
Noname manuscript No.
(will be inserted by the editor)

On the Adaptivity Gap in Two-Stage Robust Linear
Optimization under Uncertain Constraints

Pranjal Awasthi · Vineet Goyal · Brian Y.

Lu

Received: date / Accepted: date

Abstract In this paper, we study the performance of static solutions in two-stage
adjustable robust packing linear optimization problem with uncertain constraint
coefficients. Such problems arise in many important applications such as revenue
management and resource allocation problems where demand requests have uncer-
tain resource requirements. The goal is to find a two-stage solution that maximizes
the worst case objective value over all possible realizations of the second-stage con-
straints from a given uncertainty set. We consider the case where the uncertainty
set is column-wise and constraint-wise (any constraint describing the set involve en-
tries of only a single column or a single row). This is a fairly general class of uncer-
tainty sets to model constraint coefficient uncertainty. We show that the two-stage
adjustable robust problem is Ω(log n)-hard to approximate. On the positive side,
we show that a static solution is an O

(
log n·min(logΓ, log(m+n))

)
-approximation

for the two-stage adjustable robust problem where m and n denote the numbers of
rows and columns of the constraint matrix and Γ is the maximum possible ratio of
upper bounds of the uncertain constraint coefficients. Therefore, for constant Γ ,
surprisingly the performance bound for static solutions matches the hardness of
approximation for the adjustable problem. Furthermore, in general the static solu-
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tion provides nearly the best efficient approximation for the two-stage adjustable
robust problem.

Keywords Robust Optimization; Approximation Algorithms; Hardness of
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1 Introduction

In most real world applications, problem parameters are uncertain at the opti-
mization phase. Stochastic and robust optimization are two different paradigms
that have been studied to address this parameter uncertainty. In a stochastic op-
timization approach, uncertainty is modeled using probability distributions and
the goal is to optimize an expected objective. This has been extensively stud-
ied and we refer the reader to several textbooks including Kall and Wallace [19],
Prekopa [20], Shapiro [21], Shapiro et al. [22] for a comprehensive review of stochas-
tic optimization. However, this approach suffers from the “curse of dimensional-
ity” and is intractable even if an approximate solution is desired (see Shapiro and
Nemirovski [23]). In a robust optimization approach, the uncertainty is modeled
using a deterministic uncertainty set and the goal is to optimize over the worst
case uncertainty realization (see Ben-Tal and Nemirovski [3,4,5], El Ghaoui and
Lebret [14], Bertsimas and Sim [11,12], Goldfarb and Iyengar [17]). This is a com-
putationally tractable approach for a large class of problems if we want to compute
a static solution feasible for all scenarios. We refer the reader to the recent book
by Ben-Tal et al. [2] and the references therein for a comprehensive review. How-
ever, computing an optimal dynamic (or adjustable) solution is hard in general
even in the robust optimization approach. Feige et al. [15] show that it is hard to
approximate the two-stage robust fractional set covering problem with uncertain
right-hand-side within a factor better than Ω(logm/ log logm).

In this paper, we consider the following two-stage (adjustable) robust packing
linear optimization problem ΠAR under uncertain constraint coefficients.

zAR = max cTx+ min
B∈U

max
y(B)

dTy(B)

Ax+By(B) ≤ h

x ∈ Rn1
+

y(B) ∈ Rn2
+ ,

(1.1)

where A ∈ Rm×n1 , c ∈ Rn1
+ ,d ∈ Rn2

+ ,h ∈ Rm. The second-stage constraint matrix

B ∈ Rm×n2
+ is uncertain and belongs to a full-dimensional compact convex un-

certainty set U ⊆ Rm×n2
+ (non-negative orthant). The decision maker selects the

first-stage solution x and for each second-stage matrix B, recourse decision y(B)
such that the worst case objective value is maximized (the term adjustable empha-
sizes the fact that we can select a recourse decision after the uncertain constraint
matrix is known). We would like to emphasize that the objective coefficients c,d,
constraint coefficients B, and the decision variables x,y(B) are all non-negative.
Also, the uncertainty set U of second-stage constraint matrices is contained in the
non-negative orthant. We can assume without loss of generality that n1 = n2 = n
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and U is down-monotone [8], i.e., B ∈ U and 0 ≤ B̂ ≤ B implies that B̂ ∈ U . When
m = 1, the above problem reduces to a fractional knapsack problem with uncertain
item sizes. The stochastic version of this knapsack problem has been extensively
studied in the literature (for instance, see Dean et al. [13], Goel and Indyk [16],
Goyal and Ravi [18]).

The above model is fairly general and captures many important applications.
For instance, in the resource allocation problem considered in [26], m corresponds
to the number of resources with capacities h. The linear constraints correspond to
capacity constraints on the resources, the first-stage matrix A denotes the resource
requirements of known first-stage demands and B denotes the uncertain resource
requirements for future demands. In the framework of (1.1), we want to compute
first-stage (fractional) allocation decisions x such that the worst case total revenue
over all possible future demand arrivals from U is maximized.

As another example, consider a multi-server scheduling problem as in [10] where
jobs arrive with uncertain processing times and we need to make the scheduling
decisions to maximize the utility. The first-stage matrix A denotes the known pro-
cessing time of first-stage jobs, h denotes the available timespan and B represents
the time requirements of unknown arriving jobs. If we employ a pathwise enu-
meration for the uncertain time requirement, such stochastic project scheduling
problem can be modeled as two-stage packing linear programming problems with
uncertain constraint coefficients as in (1.1).

As mentioned earlier, computing an optimal two-stage adjustable robust solu-
tion is intractable in general. This motivates us to consider approximate solution
approaches. In particular, we consider the corresponding static robust optimization
problem ΠRob, which can be formulated as follows.

zRob = max cTx+ dTy

Ax+By ≤ h, ∀B ∈ U
x ∈ Rn1

+

y ∈ Rn2
+ ,

(1.2)

where the “second-stage” variable y is static and independent of the realization of
B. Therefore, both x and y are chosen before B is known and are feasible for all
realizations of B. An optimal solution (1.2) can be computed efficiently (Bertsimas
et al. [6], Ben-Tal et al. [2]). In fact, if U is a polyhedron, we can compute the
optimal static robust solution by solving a single linear program (Soyster [24],
Ben-Tal and Nemirovski [4]). However, since there is no recourse, a static solution
is believed to be highly conservative.

The performance of static solution has been studied in the literature. Bertsimas
and Goyal [7], Bertsimas et al. [9] study the performance of static solution for
two-stage and multi-stage adjustable robust linear covering problems under right-
hand-side uncertainty, and relate it to the symmetry of the uncertainty set. Ben-Tal
and Nemirovski [4] show that the static solution is optimal for adjustable robust
problem with uncertain constraint coefficients if the uncertainty set of matrices is
constraint-wise, i.e., a Cartesian product of row sets. Bertsimas et al. [8] provide
a tight approximation bound on the performance of static robust solution for
two-stage adjustable robust problems under constraint uncertainty. In particular,
the approximation bound in [8] is related to a measure of non-convexity of a
transformation of the uncertainty set. However, the authors show that for the
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following family of uncertainty sets of non-negative diagonal matrices with an
upper bound on the `1-norm of the diagonal vector

U =

{
B ∈ Rm×m+

∣∣∣∣∣ Bij = 0, ∀i 6= j,

m∑
i=1

Bii ≤ 1

}
,

the measure of non-convexity is m. Moreover, it is not necessarily tractable to com-
pute the measure of non-convexity for an arbitrary convex compact set. We would
like to note that such (diagonal) uncertainty sets do not arise naturally in practice.
For instance, consider the resource allocation problem where the uncertainty set
U represents the set of uncertain resource requirement matrices. A constraint on
the diagonal relates requirements of different resources across different demands,
which is not a naturally arising relation. This motivates us to study the special
class of column-wise and constraint-wise sets. In particular,

U = {B ∈ Rm×n+ | Bej ∈ Cj , j ∈ [n],BT ei ∈ Ri, i ∈ [m]},

where Cj ⊆ Rm+ for all j ∈ [n] and Ri ⊆ Rn+ for all i ∈ [m] are compact, convex
and down-monotone sets. We assume that the sets Cj , j ∈ [n] and Ri, i ∈ [m] are
such that linear optimization problems over U can be solved in time polynomial
in the encoding length of U . We refer to the above uncertainty set as a column-
wise and constraint-wise set since the constraints describing the uncertainty set U
involve entries of only a single column or a single row of the matrix. In the resource
allocation problem, this would imply that we can have a constraint on the resource
requirements of a particular resource for different demands, and a constraint on
resource requirements of different resources for any particular demand.

1.1 Our Contributions.

Our main contributions are as follows.

Hardness of Approximation. We show that the two-stage adjustable robust prob-
lem ΠAR (1.1) is Ω(log n) hard to approximate even for the case of column-wise
uncertainty sets. In other words, there is no polynomial time algorithm that com-
putes an adjustable two-stage solution with worst case objective value within a
factor better than Ω(log n) of the optimal. Our proof is based on an approxima-
tion preserving reduction from the set cover problem [25]. In particular, we show
that any instance of set cover problem can be reduced to an instance of the two-
stage adjustable robust problem with column-wise sets where each column set is a
simplex. For the more general case where the uncertainty set U and objective coef-
ficients d are not constrained to be in the non-negative orthant, we show that the

two-stage adjustable robust problem is Ω(2log1−εm)-hard to approximate for any
constant 0 < ε < 1 by a reduction from the Label-Cover-Problem [1]. The hardness of
approximation results motivate us to find good approximations for the two-stage
adjustable robust problem.

