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Abstract. Assortment optimization is an important problem that arises in many practical
applications such as retailing and online advertising. The fundamental goal is to select
a subset of items to offer from a universe of substitutable items to maximize expected
revenue when customers exhibit a random substitution behavior captured by a choice
model. We study assortment optimization under the Markov chain choice model in the
presence of capacity constraints that arise naturally in many applications. The Markov
chain choice model considers item substitutions as transitions in a Markov chain and
provides a good approximation for a large class of random utility models, thereby
addressing the challenging problem of model selection in choice modeling. In this paper,
we present constant factor approximation algorithms for the cardinality- and capacity-
constrained assortment-optimization problem under the Markov chain model. We show
that this problem is APX-hard even when all item prices are uniform, meaning that,
unless P =NP, it is not possible to obtain an approximation better than a particular
constant. Our algorithmic approach is based on a new externality adjustment paradigm
that exactly captures the externality of adding an item to a given assortment on the
remaining set of items, thereby allowing us to linearize a nonlinear, nonsubmodular,
and nonmonotone revenue function and to design an iterative algorithm that iteratively
builds up a provably good assortment.
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1. Introduction
Assortment-optimization problems arise widely in
many practical applications, such as retailing and online
advertising, in which the goal is to select a subset from
a universe of substitutable items to offer to customers
to maximize the expected revenue. One of the key
challenges in assortment optimization is to model the
stochastic demands of different items that depend on the
substitution behavior of the customers, that is, how cus-
tomers choose when their most preferred item is not
available. Therefore, the demand of any item is a complex
function that depends on the entire set of offered items.
The substitution behavior and its resulting demand are
commonly captured by a choice model that specifies the
probability of a random customer selecting a particular
item from a given offer set.

In the most general setting, a choice model can be
thought of as a distribution over permutations that arise

from preferences. In the literature, preferences are com-
monly modeled using a random utility model. In the
random utility model of preferences, each customer
has a utility of uj + εj for item j, where uj depends on
the attributes of item j and εj is a random idiosyncratic
component of the utility according to some distribu-
tion. Here, the preference of the customer is given by
the decreasing order of utilities of items. Therefore, the
parameters uj and the distributions of εj completely
specify the distribution over permutations and, hence,
the choice model. Since the introduction of this model
by Thurstone (1927), many random utility models have
extensively been studied in diverse areas, including
marketing, transportation, economics, and operations
management.
The multinomial logit (MNL) model (Luce 1959,

McFadden 1973, Plackett 1975), in which the random
component of the utility is distributed according to a
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standard Gumbel distribution, has, by far, been the
most popular model in practice, primarily because of
the tractability of both its estimation and assortment-
optimization problems (Gallego et al. 2004, Talluri and
van Ryzin 2004, Farias et al. 2011). However, some of
the model’s implications (for instance, independence
from irrelevant alternatives property) are not reasonable
for many applications. Consequently, more complex
choice models have been considered to capture a richer
class of substitution behavior. Such models include,
for instance, the nested logit model (Williams 1977,
McFadden et al. 1978, Davis et al. 2014, Gallego and
Topaloglu 2014) and the mixture of multinomial logit
model (McFadden and Train 2000); see Train (2009) for
a detailed overview of these models. Although the in-
creased modeling complexity makes these models
more flexible, both the estimation and the assortment-
optimization problems become computationally diffi-
cult to solve, and there is a fundamental trade-off be-
tween their tractability and predictive power. However,
even if we ignore the tractability issues associated with
estimation and optimization over a particular model, one
of the key challenges in choice modeling is to find the
“right” model to describe customers’ preferences and
substitution behavior. This is especially challenging as
customer preferences are latent and unobservable in the
sales data, and errors in model selection can lead to
substantial errors in demand predictions and, sub-
sequently, to highly suboptimal decisions.

