ ✏,N
1 �V̂ ✏,12800

1

V̂ ✏,12800
1

,
Ū✏,N

1 �Ū✏,12800
1

Ū✏,12800
1

.

N V̂ ✏
1 (S1, 0) Relative Error Ū✏

1(S1, 0) Relative Error
100 42.9945 0.20% 43.4140 0.67%
200 43.0937 0.02% 43.2392 0.26%
400 43.1430 0.14% 43.1936 0.16%
800 43.0485 0.07% 43.1696 0.10%
1600 43.1067 0.05% 43.1068 0.05%
3200 43.0910 0.02% 43.1348 0.02%
6400 43.1060 0.05% 43.1388 0.03%
12800 43.0819 - 43.1264 -

TABLE II
RELATIVE ERROR OF VALUE FUNCTION AND TRUE COST FOR

✏ = 0.05(5%). RELATIVE ERROR = V̂ ✏,N
1 �V̂ ✏,12800

1

V̂ ✏,12800
1

,
Ū✏,N

1 �Ū✏,12800
1

Ū✏,12800
1

.

N V̂ ✏
1 (S1, 0) Relative Error Ū✏

1(S1, 0) Relative Error
100 43.0974 0.21% 43.0647 0.16%
200 43.1046 0.20% 43.2835 0.34%
400 43.1378 0.12% 43.2595 0.28%
800 43.1873 0.01% 43.2147 0.19%
1600 43.1823 0.02% 43.1258 0.02%
3200 43.2013 0.02% 43.1812 0.10%
6400 43.2019 0.02% 43.1539 0.04%
12800 43.1911 - 43.1349 -

A. Dependence on the Sample Size

We show that with O(T 2

log(TS
0

)/✏2) samples, Algo-
rithm 1 guarantees a (1+✏)-approximation of optimal policy
with high probability. In practice, we may be able to obtain
a (1 + ✏)-approximation with significantly smaller numbers
of samples. We conduct computational experiments to study
the effect of number of samples on the performance of
our algorithm. In particular, we compare the value function
of SAA approximated DP, ˆV

1

(S
1

, 0), and the cost of the
policy computed by the DP, ¯U

1

(S
1

, 0), with respect to the
sample size. For our numerical experiment, we use the
following parameters: S

1

= 30, T = 30, � = 1 and there
is a linear execution cost of 0.01 per contract. The load
i.i.d.⇠ Unif(0, 45).

Tables I and II, show the value function and cost function
as the sample size increases for different level of accuracy ✏.
We consider the value corresponding to the highest number
of samples N = 12800 as the best approximation of the true
value and compute the relative error with respect to the best
approximation for different sample sizes.

Tables I and II shows that both the DP value function
and the true cost function of the DP policy converge rapidly
as the sample size increases. The relative error is less than
1% which is small compared with ✏. The theoretical bounds
imply that one requires around 10

6 samples to compute a
(1 + ✏)-approximation for ✏ = 0.01. The computational
results indicate that one can compute a very high quality



solution with a relatively modest number of samples.

B. True Cost Distribution

In Table III, we compare the true cost under the ap-
proximate policy with the approximate DP value function
for different values of ✏. We also give the 99% confidence
interval of true cost function for each value of ✏.

TABLE III
TRUE COST DISTRIBUTION. RELATIVE ERROR = |Ū✏

1�V̂ ✏
1 |

V̂ ✏
1

.

✏ V̂ ✏
1 (S1, 0) Ū✏

1(S1, 0) Confidence Interval Relative Error
0.15 42.8996 43.1109 (39.3878, 46.8340) 0.493%
0.10 43.0461 43.1084 (39.3716, 46.8451) 0.145%
0.05 43.1834 43.1219 (39.3167, 46.9272) 0.142%
0.02 43.2150 43.1148 (39.3455, 46.8841) 0.023%
0.01 43.2067 43.1115 (39.4824, 46.7405) 0.022%

Table III shows that the relative error between the value
function and the true cost is at most 0.493% and is much
smaller than accuracy level ✏. We also observe that the
relative error decreases as ✏ decreases. This result agrees with
Lemmas 2 and 3 for our algorithm which indicate that the
error | ¯V

t

� ˆV
t

| and | ¯U
t

� ¯V
t

| are both small with respect to the
level of accuracy. The discretized value function ˆV

1

(S
1

, 0) is
inside the confidence interval in all the cases and is a good
approximation of the true cost of the DP policy.

C. Structure of Policy

We also study the structure of the near-optimal policy
computed by our approximate SAA based DP algorithm. We
plot the approximated decision n

t

with respect to the state
variable S

t

and Y
t

for t = T � 1 and T � 2 in Figures 1
and 2.

Fig. 1. Near-optimal Policy at Period T-1

We observe from Figure 1 and 2 that the optimal number
of contracts to execute is almost linear in S

t

and Y
t

and re-
mains constant after it reaches a threshold. We can therefore,
approximate the policy by a piecewise linear function of the

Fig. 2. Near-optimal Policy at Period T-2

states with some rounding to obtain a integer decision on
the number of contracts. Such a functional approximation
is quite useful as it provides a compact representation of
the approximate execution policy. Moreover, it provides
important insights into valuation, pricing and designing of
the demand-response contracts. We defer the details to the
full version of the paper.
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