Adaptivity Gap: Performance of static solutions. We show that a static solu-
tion provides an O

(
log n ·min(logΓ, log(m+n))

)
-approximation for the two-stage

adjustable robust problem for the case of column-wise and constraint-wise un-
certainty sets where Γ is the maximum possible ratio of the upper bounds of
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different matrix entries in the uncertainty set (See Section 4 for details). There-
fore, if Γ is a constant, a static solution gives a O(log n)-approximation for the
adjustable robust problem for column-wise and constraint-wise uncertainty sets;
thereby, matching the hardness of approximation. This is quite surprising as it
shows the static solution is the best possible efficient approximation for the ad-
justable robust problem in this case. We would like to note that the two-stage
adjustable robust optimization problem is Ω(log n)-hard even for the case when Γ

is a constant. Furthermore, when Γ is large, we show that a static solution gives a
O(log n · log(m+ n))-approximation for the adjustable robust problem. Therefore,
the static solution provides a nearly optimal approximation for the two-stage ad-
justable robust problem for column-wise and constraint-wise uncertainty sets in
general.

We first consider the case when the uncertainty set is column-wise, i.e., each
column j ∈ [n] of the uncertain matrix B belongs to a compact convex set Uj ⊆ Rm+
unrelated to other columns

U = {[b1 b2 . . . bn] | bj ∈ Uj , j ∈ [n]}, (1.3)

and prove a bound of O
(

log n ·min(logΓ, log(m + n))
)

on the adaptivity gap for
the adjustable robust problem Our analysis is based on the structural properties
of the optimal adjustable and static robust solutions. In particular, we first show
that the worst adaptivity gap is achieved when each column is a simplex. This is
based on the property of the optimal static robust solution that it depends only on
the hypercube containing the given uncertainty set U (Soyster [24]). We formalize
this in Theorems 3 and 4. Furthermore, for the simplex column-wise uncertainty
sets, we relate the adjustable robust problem to an appropriate set cover problem
and relate the static robust problem to the corresponding LP relaxation in order
to obtain the bound on the adaptivity gap.

We extend the analysis to the case when U is a column-wise and constraint-wise
uncertainty set and prove a similar bound on the performance of static solutions.
In particular, we show that if a static solution provides an α-approximation for
the adjustable robust problem with column-wise uncertainty sets, then a static
solution is an α-approximation for the case of column-wise and constraint-wise
uncertainty sets. Moreover, we also extend our result to the case where the second-
stage objective coefficients are also uncertain and show that the same bound holds
when the uncertainty in the objective coefficients does not depend on the column-
wise and constraint-wise constraint coefficient uncertainty sets.

Our results confirm the power of static robust solutions for the two-stage ad-
justable robust problem. In particular, its performance nearly matches the hard-
ness of approximation factor for the adjustable robust problem, which indicates
that it is nearly the best approximation possible for the problem. In addition,
we would like to note that our approximation bound only compares the optimal
objective values of the adjustable and static robust problems. The performance of
the static robust solution policy can potentially be better: if (x∗,y∗) is an optimal
static robust solution, we only implement the first-stage solution x∗ and compute
the recourse solution after observing the realization of the uncertain matrix B.
Therefore, the objective value of the recourse solution can potentially be better
than that of y∗.
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Outline. In Section 2, we present the hardness of approximation for the two-stage
adjustable robust problems. In Section 3, we present the one-stage reformulation
of the adjustable robust problem and the corresponding problem. In Sections 4
and 5, we present the bounds on the adaptivity gap for column-wise uncertainty
sets. We extend the analysis to the general case of column-wise and constraint-
wise uncertainty sets in Section 6. In Section 7, we compare our result with the
measure of non-convexity bound in Bertsimas et al. [8] and extend our bound to
the case where the objective coefficients are also uncertain in Section 8.

2 Hardness of Approximation.

In this section, we show that the two-stage adjustable robust problem ΠAR is
Ω(log n)-hard to approximate even for column-wise uncertainty sets (1.3). In other
words, there is no polynomial time algorithm that guarantees an approximation
within a factor of Ω(log n) of the optimal two-stage adjustable robust solution. We
achieve this via an approximation preserving reduction from the set cover problem
, which is Ω(log n)-hard to approximate [25]. In particular, we have the following
theorem.

Theorem 1 The two-stage adjustable robust problem, ΠAR as defined in (1.1) is

Ω(log n)-hard to approximate for column-wise uncertainty sets.

Proof Consider an instance I of the set cover problem with ground set of elements
S = {1, . . . , n} and a family of subsets S1, . . . ,Sm ⊆ S. The goal is to find minimum
cardinality collection C of subsets Si, i ∈ [m] that covers all j ∈ [n]. We construct
an instance I′ of the two-stage adjustable robust problem ΠAR (1.1) with a column-
wise uncertainty set U as follows.

c = 0,A = 0, hi = 1, ∀i ∈ [m], dj = 1, ∀j ∈ [n]

Uj =

{
b ∈ [0, 1]m

∣∣∣∣∣
m∑
i=1

bi ≤ 1, bi = 0, ∀i s.t. j /∈ Si

}
U =

{
[b1 b2 . . . bn] | bj ∈ Uj

}
.

Note that there is a row corresponding to each subset Si and a column correspond-
ing to each element j. Moreover, U is a column-wise uncertainty set. Let e denote
the vector of all ones (of appropriate dimension) and ej be a standard unit vector

where the jth is one and all other components are zero. Now,

zAR = min
bj∈Uj ,j∈[n]

max
y∈Rn+

eTy
∣∣∣∣∣∣
n∑
j=1

yjbj ≤ e


= min
bj∈Uj ,j∈[n]

min
v∈Rm+

{eTv | bTj v ≥ 1, ∀j ∈ [n]},

where the second reformulation follows from taking the dual of the inner max-
imization problem in the original formulation. Suppose v̂, b̂j for all j ∈ [n] is a
feasible solution for instance I′. Then, we can compute a solution for instance I
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with cost at most eT v̂. To prove this, we show that we can construct an integral
solution ṽ, b̃j for all j ∈ [n] such that

eT ṽ ≤ eT v̂.

Note that b̂j may not necessarily be integral. For each j ∈ [n], consider a basic
optimal solution b̃j where

b̃j ∈ arg max{bT v̂ | b ∈ Uj}.

Therefore, bj is a vertex of Uj for any j ∈ [n], which implies b̃j = eij for some
ij ∈ Sj . Also,

b̃
T
j v̂ ≥ b̂

T
j v̂ ≥ 1, ∀j ∈ [n].

Now, let

ṽ ∈ arg min{eTv | b̃Tj v ≥ 1, ∀j ∈ [n],v ≥ 0}.

Clearly, eT ṽ ≤ eT v̂. Also, for all j ∈ [n], since b̃j = eij for some ij ∈ Sj ,

b̃
T
j ṽ ≥ 1 =⇒ ṽij = 1, ∀j ∈ [n].

Therefore, ṽ ∈ {0, 1}m. Let
C = {Si | ṽi = 1}.

Clearly, C covers all the element j ∈ [n] and |C| = eT ṽ ≤ eT v̂.
Conversely, consider set cover C ⊆ {Si, i ∈ [m]} of instance I. For any j ∈ [n],

there exists ij ∈ [m] such that j ∈ Sij and Sij ∈ C. Now, we can construct a
feasible solution v̄, b̄j for all j ∈ [n] for zAR as follows.

b̄j = eij , ∀j ∈ [n]

v̄i =

{
1 if Si ∈ C
0 otherwise

, ∀i ∈ [m].

It is easy to observe that b̄
T
j v̄ ≥ 1 for all j ∈ [n] and eT v̄ = |C|. �

2.1 General Two-stage Adjustable Robust Problem.

If the uncertainty set U of second-stage constraint matrices and the objective
coefficients d are not constrained to be in the non-negative orthant in ΠAR, we
can prove a stronger hardness of approximation result. In particular, consider the
following general problem ΠGen

AR :

zGenAR = max cTx+ min
B∈U

max
y(B)

dTy(B)

Ax+By(B) ≤ h

y(B) ≥ 0,

(2.1)

where U ⊆ Rm×n is a convex compact column-wise set, c,d ∈ Rn and A ∈ Rm×n.

We show that it is Ω(2log1−εm)-hard to approximate for any constant 0 < ε < 1.
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Theorem 2 The adjustable robust problem ΠGen
AR (2.1) is Ω(2log1−εm)-hard to ap-

proximate for any constant 0 < ε < 1.

We prove this by an approximation preserving reduction from the Label-Cover-

Problem [1]. The proof is presented in Appendix A.

3 Adjustable Robust Problem: Separation Problem.

Before proving the adaptivity gap for the general column-wise and constraint-
wise uncertainty sets, we first consider the case where the uncertainty set U is
column-wise. Recall that U being column-wise implies that

U = {[b1 b2 . . . bn] | bj ∈ Uj , j ∈ [n]},

where Uj ⊆ Rm+ is a compact, convex, down-monotone set for all j ∈ [n].