In a recent paper, Blanchet et al. (2016) study the
Markov chain–based choice model in which customer
decisions are captured by a Markov chain. In particular,
each item (including the no-purchase option) corre-
sponds to a state, and substitutions are modeled using
transitions in the Markov chain. To our knowledge,
Zhang and Cooper (2005) were the first to consider the
Markov chain model in the context of airline revenue
management, and they present a simulation study
using the Markov chain model. Blanchet et al. (2016)
revisit this model and formally investigate its pre-
dictive power. The authors show that this model
provides a good approximation in choice proba-
bilities to a large class of existing choice models,
allowing it to circumvent the model-selection prob-
lem. In particular, the Markov chain choice model
is a generalization of several well-studied choice
models, including MNL, the generalized attraction
model (Gallego et al. 2015), and the exogenous demand
model (Kök and Fisher 2007). Furthermore, Blanchet
et al. (2016) show that the unconstrained assortment-
optimization problem under the Markov chain model
can be solved efficiently using linear programming
(LP) as well as a value iteration algorithm. Feldman
and Topaloglu (2017b) study the network revenue
management problem under theMarkov chain model,

for which a linear programming–based algorithm is
proposed. Simsek and Topaloglu (2017) present an
expectation maximization–based algorithm to estimate
the parameters of the Markov chain model from choice
data. Subsequently, several variants of the Markov
chain model have been considered in recent works
(see Ragain and Ugander 2016, Nip et al. 2017, and
Paul et al. 2017).
In this paper, we consider the capacity-constrained

assortment problem under the Markov chain model.
Here, every item i is associated with a weight wi, and
the decision maker is restricted to selecting an assortment
whose totalweight is atmost a given bound,W. Therefore,
the capacity-constrained assortment-optimization prob-
lem can be formulated as

max
S⊆1

R(S) :
∑

i∈S
wi ≤ W

{ }
, (Capacity-Assort)

where 1 denotes the universe of substitutable items
and R(S) denotes the expected revenue of the assort-
ment S ⊆ 1 under the Markov chain model. The formal
definition of this model, along with additional nota-
tion, are given in Section 1.3. For the special case of
uniform item weights (i.e., wi $ 1 for all i), the capacity
constraint reduces to an upper bound on the number of
items in the assortment. We refer to this setting as the
cardinality-constrained assortment-optimization problem:

max
S⊆1

R(S) : |S| ≤ k{ }. (Cardinality-Assort)

Cardinality and capacity constraints on assortments
arise naturally in many applications, allowing one to
model practical scenarios, such as a shelf-space con-
straint or budget limitations. For instance, in the context
of e-commerce, an e-tailer, such as Amazon orWalmart
.com, needs to choose a small subset out of tens of
thousands of SKUs to display on its front item page
when a user types in a search query, say for women’s
boots. Because the customer’s ultimate purchasing de-
cision is heavily influenced by the displayed contents,
the e-tailer must incorporate its prediction of the cus-
tomer’s substitution behavior to maximize the sales
probability and/or the expected revenue. Moreover,
this personalized decision has to be made within a split
second to minimize latency and to maximize customer
experience. Consequently, in such applications, the e-tailer
must deploy fast and provably good algorithms. The
task of deciding onwhat personalized assortment should
be offered to a customer given a search query is not
restricted to the online retail industry. For example,
airlines and hotels also face similar challenges when
a customer is booking a flight or a hotel room online.
Similarly, recommendation systems for sponsored search
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results that redirect traffic to other sites, such as Google
or Facebook, can be thought of as solving an assortment-
optimization problem to maximize the expected revenue
generated from its recommendations. It is worth noting
that the so-called expected revenue considered in the
assortment-optimization literature is by no means lim-
ited to be actual revenue that a firm generates and could
instead capture other proxy metrics, such as traffic or
retention rate that the optimizer cares about.

Assortment optimization under cardinality or ca-
pacity constraints is, therefore, an important problem
that has extensively been studied for many parametric
choice models, including MNL (Davis et al. 2013, Désir
et al. 2014), nested logit (Désir et al. 2014, Gallego and
Topaloglu 2014, Feldman and Topaloglu 2015), and
mixture of MNL models (Rusmevichientong et al.
2010, Désir et al. 2014, Feldman and Topaloglu 2017a).

Finally, although the constrained assortment-optimization
problem studied in this paper has a seemingly sim-
ple and compact description, it is a fundamental prob-
lem that can be employed as a building block in more
complexmodels of dynamic assortment optimization. In
such problems, a sequence of item-display decisions is
made over time, subject to inventory constraints.Amuch-
needed technical tool in most algorithms that address
these settings emerges because of the problem’s natural
restriction to single time periods, which boils down to
solving a static assortment-optimization problem as a
subroutine. Numerous recent papers (Zhang and Cooper
2005, Golrezaei et al. 2014, Gallego et al. 2016, Feldman
and Topaloglu 2017b) have studied the complexity of
dynamic assortment optimization, using a black-box
algorithm for the single-period assortment-optimization
problem. As a result, it is imperative that algorithms for
the static subproblem would scale gracefully for large
instances, while still providing provably good solutions.

One of the key challenges in designing an efficient algo-
rithm for the capacity-constrained assortment-optimization
problem under the Markov chain model arises from the
fact that, unlike most parametric models, the choice
probability function here does not have a simple func-
tional form. Instead, the choice probability for any item i
in an assortment S is specified as the solution to a system
of linear equations that depends on S. This character-
ization results in a nonlinear mixed-integer program-
ming formulation with a binary decision variable for
each item indicating whether it is included in the as-
sortment or not. In particular, the dependency of the
system of linear equations on the assortment S in defin-
ing the choice probabilities results in nonlinear con-
straints in the integer formulation, making the latter
particularly challenging to solve. In fact, in later parts of
this paper, we formally establish APX-hardness for the
capacity-constrained assortment problem. Our hardness
results motivate us to study approximation algorithms
with provably good guarantees.

1.1. Our Contributions
1.1.1. Assortment Optimization Under Cardinality and
Capacity Constraints. We present fast approximation
algorithms for the cardinality- and capacity-constrained
assortment-optimization problems under the Markov
chain choice model with provable worst-case approxima-
tion guarantees. In particular, we present a (1/2 − ε)-
approximation for the cardinality-constrained problem
and a (1/3 − ε)-approximation for the capacity-constrained
problem for any ε> 0, running in time polynomial in
the input size and 1/ε. In other words, our algorithm
for the cardinality-constrained assortment problem effi-
ciently computes a solution with expected revenue that
is provably at least 1/2 − ε times the optimal expected
revenue for any instance. Similarly, the performance
bound for the capacity-constrained version guarantees
that the resulting expected revenue is at least 1/3 − ε
times the optimal expected revenue.
Our algorithm is iterative and builds the assortment

in steps. It is based on a new externality-adjustment
paradigm that allows us to exactly capture the exter-
nality of adding an item to the assortment in any iter-
ation. In particular, in each iteration t of the algorithm,
we select an appropriate item, jt, to add to the current
solution and then construct a smaller modified instance
of the problem using our externality-adjustment para-
digm that perfectly captures the effect of adding jt to the
assortment on the remaining items. This approach al-
lows us to focus on a smaller subproblem with only
the remaining items in the modified instance. Therefore,
our externality-adjustment paradigm enables us to lin-
earize a highly nonlinear expected revenue function. As
we demonstrate later, the expected revenue as a func-
tion of the assortment (or offer set) is neither mono-
tone nor submodular in general and only satisfies the
subadditivity property. Therefore, it is quite interesting
and surprising to be able to obtain a linearization of such
a function. Moreover, the iterative nature of our algo-
rithm makes it particularly efficient. The number of it-
erations is upper bounded by the underlying number of
items, and the computational effort made within each
iteration is on par with that of computing the choice
probability of a given offer set. As a result, the simplicity
and speed of this algorithm makes it suitable for online
retail applications.