3.1 The Separation Problem.

In this section, we consider the separation problem for the two-stage adjustable
robust problem and a reformulation of the one-stage static robust problem intro-
duced by Soyster [24]. In particular, we have the following epigraph reformulation
of ΠAR.

zAR = max cTx+ z

z ≤ dTy(B), ∀B ∈ U
Ax+By(B) ≤ h, ∀B ∈ U
x,y(B) ≥ 0.

Consider the following separation problem.

Separation problem: Given x ≥ 0, z, decide whether

min
B∈U

max
y≥0
{dTy | By ≤ h−Ax} ≥ z, (3.1)

or give a violating hyperplane by exhibiting B ∈ U such that

max
y≥0
{dTy | By ≤ h−Ax} < z.

We can show that a γ-approximate algorithm for the separation problem (3.1)
implies a γ-approximate algorithm for the two-stage adjustable robust problem
(See Appendix B). Moreover, we can assume without loss of generality that h −
Ax > 0 (See Appendix C). Therefore, we can rescale U by Û = [diag(h−Ax)]−1U
so that the right-hand-side (h−Ax) is e. Note that Û is also a convex, compact,
down-monotone and column-wise set. Therefore, we can assume without loss of
generality that the right-hand-side is e. In addition, we can interpret the separation
problem as the following one-stage adjustable robust problem.

zIAR = min
B∈U

max
y≥0
{dTy | By ≤ e}

= min{eTv | BTv ≥ d,B ∈ U ,v ≥ 0},
(3.2)
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where the second reformulation follows by taking the dual of the inner maxi-
mization problem. On the other hand, the corresponding one-stage static robust
problem can be defined as follows.

zIRob = max
y≥0
{dTy | By ≤ e, ∀B ∈ U}.

We can reformulate zIRob as a compact LP using the following result of Soyster [24].

Theorem 3 (Soyster [24]) Suppose U ⊆ Rm×n+ is a compact, convex, and column-

wise uncertainty set. Let B̂ ∈ Rm×n be such that

B̂ij = max{Bij | B ∈ U}, ∀i ∈ [m], j ∈ [n]. (3.3)

Then,

max
y≥0
{dTy | By ≤ e, ∀B ∈ U} = max{dTy | B̂y ≤ e,y ≥ 0}. (3.4)

For the sake of completeness, we provide the proof of Theorem 3 in Appendix D.
Therefore, we can reformulate zIRob as follows.

zIRob = min{eTv | B̂
T
v ≥ d,v ≥ 0}, (3.5)

where B̂ is as defined in (3.3).

3.2 Worst Case Instances for Adaptivity Gap.

In this section, we show that the adaptivity gap is worst on column-wise uncer-
tainty set when each column set is a simplex. In particular, we prove the following
theorem.

Theorem 4 Given an arbitrary convex, compact, down-monotone and column-wise

uncertainty set U ⊆ Rm×n+ with U = U1 × . . . × Un, let B̂ be defined as in (3.3). For

each j ∈ [n], let

Ûj =

{
b ∈ Rm+

∣∣∣∣∣
m∑
i=1

1

B̂ij
bi ≤ 1, bi = 0,∀i : B̂ij = 0

}
, ∀j ∈ [n].

and

Û =
{

[b1 b2 . . . bn]
∣∣∣ bj ∈ Ûj , ∀j ∈ [n]

}
.

Let zAR(U) (zAR(Û) respectively) and zRob(U) (zRob(Û) respectively) be the optimal

values of the two-stage adjustable robust problem and the static robust problem over

uncertainty set U (Û respectively). Then,

zAR(Û) ≥ zAR(U) and zRob(Û) = zRob(U).
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Proof Given arbitrary b ∈ Ûj , j ∈ [n], b is a convex combination of B̂ijei, i ∈ [m],

which further implies that b ∈ Uj . Therefore, B ∈ Û implies that B ∈ U and we

have Û ⊆ U . Therefore, any x that is feasible for ΠAR(U) is feasible for ΠAR(Û),
and we have zAR(Û) ≥ zAR(U).

Since Û ⊆ U , any feasible solution for ΠRob(U) is also feasible for ΠRob(Û).
Therefore, zRob(Û) ≥ zRob(U). Conversely, let (x̂, ŷ) be the optimal solution of
ΠRob(Û). Noting that (x̂,0) is a feasible solution for ΠRob(U), we have

zRob(U) ≥ cT x̂+ max{dTy | By ≤ h−Ax̂, ∀B ∈ U}

= cT x̂+ max{dTy | B̂y ≤ h−Ax̂},

where the last equality follows from Theorem 3. Furthermore,

zRob(Û) = cT x̂+ max{dTy | By ≤ h−Ax̂, ∀B ∈ Û}

= cT x̂+ max{dTy | B̂y ≤ h−Ax̂},

where the last equality follows from Theorem 3 and the fact that U and Û have
the same B̂. Therefore, zRob(U) = zRob(Û). �

The above theorem shows that the for column-wise uncertainty sets, the gap
between the optimal values of ΠAR and ΠRob for a column-wise set is largest
when each column set is a simplex. Therefore, to provide the tight bound on the
performance of static solutions, we can assume without loss of generality that the
column-wise, convex compact uncertainty U is a Cartesian product of simplices.
The worst known instance of ΠAR with a column-wise uncertainty set has an
adaptivity gap of Θ(log n). We present the family of instances below.

Family of Adaptivity Gap Examples. Consider the following instance (ILB) of
ΠAR:

A = 0, c = 0,d = e,h = e,U = {[b1 b2 . . . bn] | bj ∈ Uj , j ∈ [n]}, (ILB)

where

U1 =
{
b ∈ Rn+ | 1 · b1 + 2 · b2 + . . .+ (n− 1) · bn−1 + n · bn ≤ 1

}
,

U2 =
{
b ∈ Rn+ | n · b1 + 1 · b2 + . . .+ (n− 2) · bn−1 + (n− 1) · bn ≤ 1

}
,

...

Un =
{
b ∈ Rn+ | 2 · b1 + 3 · b2 + . . .+ n · bn−1 + 1 · bn ≤ 1

}
.

Therefore,

Uj =

{
b ∈ Rn+

∣∣∣∣∣
n∑
i=1

[(n+ i− j + 1) mod n] · bi ≤ 1

}
, ∀j ∈ [n]

where mod is the standard remainder operation and let (0 mod n) = n. We have
the following lemma.

Lemma 1 Let zAR be the optimal objective value of the instance (ILB) of ΠAR and

zRob be the optimal objective value of the corresponding static robust problem. Then,

zAR = Θ(log n) · zRob.

We provide the proof in Appendix E.
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4 O(logn · log Γ ) Adaptivity Gap for Column-wise Uncertainty Sets

In this section, we first consider the case of column-wise uncertainty sets and
show that a static solution gives a O(log n · logΓ )-approximation for the two-stage
adjustable robust problem where Γ is defined as follows.

βmax = max{B̂ij | i ∈ [m], j ∈ [n]}

βmin = min{B̂ij | i ∈ [m], j ∈ [n], B̂ij 6= 0}

Γ = 2 · βmax

βmin
,

(4.1)

where B̂ is defined as in (3.3). From Theorem 4, the worst case adaptivity gap for
two-stage adjustable robust problem with column-wise uncertainty sets is achieved
when U is a Cartesian product of simplices. Therefore, to provide a bound on
the performance of static solutions, we assume that U is a Cartesian product of
simplices.

4.1 One-stage Adjustable and Static Robust Problems

We first compare the one-stage adjustable robust, zIAR and static robust, zIRob
problems. Recall,

zIAR = min{eTv | BTv ≥ d,B ∈ U ,v ≥ 0}

zIRob = min{eTv | B̂
T
v ≥ d,v ≥ 0}.

Theorem 5 Given d ∈ Rn+ and a convex, compact and down-monotone uncertainty

set U ⊆ Rm×n+ that is column-wise with simplex column uncertainty sets U1, . . . ,Un.

Let zIAR be as defined in (3.2), and zIRob be as defined in (3.5). Then

zIAR ≤ O(logΓ log n) · zIRob.

Our proof exploits the structural properties of the optimal solutions for the ad-
justable robust and static robust problems. In particular, we relate the one-stage
adjustable robust problem to an integer set cover problem and relate the static
robust problem to the dual of the corresponding LP relaxation. As earlier, by ap-
propriate rescaling of U , we can assume that the cost d is e. We can write the
one-stage adjustable robust problem as

zIAR = min{eTv | vT bj ≥ 1, bj ∈ Uj , ∀j ∈ [n],v ≥ 0}. (4.2)

and the corresponding static robust problem:

zIRob = max


n∑
j=1

yj

∣∣∣∣∣∣
n∑
j=1

βji yj ≤ 1, ∀i ∈ [m],y ≥ 0

 (4.3)

= min{eTv | vTβj ≥ 1, ∀j ∈ [n],v ≥ 0}, (4.4)

where
βji = B̂ij , ∀i ∈ [m], j ∈ [n]. (4.5)

We first show that there exists an “integral” optimal solution for the one-stage
adjustable robust problem (4.2).
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Lemma 2 Consider the one-stage adjustable robust problem (4.2) where the uncer-

tainty set U is a Cartesian product of simplices Uj , j ∈ [n]. Let βj , j ∈ [n] be defined

as in (4.5). Then, there exists an optimal solution (v̄, b̄
j
, j ∈ [n]) for (4.2) such that

b̄
j

= βjijeij for some ij ∈ [m], ∀j ∈ [n]

v̄i ∈
{

0, 1/βji

∣∣∣ j ∈ [n]
}
, ∀i ∈ [m].

Proof Suppose this is not the case. Let (ṽ, b̃
j
) be an optimal solution for (3.2). For

all j ∈ [n], let b̄
j

be an extreme point optimal for

max{ṽTx | x ∈ Uj}.

Since Uj is a down-monotone simplex, b̄
j

= βjijeij for some ij ∈ [m]. Note that

ṽT b̄
j ≥ 1. Therefore, (ṽ, b̄

j
, j ∈ [n]) is also an optimal solution for (3.2). Now, we

can reformulate the separation problem as follows.

zIAR = min{eTv | vT b̄j ≥ 1, ∀j ∈ [n]},

where only v is the decision variable. Let v̄ be an extreme point optimal of the
above LP. Then for all j ∈ [n],

v̄ij b̄
j
ij

= vijβ
j
ij
≥ 1,

as b̄
j

= βjijeij . Therefore, we have

v̄i ∈
{

0, 1/βji

∣∣∣ j ∈ [n]
}
, ∀i ∈ [m]

at optimality. �

From the above lemma, we can reformulate the one-stage adjustable robust
problem (3.2) as

zIAR = min

{
m∑
i=1

vi

∣∣∣∣∣ ∀j ∈ [n],∃ij ∈ [m] s.t. vijβ
j
ij
≥ 1,v ≥ 0

}
. (4.6)

A 0-1 formulation of zIAR. We formulate a 0-1 integer program that approxi-
mates (4.6) within a constant factor. From Lemma 2, we know that there is an
optimal solution (v, bj , j ∈ [n]) for (4.6) such that

vi ∈
{

0, 1/βji

∣∣∣ j ∈ [n]
}
, ∀i ∈ [m].

Therefore, if vi 6= 0, then
1

βmax
≤ vi ≤

1

βmin
.

To formulate an approximate 0-1 program, we consider discrete values of vi in
multiples of 2 starting from 1/βmax. Denote T = dlogΓ e and T = {0, . . . , T}. We
consider

vi ∈ {0} ∪
{

2t

βmax

∣∣∣∣ t ∈ T } .
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For any i ∈ [m], t ∈ T , let Cit denote the set of columns j ∈ [n] that can be covered
by setting vi = 2t/βmax, i.e.,

Cit =

{
j ∈ [n]

∣∣∣∣ 2t

βmax
· βji ≥ 1

}
.

Also, for all i ∈ [m], t ∈ T , let

xit =

 1, if vi =
2t

βmax
,

0, otherwise,

ct =
2t

βmax
.

Consider the following 0-1 integer program.

zmod
AR = min


m∑
i=1

T∑
t=0

ctxit

∣∣∣∣∣
m∑
i=1

∑
t∈T : j∈Cit

xit ≥ 1, ∀j ∈ [n], xit ∈ {0, 1}

 . (4.7)

In the following lemma, we show that the above integer program approximates
zIAR within a constant factor.

Lemma 3 The IP problem in (4.7) is feasible and provides a near-optimal solution

for the one-stage adjustable robust problem zIAR (4.6). In particular, we have

1

2
zmod
AR ≤ z

I
AR ≤ z

mod
AR .

Proof Consider an optimal solution v∗ for zIAR (4.6). Note that for all i ∈ [m],
t ∈ T , let

x̄it =

{
1, if

ct
2
< v∗i ≤ ct,

0, otherwise.

For any j ∈ [n], there exists i ∈ [m], t ∈ T such that

v∗i β
j
i ≥ 1.

Then, x̄ is a feasible solution to the IP problem (4.7) and

zmod
AR ≤

m∑
i=1

T∑
t=0

ctx̄it ≤ 2eTv∗ = 2 · zIAR.

Conversely, suppose x∗it, i ∈ [m], t ∈ T is an optimal solution for (4.7). We construct
a feasible solution ṽ for (4.6) as follows:

ṽi =
∑
t∈T

ct · xit, ∀i ∈ [m].

For each j ∈ [n], there exists i ∈ [m] and t ∈ T such that j ∈ Cit and x∗it = 1.
Therefore,

vi ≥ ct =
2t

βmax
,
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and

viβ
j
i ≥

2t

βmax
· βji ≥ 1,

since j ∈ Cit. Therefore, ṽ is a feasible solution for the one-stage adjustable robust
problem (4.6) and

zIAR ≤ e
T ṽ ≤

m∑
i=1

T∑
t=0

ctx
∗
it = zmod

AR .

�

Note that (4.7) as a 0-1 formulation for the set cover instance problem on
ground set of elements {1, . . . , n} and family of subsets Cit for all i ∈ [m], t ∈ T
where Cit has cost ct. We can formulate the LP relaxation of (4.7) as follows.

zLP = min


m∑
i=1

T∑
t=0

ctxit

∣∣∣∣∣
m∑
i=1

∑
t∈T : j∈Cit

xit ≥ 1, ∀j ∈ [n], xit ≥ 0

 . (4.8)

From [25], we know that the LP relaxation (4.8) is an O(log n)-approximation
for (4.7), i.e.,

zmod
AR ≤ O(log n) · zLP.

Consider the dual of (4.8).

zLP = max


n∑
j=1

yj

∣∣∣∣∣∣
∑
j∈Cit

yj ≤ ct, ∀i ∈ [m], t ∈ T , yj ≥ 0, ∀j ∈ [n]

 (4.9)

We relate the dual of (4.8) to the one-stage static robust problem (3.5) to obtain
the desired bound on the adaptivity gap.

Proof of Theorem 5. From Lemma 3, it is sufficient to show that

zLP ≤ O(logΓ ) · zIRob.

Let y∗ by an optimal solution of (4.9). We show that we can construct a feasible
solution for (4.3) by scaling y∗ by a factor of O(logΓ ). For each i ∈ [m], we have∑

j:βji≥
βmax

2t

βmax

2t
y∗j ≤ 1, ∀t ∈ T .

Sum over all t ∈ T , we have

T∑
t=0

∑
j:βji≥

βmax
2t

βmax

2t
y∗j ≤ T + 1, ∀i ∈ [m].

Switching the summation, we have

n∑
j=1

∑
t∈T : βmax

2t
≤βji

βmax

2t
y∗j ≤ T + 1 ≤ logΓ + 2,∀i ∈ [m]
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Note that
βmax

2T
≤ βmin ≤ βji ≤ βmax,

which implies
1

2
βji ≤

∑
t∈T : βmax

2t
≤βji

βmax

2t
≤ 2βji .

Therefore,

ŷj =
1

2(logΓ + 2)
y∗j , ∀j ∈ [n]

is a feasible solution to the maximization formulation of zIRob (4.3) and

zLP = eTy∗ = O(logΓ ) · eT ŷ ≤ O(logΓ ) · zIRob,

which completes the proof. �

4.2 O(log n · logΓ ) Bound on Adaptivity Gap

Based on the result in Theorem 5, we show that a static solution gives an O(log n ·
logΓ )-approximation for the two-stage adjustable robust problem (1.1) for column-
wise uncertainty sets. In particular, we prove the following theorem.

Theorem 6 Let zAR be the objective value of an optimal fully-adjustable solution for

ΠAR (1.1), and zRob be the optimal objective value of the corresponding static robust

problem ΠRob (1.2). If U is a column-wise uncertainty set, then,

zAR ≤ O(log n · logΓ ) · zRob.

Proof Let (x∗,y∗(B),B ∈ U) be an optimal fully-adjustable solution to ΠAR. Then,

zAR = cTx∗ + min
B∈U

max
y(B)≥0

{dTy | By(B) ≤ h−Ax∗}.

From Appendix C, we can assume without loss of generality that (h−Ax∗) > 0.
Let

U∗ = [diag(h−Ax∗)]−1U .

Then,

zAR = cTx∗ + min
B∈U∗

max
y(B)≥0

{dTy | By(B) ≤ e}.

By writing the dual of the inner maximization problem, we have

zAR = cTx∗ + min
B,µ
{eTµ | BTµ ≥ d,B ∈ U∗,µ ≥ 0}.

On the other hand, since (x∗,0) is a feasible solution of ΠRob, we have

zRob ≥ cTx∗ + max
y≥0
{dTy | By ≤ h−Ax∗, ∀B ∈ U}

= cTx∗ + max
y≥0
{dTy | By ≤ e, ∀B ∈ U∗}.
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Let B̂ be defined as in (3.3). For U∗, from Theorem 3, we have

zRob ≥ cTx∗ + max{dTy | B̂y ≤ e,y ≥ 0}

= cTx∗ + min
v≥0
{eTv | B̂

T
v ≥ d}.