1.1.2. Special Case: Uniform Item Prices. For the special
case, when all items have identical prices, we show that
the expected revenue function is both submodular
and monotone. Therefore, we can obtain a (1 − 1/e)-
approximation for the cardinality-constrained problem
using a greedy algorithm (Nemhauser and Wolsey
1978). In fact, for this special case, we obtain an
approximation ratio of 1 − 1/e under more general con-
straints, such as a constant number of capacity con-
straints (Kulik et al. 2013) and matroid constraints
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(Calinescu et al. 2011). It is worth mentioning that, from
a practical point of view, the uniform-price setting turns
the objective function into that of maximizing sales
probability. This scenario is very common when items
are horizontally differentiated, that is, differ by char-
acteristics that do not affect quality or price, such as
iPads coming in a variety of colors or yogurt with
different amounts of fat content.

1.1.3. Hardness of Approximation. We show that the
capacity-constrained assortment-optimization prob-
lem under the Markov chain model is APX-hard; that
is, it is NP-hard to approximate within a factor better
than some given constant even when all items have
uniform prices and unit weights. In this case, the ca-
pacity constraint reduces to a bound on the number of
items, that is, to a cardinality constraint. Therefore, a
constant factor approximation is the best possible result
for the cardinality- and capacity-constrained assortment-
optimization problems. Interestingly, although the un-
constrained assortment-optimization problem under the
Markov chain choice model can be solved optimally in
polynomial time (Blanchet et al. 2016), the cardinality-
and capacity-constrained problems are proven here to be
APX-hard. In contrast, in both the MNL and nested logit
models, the unconstrained assortment optimization and
the cardinality-constrained assortment problems have
the same complexity.

In addition, we show that assortment optimization
under the Markov chain model with more general
totally unimodular (TU) constraints on the assortment
(generalizing cardinality constraints and capturing a
wide range of practical constraints, such as precedence,
display locations, and quality-consistent pricing con-
straints; Davis et al. 2013), is hard to approximate
within a factor of O(n1/2−ε) for any fixed ε> 0, where
n is the number of items. This result drastically con-
trasts that of Davis et al. (2013), who prove that the
assortment-optimization problem with TU constraints
for the MNL model can be solved in polynomial time.

1.1.4. Computational Results. We conduct an extensive
computational study focused on two main directions:
(1) comparing the practical performance of our algo-
rithms with their theoretical worst-case guarantees and
(2) evaluating how well the Markov chain model per-
forms when compared against the MNL model. For the
first direction, we compare the performance of our al-
gorithms with respect to the optimal solution that is
computed by solving a mixed-integer programming
(MIP) formulation. In these numerical experiments,
we observe that the practical performance of our al-
gorithms is significantly better than their theoretical
worst-case guarantee. Specifically, although the worst-
case approximation bound is 1/2 − ε for the cardinality-
constrained problem, we observe that the approximation

ratio is 0.97, on average, and at least 0.77 across all instances
considered. With respect to computational efficiency,
our algorithm is scalable and terminates, on average,
in a few seconds and within one minute in the worst
case over all large instances tested (with n $ 200). On
the other hand, the MIP approach does not terminate
even within a time limit of two hours on most of these
instances. We further investigate different parameters
that can potentially drive down the practical perfor-
mance of our algorithm. We find that when there is a
strong correlation in the model parameters and, si-
multaneously, the size of the constraint is moderate, the
performance of our algorithm slightly degrades.
For the second direction, we conduct a numerical

study to examine how the Markov chain model com-
pares with the MNL model. In particular, we generate
instances using an underlying mixture of MNL model
as ground truth and compare the performance guar-
antees attained by both models. Here, we make use of
a consideration set–inspired construction similar to
that of Feldman and Topaloglu (2017b). For the con-
strained assortment problem, this question is particu-
larly relevant because, despite the fact that the Markov
chain model generalizes the MNL model, we compute
an approximate solution for the Markov chain model,
whereas an optimal solution can be obtained for the
MNL model. That said, we observe that the Markov
chain model significantly outperforms the MNL model
and increases revenue bymore than 12%, on average, in
all settings tested.