Note that U∗ is compact, convex, down-monotone and column-wise. Therefore,
from Theorem 5, we have

zAR = cTx∗ + min
B,µ
{eTµ | BTµ ≥ d,B ∈ U∗,µ ≥ 0}

≤ cTx∗ +O(logΓ log n) ·min
v≥0
{eTv | B̂

T
v ≥ d}

≤ O(logΓ log n) ·
(
cTx∗ + min

v≥0
{eTv | B̂

T
v ≥ d}

)
≤ O(log n · logΓ ) · zRob

where the second last inequality follows as c,x∗ ≥ 0. �

We would like to note that if the ratio between the largest and smallest entries
of B̂ is constant, then static solution provides an O(log n)-approximation for the
two-stage adjustable robust problem. The two-stage adjustable robust problem is
hard to approximate within a factor better than O(log n) even when the ratio is
one. Therefore, quite surprisingly, the performance of the static solution matches
the hardness of approximation in this case. Furthermore, in the following section,
we show that even when the ratio is large, the static solution still provides a
near-optimal approximation for the adjustable robust problem.

5 O(logn · log(m+ n)) Bound on Adaptivity Gap

In this section, we show that a static solution provides an O(log n · log(m + n))-
approximation for the two-stage adjustable robust problem ΠAR (1.1) with column-
wise uncertainty sets. Note that this bound on adaptivity gap is uniform across
instances and does not depend on Γ . In particular, we have the following theorem.

Theorem 7 Let zAR be the objective value of an optimal fully-adjustable solution for

ΠAR (1.1), and zRob be the optimal objective value of the corresponding static robust

problem ΠRob (1.2). If U is a column-wise uncertainty set, then,

zAR ≤ O(log n · log(m+ n)) · zRob.

To prove Theorem 7, it is sufficient to prove the approximation bound for cor-
responding one-stage problems since we can extend the bound to the two-stage
problem using arguments as in Theorem 6.

Theorem 8 Let zIAR be as defined in (4.6), and zIRob be as defined in (3.5). If the

uncertainty set U is column-wise, then

zIAR ≤ O(log n · log(m+ n)) · zIRob.
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If Γ is a polynomial in (m + n), the result follows from Theorem 5 as logΓ =
O(log(m+n)). However, if Γ is super-polynomial, we need to handle extreme values
of B̂ij differently in order to avoid the dependence on Γ . Let v∗ be an optimal
solution for the one-stage adjustable robust problem (4.6) and θ = ||v∗||∞. Let

J1 =

{
j ∈ [n]

∣∣∣∣ there exists i ∈ [m] s.t. βji ≥
2m

θ

}
J2 = [n] \ J1

We show that we can delete the columns in J1 from zIAR (4.6) (corresponding to
the large values of B̂ij) such that the modified problem is only within a constant
factor of zIAR. As before, we consider only discrete values of vi for all i ∈ [m]. Let
T = dmax{logm, log n}e and T = {−T, . . . , T}. For all i ∈ [m], we consider

vi ∈ {0} ∪
{
θ

2t

∣∣∣∣ t ∈ T } .
Also, for all i ∈ [m], t ∈ T , let Cit denote the set of columns in J2 = [n] \ J1 that
can be covered by setting vi = θ/2t, i.e.,

Cit =

{
j ∈ J2

∣∣∣∣ βji ≥ 2t

θ

}
, and

ct =
θ

2t
.

Consider the following 0-1 formulation for the modified one-stage problem.

zmod
AR = min

 ∑
i∈[m],t∈T

ctxit

∣∣∣∣∣∣
m∑
i=1

∑
t∈T :j∈Cit

xit ≥ 1, ∀j ∈ J2, xit ∈ {0, 1}

 . (5.1)

We have the following lemma.

Lemma 4 The IP problem in (5.1) is feasible and provides a near-optimal solution

for the one-stage adjustable robust problem zIAR (4.6). In particular, we have

1

2
zmod
AR ≤ z

I
AR ≤ 2zmod

AR .

Proof Consider an optimal solution v∗ for (4.6). We construct a feasible solution
for (5.1) as follows. Now, for all i ∈ [m], t ∈ T , let

x̄it =

{
1, if

ct
2
< v∗i ≤ ct

0, otherwise.

Since v∗ is feasible, x̄ is a feasible solution to the set cover problem (5.1) and

zmod
AR ≤

m∑
i=1

T∑
t=−T

ctx̄it ≤ 2eTv∗ = 2zIAR.
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Conversely, consider an optimal solution x∗ for the set cover problem (5.1).
We construct a feasible solution ṽ for (4.6) as follows. For all i ∈ [m],

ṽi =
θ

2m
+
∑
t∈T

ctx
∗
it.

Note that we add θ/2m to each vi in order to handle the constraints for columns in
J1 that are not considered in (5.1). For each j ∈ J1, there exists i ∈ [m] such that
βji ≥ 2m/θ and viβ

j
i ≥ 1. For all j ∈ J2, there exists i ∈ [m] and t ∈ {−T, . . . , T}

such that j ∈ Cit and x∗it = 1. Therefore, vi ≥ ct which implies that vi · βji ≥ 1.
Therefore, ṽ is a feasible solution for the one-stage adjustable robust problem
zIAR (4.6). Moreover, we have

zIAR ≤ e
T ṽ ≤

(
θ

2
+ zmod

AR

)
≤ zIAR

2
+ zmod

AR ⇒ zIAR ≤ 2 · zmod
AR ,

which completes the proof. �

We can formulate the LP relaxation of set cover problem in (5.1) as follows.

zLP = min


m∑
i=1

T∑
t=−T

citxit

∣∣∣∣∣
m∑
i=1

∑
t∈T : 2

t

θ ≤β
j
i

xit ≥ 1, ∀j ∈ J2, xit ≥ 0

 . (5.2)

We have

zmod
AR ≤ O(log n) · zLP.

Consider the dual of (5.2).

zLP = max

∑
j 6∈J1

yj

∣∣∣∣∣∣
∑
j∈Cit

yj ≤ ct, ∀i ∈ [m], t ∈ T , yj ≥ 0, ∀j ∈ J2

 (5.3)

We will construct a feasible solution for the one-stage static robust problem (4.3)
from (5.3).

Proof of Theorem 8. From Lemma 4, it is sufficient to show that

zLP ≤ O(log(m+ n)) · zIRob.

Let y∗ by an optimal solution of (5.3). We construct a feasible solution for (4.3)
by scaling y∗ by a factor of O(log(m+ n)). For t = 0, we have∑

j 6∈J1:β
j
i≥

1
θ

1

θ
y∗j ≤ 1, ∀i ∈ [m].

Let v∗ be an optimal solution for (4.6). From Lemma 2, for each j ∈ [n], there
exist i ∈ [m] such that

βji v
∗
i ≥ 1⇒ βji ≥

1

v∗i
≥ 1

θ
.
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Therefore, for each j ∈ J2, we have y∗j ≤ θ. Since y∗ is an optimal solution of (5.3),
we have ∑

j 6∈J1:β
j
i≥

2t

θ

2t

θ
y∗j ≤ 1, ∀t ∈ T .

Sum over all t ∈ T , we have∑
t∈T

∑
j 6∈J1:β

j
i≥

2t

θ

2t

θ
y∗j ≤ 2T + 1, ∀i ∈ [m].

Switching the summation, we have∑
j 6∈J1

∑
t∈T : 2

t

θ ≤β
j
i

2t

θ
y∗j ≤ 2T + 1, ∀i ∈ [m]

Note that if βji ≥ 1/nθ and j 6∈ J1, then

1

2
βji ≤

∑
t: 2

t

θ ≤β
j
i

2t

θ
≤ 2βji .

Let

ŷj =


1

4T + 3
y∗j , if j ∈ J2

0, if j ∈ J1

For any i ∈ [m], we have

n∑
j=1

βji ŷj =
∑
j∈J1

βji ŷj +
1

4T + 3

 ∑
j 6∈J1:β

j
i<1/nθ

βji y
∗
j +

∑
j 6∈J1:β

j
i≥1/nθ

βji y
∗
j


≤ 0 +

1

4T + 3

1 + 2
n∑
j=1

∑
t: 2

t

θ β
j
i

2t

θ
y∗j


≤ 1

Therefore, ŷ is a feasible solution to the dual of zIRob (4.3). Note that T = O(log(m+
n)). Therefore, we have

zLP = eTy∗ = O(log(m+ n)) · eT ŷ ≤ O(log(m+ n)) · zIRob,

which completes the proof. �

From Theorems 6 and 7, we have the following corollary.

Corollary 1 Let zAR be the objective value of an optimal fully-adjustable solution for

ΠAR (1.1), and zRob be the optimal objective value of the corresponding static robust

problem ΠRob (1.2). If U is a column-wise uncertainty set, then,

zAR ≤ O(log n ·min(logΓ, log(m+ n))) · zRob.
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6 Column-wise and Constraint-wise Uncertainty Sets.

In this section, we consider the general case where the uncertainty set is the in-
tersection of column-wise and constraint-wise sets. Recall that a column-wise and
constraint-wise uncertainty set U implies that

U =
{
B ∈ Rm×n+ | Bej ∈ Cj , ∀j ∈ [n], BT ei ∈ Ri, ∀i ∈ [m]

}
, (6.1)

where Cj ⊆ Rm+ for all j ∈ [n] and Ri ⊆ Rn+ for all i ∈ [m] are compact, convex and
down-monotone sets. We refer to the above uncertainty set as a column-wise and
constraint-wise set since the constraints on the uncertainty set U are either over
the columns or the rows of the matrix. As mentioned previously, we assume that
optimization problems with linear objective over U can be solved in polynomial
time in the encoding length of U .

We show that a static solution provides an O(log n ·min(logΓ, log(m + n))))-
approximation for the two-stage adjustable robust problem ΠAR for the above
column-wise and constraint-wise uncertainty set where Γ is defined in (4.1). In
particular, we have the following theorem.

Theorem 9 Consider a convex, compact and down-monotone uncertainty set U ⊆
Rm×n+ that is column-wise and constraint-wise as in (6.1). Let zAR(U) and zRob(U)
be the optimal values of the two-stage adjustable robust problem ΠAR(U) (1.1) and the

static robust problem ΠRob(U) (1.2) over uncertainty set U , respectively. Then,

zAR(U) ≤ O(log n ·min(logΓ, log(m+ n))) · zRob(U).

Our proof is based on a transformation of the static robust problem into a
equivalent formulation over a constraint-wise uncertainty set. In particular, we
construct the constraint-wise uncertainty set as follows. For each i ∈ [m], let

R̃i = {BT ei | B ∈ U}, (6.2)

i.e., R̃i is the projection of the uncertainty set U for the ith row. Let

Ũ = R̃1 × R̃2 × . . .× R̃m, (6.3)

i.e., a Cartesian product of R̃i, i ∈ [m]. Note that for any B ∈ Ũ , the constraints
corresponding to row-sets R1, . . . , Rm are satisfied. However, the constraints cor-
responding to column-sets C1, . . . , Cn may not be satisfied. We have the following
lemma.

Lemma 5 Given a convex, compact and down-monotone uncertainty set U ⊆ Rm×n+

that is column-wise and constraint-wise and any µ ∈ [0, 1]m such that eTµ = 1, let Ũ
be defined as (6.3). Then, for any B ∈ Ũ , we have

diag(µ)B ∈ U .

Proof Noting that BT ei ∈ R̃i and diag(ei)B has the ith row as BT ei and other
rows as 0, we have diag(ei)B ∈ U since U is down-monotone. Moreover, µ is convex
multiplier,

diag(µ)B =
m∑
i=1

µidiag(ei)B

and U is convex, we have diag(µ)B ∈ U . �



On the Adaptivity Gap for Two-Stage Robust Linear Optimization 21

In the following lemma, we show that the static robust problem has the same
optimal objective value for uncertainty sets U and Ũ .

Lemma 6 Given a convex, compact and down-monotone uncertainty set U ⊆ Rm×n+

that is column-wise and constraint-wise, let Ũ be defined as in (6.3). Let zRob(U) and

zRob(Ũ) be the optimal values of the static adjustable robust problem ΠRob (1.2) over

uncertainty set U and Ũ , respectively. Then

zRob(U) = zRob(Ũ).

Proof For any B ∈ U , we have BT ei ∈ R̃i for all i ∈ [m], which implies that B ∈ Ũ
since Ũ is constraint-wise. Therefore, U ⊆ Ũ and any solution that is feasible for
ΠRob(Ũ) must be feasible for ΠRob(U). Therefore,

zRob(Ũ) ≤ zRob(U).

Conversely, suppose (x̂, ŷ) is an optimal solution for ΠRob(U). We show that it
is feasible for ΠRob(Ũ). For the sake of contradiction, assume that there exists a
B̃ ∈ Ũ such that

(B̃ŷ)i > hi − (Ax̂)i for some i ∈ [m]⇒ (diag(ei)B̃ŷ)i > hi − (Ax̂)i.

However, from Lemma 5, diag(ei)B̃ ∈ U , which contradicts the assumption that
(x̂, ŷ) is feasible for ΠRob(U). Therefore, (x̂, ŷ) is feasible for ΠRob(Ũ) and zRob(U) ≤
zRob(Ũ). �

From Ben-Tal and Nemirovski [4] and Bertsimas et al. [8], we know that

zRob(Ũ) = zAR(Ũ),

since Ũ is a constraint-wise uncertainty set and a static solution is optimal for the
adjustable robust problem. Therefore, to prove Theorem 9, it is now sufficient to
show

zAR(U) ≤ O(log n ·min(logΓ, log(m+ n))) · zAR(Ũ).

Proof of Theorem 9 Let (x∗,y∗(B),B ∈ U) be an optimal fully-adjustable solution
to ΠAR(U). Therefore,

zAR(U) = cTx∗ + min
B∈U

max{dTy | By ≤ h−Ax∗, y ≥ 0}.

As discussed in Appendix C, we can assume without loss of generality (h−Ax∗) >
0. Therefore, we can rescale U and Ũ as

S = [diag(h−Ax∗)]−1U , and S̃ = [diag(h−Ax∗)]−1Ũ .

Note that S̃ is the Cartesian product of the row projections of S. For any H ⊆
Rm×n+ , let

zIAR(H) = min{eTv | BTv ≥ d,B ∈ H,v ≥ 0}.
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Now,

zAR(U) = cTx∗ + min
B∈S

max{dTy | By ≤ e, y ≥ 0}

= cTx∗ + min {eTv | BTv ≥ d,B ∈ S, v ≥ 0}

= cTx∗ + zIAR(S),

where the second equation follows by taking the dual of the inner maximization
problem. Also,

zAR(Ũ) ≥ cTx∗ + min
B∈Ũ

max{dTy | By ≤ h−Ax∗, y ≥ 0}

= cTx∗ + zIAR(S̃).

Therefore, to complete the proof, it is sufficient to show that

zIAR(S) ≤ O(log n ·min(logΓ, log(m+ n))) · zIAR(S̃). (6.4)

Let B̃ ∈ S̃ be the minimizer of zIAR(S̃). We construct a simplex column-wise uncer-
tainty set, H ⊆ Rm×n+ where each simplex column set, Hj ⊆ Rm+ , j ∈ [n] is defined

from B̃ as follows.

Hj = conv
(
{0}

⋃{
B̃ijei | i = 1, . . . ,m

})
.

and
H = {[b1 · · · bn] | bj ∈ Hj ,∀j ∈ [n]}.

We would like to note that H ⊆ S: For any b ∈ Hj , j ∈ [n], we have b ≤ diag(µ)B̃ej
for some convex multiplier µ. From Lemma 5, diag(µ)B̃ ∈ S, which indicates that
Hj ⊆ [diag(h − Ax)]−1Cj . Moreover, B̃ satisfies the row constraints of S and
eTi B ≤ e

T
i B̃ for any B ∈ H, i ∈ [m]. Therefore, H ⊆ S and

zIAR(S) ≤ zIAR(H) ≤ O(log n ·min(logΓ, log(m+ n))) · zIRob(H) (6.5)

where the second inequality follows from Theorems 5 and 8. Note that B̃ is the
entry-wise maximum matrix over H as defined in (3.3). Therefore,

zIRob(H) = min {eTv | B̃T
v ≥ d} = zIAR(S̃),

where the first equality follows from Theorem 3 and the second equality follows
from the fact that B̃ ∈ S̃ is a minimizer for zIAR(S̃). Therefore, from (6.5), we have
zIAR(S) ≤ O(log n ·min(logΓ, log(m+ n))) · zIAR(S̃). �

7 Comparison with Measure of Non-convexity Bound

In this section, we compare our bound with the measure of non-convexity bound in-
troduced by Bertsimas et al. [8]. We show that our bound provides an upper bound
on the measure of non-convexity for column-wise and constraint-wise uncertainty
sets. In [8], the authors introduce the following transformation of uncertainty set
U ∈ Rm×n+ for general right-hand-side vector h > 0:

T (U ,h) =
{
BTµ

∣∣∣ hTµ = 1, B ∈ U , µ ≥ 0
}
. (7.1)
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and define a measure of non-convexity κ for general compact set S as follows:

κ(S) = min {α | conv(S) ⊆ αS } . (7.2)

The authors prove the following tight bound for the adaptivity gap:

zAR ≤ max{κ(T (U ,h)) | h > 0} · zRob.

However, the measure of non-convexity is not necessarily efficiently computable in
general. Moreover, it can be as large as m. In fact, Bertsimas et al. [8] show that
the measure of non-convexity of T (U , e) for the following uncertainty set U is m:

U =

{
B ∈ [0, 1]m×m

∣∣∣∣∣ Bij = 0, ∀i 6= j,

m∑
i=1

Bii ≤ 1

}
.

We show that for general column-wise and constraint-wise uncertainty sets, our
analysis provides an upper bound on the measure of non-convexity. Specifically,
we have the following theorem.

Theorem 10 Given a convex, compact and down-monotone uncertainty set U ⊆ Rm×n+

that is column-wise and constraint-wise as in (6.1) and h > 0, let T (U ,h) and

κ(T (U ,h)) be defined as in (7.1) and (7.2), respectively. Then,

κ(T (U ,h)) ≤ O(log n ·min(logΓ, log(m+ n))).

Proof Let α = log n ·min(logΓ, log(m+ n)). Let R̃i, i ∈ [m] be defined as in (6.2).
From Bertsimas et al. [8], we have

conv(T (U ,h)) = conv

(
m⋃
i=1

1

hi
· R̃i

)
.

Given any d ∈ conv(T (U ,h)), we have

d =
m∑
i=1

λi
hi
b̃i

where b̃i ∈ R̃i, i ∈ [m], λ ≥ 0 and eTλ = 1. For all i ∈ [m], let Bi = eib̃
T
i . Since U

is down-monotone, Bi ∈ U . Let

B̃ = [diag(h)]−1
m∑
i=1

Bi.

Therefore, B̃
T
λ = d. We construct a simplex column-wise uncertainty set H ⊆

Rm×n+ using B̃ similar to the proof of Theorem 9. Let

H = {[b1 · · · bn] | bj ∈ Hj ,∀j ∈ [n]}

where

Hj = conv
(
{0}

⋃{
B̃ijei

∣∣ i = 1, . . . ,m
})
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for all j ∈ [n]. Note that Hj ⊆ [diag(h)]−1Cj , which implies that H ⊆ [diag(h)]−1U .
From Theorem 3, we know that

zIRob(H) = min{eTv | B̃T
v ≥ d,v ≥ 0},

and λ is a feasible solution for zRob(H). Therefore, zIRob(H) ≤ eTλ = 1. Further-
more,

zIAR([diag(h)]−1U) ≤ zIAR(H) ≤ O(α) · zIRob(H) ≤ O(α),

where the first inequality follows as H ⊆ [diag(h)]−1U and the second inequality
follows from Theorems 5 and 8. Therefore, there exists (v∗,B∗) such that

(B∗)Tv∗ ≥ d, B∗ ∈ [diag(h)]−1U , and eTv∗ ≤ O(α).

Now, let

Q = diag(h)B∗ and µ =
1

eTv∗
[diag(h)]−1v∗.

Then, Q ∈ U and hTµ = 1, which implies that QTµ ∈ T (U ,h). Note that

QTµ =
1

eTv∗
(B∗)Tv∗ ≥ 1

O(α)
d.

Since U is down-monotone, so is T (U ,h). Therefore, for d ∈ conv(T (U ,h)), we have

1

O(α)
d ∈ T (U ,h),

which implies that κ(T (U ,h)) ≤ O(log n ·min(logΓ, log(m+ n))). �

8 Adaptivity Gap under Constraint and Objective Uncertainty.

In this section, we show that our result can be generalized to the case where both
constraint and objective coefficients are uncertain. In particular, we consider the

following two-stage adjustable robust problem Π
(B,d)
AR .

z
(B,d)
AR = max cTx+ min

(B,d)∈U
max
y(B,d)

dTy(B,d)

Ax+By(B,d) ≤ h

x ∈ Rn+, y(B,d) ∈ Rn+

(8.1)

where A ∈ Rm×n, c ∈ Rn+, h ∈ Rm+ , and (B,d) are uncertain second-stage con-
straint matrix and objective that belong to a convex compact uncertainty set
U ⊆ Rm×n+ ×Rn+. We consider the case where the uncertainty in constraint matrix
B is column-wise and constraint-wise and does not depend on the uncertainty in
objective coefficients d. Therefore,

U = UB × Ud,

where UB ⊆ Rm×n+ is a convex compact uncertainty set of constraint matrices that

is column-wise and constraint-wise, and Ud ⊆ Rn+ is a convex compact uncertainty
set of the second-stage objective. As previous sections, we can assume without loss
of generality that UB is down-monotone.
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We formulate the corresponding static robust problem Π
(B,d)
Rob as follows.

z
(B,d)
Rob = max

x,y
min
d∈Ud

cTx+ dTy

Ax+By ≤ h, ∀B ∈ UB

x,y ∈ Rn+.

(8.2)

We prove the following theorem.

Theorem 11 Let z
(B,d)
AR be the optimal objective value of Π

(B,d)
AR in (8.1) defined over

the uncertainty U = UB × Ud, where UB ⊆ Rm×n+ is a convex compact uncertainty

set of constraint matrices that is column-wise and constraint-wise, and Ud ⊆ Rn+ is a

convex compact uncertainty set of the second-stage objective. Let z
(B,d)
Rob be the optimal

objective value of Π
(B,d)
Rob in (8.2). Then,

z
(B,d)
AR ≤ O(log n ·min(logΓ, log(m+ n))) · z(B,d)Rob .

Proof In Bertsimas et al. [8], the authors prove that

z
(B,d)
AR ≤ max{κ(T (U ,h)) | h > 0} · z(B,d)Rob .

From Theorem 10, we have

max{κ(T (U ,h)) | h > 0} ≤ O(log n ·min(logΓ, log(m+ n))),

which completes the proof. �

9 Conclusion.

In this paper, we study the adaptivity gap in two-stage adjustable robust linear
optimization problem under column-wise and constraint-wise uncertainty sets. We
show that in this case, the adjustable problem is Ω(log n)-hard to approximate. In
fact, for a more general case where the uncertainty set U and objective coefficients d
are not constrained in the non-negative orthant, we show that the adjustable robust

problem is Ω(2log1−εm)-hard to approximate for any constant 0 < ε < 1. On the
positive side, we show that a static solution is an O(log n ·min(logΓ, log(m+n)))-
approximation for the adjustable robust problem when the uncertainty set is
column-wise and constraint-wise. Therefore, if Γ (maximum ratio between up-
per bounds of uncertain constraint coefficients) is a constant, the static solution
provides an O(log n)-approximation which matches the hardness of approximation
in this case. If Γ is large, the static solution is a O(log n·log(m+n))-approximation
which is a near-optimal approximation for the adjustable robust problem under
constraint uncertainty. Moreover, our bound can be extended to the case where
the objective coefficients are also uncertain and the uncertainty is unrelated to the
column-wise and constraint-wise constraint uncertainty set. Our result confirms
the power of static solution in two-stage adjustable robust linear optimization
problem under uncertain constraint and objective coefficients.
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A Proof of Theorem 2.

In this section, we show that the general two-stage adjustable robust problem ΠGen
AR (2.1) is

Ω(2log
1−εm)-hard to approximate for any constant 0 < ε < 1. We prove this by an approx-

imation preserving reduction from the Label-Cover-Problem. The reduction is similar in spirit
to the reduction from the set cover problem to the two-stage adjustable robust problem.

Label-Cover-Problem: We are given a finite set V (|V | = m), a family of subset {V1, . . . ,VK}
of V and graph G = (V,E). Let H be a supergraph with vertices {V1, . . . ,VK} and edges F
where (Vi,Vj) ∈ F if there exists (k, l) ∈ E such that k ∈ Vi, l ∈ Vj . The goal is to find the
smallest cardinality set C ⊆ V such that F is covered, i.e., for each (Vi,Vj) ∈ F , there exists
k ∈ Vi ∩ C, l ∈ Vj ∩ C such that (k, l) ∈ E.

The label cover problem is Ω(2log
1−εm)-hard to approximate for any constant 0 < ε < 1,

i.e., there is no polynomial time approximation algorithm that give anO(2log
1−εm)-approximation

for any constant 0 < ε < 1 unless NP ⊆ DTIME(mpolylog(m)) [1].

Proof of Theorem 2 Consider an instance I of Label-Cover-Problem with ground elements
V (|V | = m), graph G = (V,E), a family of subset of V : (V1, . . . ,VK) and a supergraph
H = ({V1, . . . ,VK}, F ) where |F | = n. We construct the following instance I′ of the general
adjustable robust problem ΠGen

AR (2.1):

A = 0, c = 0, d =

(
e
−e

)
∈ Rn+m, h = e ∈ Rm, U = {[B − Im] | B ∈ UF }

where d1 = d2 = . . . = dn = 1, Im is the m-dimensional identity matrix and each column set
of UF ⊆ Rm×n

+ corresponds to an edge (Vi,Vj) ∈ F with

U(Vi,Vj) = conv

(
{0}

⋃{
1

2
(ek + el)

∣∣∣∣ (k, l) ∈ E, k ∈ Vi, l ∈ Vj
})
⊆ Rm

+ .

Therefore, U is column-wise with column sets U(Vi,Vj), ∀(Vi,Vj) ∈ F and Uj , j ∈ [m] where

Uj = {−ej}, i.e., there is no uncertainty in Uj . The instance I′ of ΠGen
AR can be formulated as

zGenAR = min
B∈UF

max
y≥0,z≥0

{eTy − eT z | By − z ≤ e,y ≥ 0,z ≥ 0}

= min
b(Vi,Vj)∈U(Vi,Vj)

max
y≥0,z≥0

eTy − eT z
∣∣∣∣∣∣

∑
(Vi,Vj)∈F

y(Vi,Vj)b(Vi,Vj) − z ≤ e,y ≥ 0,z ≥ 0

 .

Suppose (ŷ, ẑ, b̂(Vi,Vj), (Vi,Vj) ∈ F ) is a feasible solution for instance I′. Then, we can

compute a label cover of instance I with cardinality at most eT ŷ− eT ẑ. From strong duality,
there exists an optimal solution µ̂ for

min{eTµ | b̂T(Vi,Vj)µ ≥ 1, ∀(Vi,Vj) ∈ F, µ ∈ [0, 1]m}

and eT µ̂ = eT ŷ−eT ẑ. For each (Vi,Vj) ∈ F , consider a basic optimal solution (b̃(Vi,Vj), (Vi,Vj) ∈
F ) where

b̃(Vi,Vj) ∈ arg max{bT µ̂ | b ∈ U(Vi,Vj)}.

Therefore, b̃(Vi,Vj) is a vertex of U(Vi,Vj) for each (Vi,Vj) ∈ F , which implies that b̃(Vi,Vj) =

1
2

(eki + elj ) for some (ki, lj) ∈ E and ki ∈ Vi, lj ∈ Vj . Also, b̃
T
(Vi,Vj)µ̂ ≥ 1,∀(Vi,Vj) ∈ F .

Now, let µ̃ the optimal solution of the following LP:

min{eTµ | b̃T(Vi,Vj)µ ≥ 1,∀(Vi,Vj) ∈ F,0 ≤ µ ≤ e}.

Clearly, eT µ̃ ≤ eT µ̂. Also, since b̃(Vi,Vj) = 1
2

(eki + elj ) and b̃
T
(Vi,Vj)µ̃ ≥ 1, µ̃ki = µ̃lj = 1.

Therefore, µ̃ ∈ {0, 1}m. Let
C = {j | µ̃j = 1}.
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Clearly, C is a valid label cover for F and |C| = eT µ̃ ≤ eT µ̂ = eT ŷ − eT ẑ.
Conversely, given a label cover C of instance I, for any j ∈ [m], let µ̄j = 1 if j ∈ C and

zero otherwise. This implies that eT µ̄ = |C|. For any (Vi,Vj) ∈ F , let b̄(Vi,Vj) = 1
2

(eki + elj )

where ki ∈ Vi ∩ C, lj ∈ Vj ∩ C such that (ki, lj) ∈ E. Then, let µ′ be an optimal solution for
the following LP

min{eTµ | b̄T(Vi,Vj)µ ≥ 1,∀(Vi,Vj) ∈ F,0 ≤ µ ≤ e}.

Then, eTµ′ ≤ eT µ̄ as µ̄ is feasible for the above LP. From strong duality, there exists ȳ ∈ Rn
+

and z̄ ∈ Rm
+ such that (ȳ, z̄, b̄(Vi,Vj), (Vi,Vj) ∈ F ) is a feasible solution for instance I′ of ΠGen

AR

with cost eT ȳ − eT z̄ = eTµ′ ≤ eT µ̄ = |C|. �

B Approximate Separation to Optimization.

For any x ∈ Rn
+, let

Q∗(x) = min
B∈U

max
y≥0
{dTy | By ≤ h−Ax}.

We show that if we can approximate the separation problem, we can also approximate ΠAR.
Let A be a γ-approximate algorithm for the separation problem (3.1), i.e., A computes a γ-
approximation algorithm for the min-max problem in (3.1). For any x ∈ Rn

+, let BA(x) denote
the matrix returned by A and let

QA(x) = max
y≥0
{dTy | BA(x)y ≤ h−Ax}.

Therefore, the approximate separation based on Algorihm A is as follows: for any (x, z), return
feasible if QA(x) ≥ z. Otherwise give a violating hyperplane corresponding to BA(x). Now,
we prove the following theorem.

Theorem 12 Suppose we have an Algorithm A that is a γ-approximation for the separation
problem (3.1). Then we can compute a γ-approximation for the two-stage adjustable robust
problem ΠAR (1.1).

Proof Since A is a γ-approximation to the min-max problem in (3.1), for any x ∈ Rn
+,

Q∗(x) ≤ QA(x) ≤ γ ·Q∗(x).

Let (x∗, z∗) be an optimal solution for ΠAR and let

OPT = cTx∗ + z∗.

Consider the optimization algorithm based on the approximate separation algorithm A and
suppose it returns the solution (x̂, ẑ). Note that (x∗, z∗) is feasible according to the approxi-
mate separation algorithm A as QA(x∗) ≥ Q∗(x∗) = z∗. Therefore,

cT x̂+ ẑ ≥ cTx∗ + z∗. (B.1)

Note that ẑ is an approximation for the worst case second-stage objective value when the first
stage solution is x̂. The true objective value for the first stage solution x̂ is given by

cT x̂+Q∗(x̂) ≥ cT x̂+
1

γ
QA(x̂)

≥ cT x̂+
1

γ
ẑ (B.2)

≥
1

γ
(cT x̂+ ẑ)

≥
1

γ
OPT,

where the first inequality follows as A is a γ-approximation and QA(x̂) ≤ γ · Q∗(x̂). In-
equality (B.2) follows as (x̂, ẑ) is feasible according to A and therefore, ẑ ≤ QA(x̂) and the
last inequality follows from (B.1). Therefore, the optimization problem based on algorithm A
computes a γ-approximation for ΠAR. �
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C Transformation of the Adjustable Robust Problem.

Let x∗ be the optimal first-stage solution for ΠAR, i.e.,

zAR = cTx∗ + min
B

max
y
{dTy | By ≤ h−Ax∗,B ∈ U ,y ≥ 0}.

Note that (x∗,0) is a feasible solution for ΠRob. We have

zRob ≥ cTx∗ + max
y≥0
{dTy | By ≤ h−Ax∗,∀B ∈ U}.

Since c and x∗ are both non-negative, to prove Theorem 7, it suffice to show

min
B∈U

max
y≥0
{dTy | By ≤ h−Ax∗} ≤ O(log(m+n) logn) ·max

y≥0
{dTy | By ≤ h−Ax∗,∀B ∈ U}.

In this section, we show that we can assume without loss of generality that (h−Ax∗) > 0, as
otherwise the static solution is optimal for the two-stage adjustable robust problem ΠAR (1.1),
i.e., zAR = zRob: Note that (h−Ax∗) ≥ 0, since otherwise the inner problem becomes infeasible.
Now, suppose that (h −Ax)i = 0 for some i ∈ [m]. Since U is a full-dimensional convex set,
there exist B∗ ∈ U such that B∗ij > 0 for all j ∈ [n]. Therefore,

min
B∈U

max
y≥0
{dTy | By ≤ h−Ax} ≤ max

y≥0
{dTy | B∗y ≤ h−Ax} = 0,

which implies that zAR = cTx∗ since d,y are non-negative. On the other hand, (x∗,0) is a
feasible solution for ΠRob. Therefore,

zRob ≥ cTx∗ = zAR.

However, suppose (x̄, ȳ) is an optimal solution for ΠRob, then x = x̄,y(B) = ȳ for all B ∈ U
is feasible for ΠAR. Therefore, zAR ≥ zRob.

D Proof of Theorem 3

Let y∗ be such that B̂y∗ ≤ h. For any B ∈ U , we have B ≤ B̂ component-wise by construc-
tion. Note that y∗ ≥ 0, this implies By∗ ≤ B̂y∗ ≤ h for all B ∈ U .

Conversely, suppose ỹ satisfies Bỹ ≤ h for all B ∈ U . For each i ∈ [m], note that

diag(ei)B̂ ∈ U by construction. Therefore, eTi B̂ỹ ≤ hi for all i ∈ [m], which implies that

B̂ỹ ≤ h.

E Proof of Lemma 1.

Let

B̂ij =
1

(n+ i− j + 1) mod m
.

From Theorem 3, ΠRob is equivalent to

zRob = max{eTy | B̂y ≤ e,y ≥ 0}.

The dual problem is

zRob = min{eT z | B̂T
z ≥ e,z ≥ 0}.

Let

s =

n∑
i=1

1

i
= Θ(logn).
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It is easy to observe that 1
s
e is a feasible solution for both the primal and the dual formulations

of zRob. Moreover, they have the same objective value. Therefore,

zRob =
n

s
.

On the other hand, for each j ∈ [n], denote

Uj =

{
b ∈ Rn

+

∣∣∣∣∣
n∑

i=1

[(n+ i− j + 1) mod n] · bi ≤ 1

}
.

By writing the dual of the inner maximization problem of ΠAR, we have

zAR = min{eTα | BTα ≥ e,α ≥ 0,B ∈ U}

= min{λ | λBTµ ≥ e, eTµ = 1,µ ≥ 0,B ∈ U}

= min

{
1

θ

∣∣∣∣ bTj µ ≥ θ, bj ∈ Uj , eTµ = 1,µ ≥ 0

}
.

Therefore, we just need to solve

1

zAR
= max{θ | bTj µ ≥ θ, bj ∈ Uj , eTµ = 1,µ ≥ 0} (E.1)

Suppose (θ̂, µ̂, b̂j , j ∈ [m]) is an optimal solution for (E.1). For each j ∈ [n], consider a basic

optimal solution b̃j of the following LP:

b̃j ∈ arg max{bT µ̂ | b ∈ Uj}.

Therefore, b̃j is a vertex of Uj , which implies that b̃j = B̂ijjeij for some ij ∈ [n] and b̃
T
j µ̂ ≥ θ̂.

For each i ∈ [n], let Si = {j | ij = i}. We have
∑n

i=1 |Si| = n. For each i ∈ [n] such that

Si 6= ∅, B̂ij can only take values in {1, 1/2, . . . , 1/n} for j ∈ Si. Moreover, B̂ij 6= B̂ik for j 6= k.
Therefore, there exists li ∈ Si such that

B̂ili ≤
1

|Si|
, and b̃

T
li
µ̂ = B̂ili µ̂i ≥ θ̂.

We have

1 =
∑

i:Si 6=∅
µ̂i ≥

∑
i:Si 6=∅

θ̂

B̂ili

≥
∑

i:Si 6=∅
θ̂|Si| = θ̂n.

Therefore, θ̂ ≤ 1
n

, which implies that zAR ≥ n.
On the other hand, it is easy to observe that zAR ≤ n: bj = ej , µ = 1/n · e and θ = 1/n

is a feasible solution for (E.1). Therefore,

zAR = n =
n∑

i=1

1

i
· zRob = Θ(logn) · zRob,

which completes the proof.
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