1.2. Related Work
Assortment optimization under cardinality and capacity
constraints has been studied widely in the literature for
many parametric models. As we mentioned earlier,
these constraints arise naturally in numerous appli-
cations, allowing one to model practical scenarios,
such as a shelf-space constraint or budget limitations.
Rusmevichientong et al. (2010) consider the cardinality-
constrained assortment-optimization problem under the
MNLmodel and propose an exact algorithm.Davis et al.
(2013) provide an exact algorithm for assortment opti-
mization under theMNLmodel for more general totally
unimodular constraints that capture a wide range of
practical constraints, such as precedence, display loca-
tions, andquality-consistent pricing constraints.Désir et al.
(2014) show that the capacity-constrained assortment-
optimization problemunder theMNLmodel isNP-hard
and present a fully polynomial-time approximation
scheme (FPTAS) for this problem.
Gallego and Topaloglu (2014) present an exact algo-

rithm for the cardinality-constrained problem for a spe-
cial case of the nested logit model. Feldman and
Topaloglu (2015) present an exact algorithm for the
latter model when the cardinality constraint is across
different nests. Rusmevichientong et al. (2010) devise a
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polynomial-time approximation scheme for the cardinality-
constrained assortment problem under a mixture of
MNL choicemodel. Désir et al. (2014) propose an FPTAS
for the capacity-constrained assortment problem under
both the nested logit and themixture ofMNLmodels for
a constant number of mixtures. Feldman and Topaloglu
(2017a) present an FPTAS for the capacity-constrained
assortment optimization under the MNL model with
nested consideration sets.

Furthermore, constrained assortment optimization
has also been studied under the distribution over per-
mutations models. Aouad et al. (2018) show that even
unconstrained assortment optimization for general dis-
tribution over permutations is NP-hard to approx-
imate within a factor of O(n1−ε) for any fixed ε> 0.
However, both unconstrained and constrained assortment-
optimization problems have been studied for several
structured distribution-over-permutationsmodels. Farias
et al. (2013) consider a distribution over permutations
with the sparsest support that is consistent with the
data, and Farias et al. (2011) present a local search–
based algorithm for assortment optimization under
this model. Désir et al. (2016) consider a mixture of
Mallows model for choice and present an approxi-
mation scheme for the capacity-constrained assortment-
optimization problem under a reasonable technical
assumption. Paul et al. (2017) consider constrained
assortment optimization under a nonparametric dis-
tribution over permutations model in which the per-
mutations arise from a tree structure. Aouad et al. (2015)
study constrained assortment optimizationunder consider-
then-choose choice models. In summary, constrained
assortment optimization has extensively been studied
in the literature for a large class of parametric and non-
parametric models.

In this paper, we focus on the cardinality- and capacity-
constrained assortment-optimization problems under the
Markov chainmodel. Aswementioned earlier, one of the
key challenges arises because, unlike most of the models
discussed, the choice probability function in the Markov
chain model does not have a simple functional form and
is given as a solution to a system of linear equations
that depend on the assortment. This results in a highly
nonlinear revenue function that is neither monotone
nor submodular and only satisfies subadditivity. Con-
sequently, none of the algorithms developed for con-
strained assortment optimization under other choice
models appears to be useful in this setting.

Finally, the static assortment optimization model that
this and many of the aforementioned papers consider
can serve as a building block for a more elaborate dy-
namic assortment-optimization problem. In this setting,
a sequence of item-display decisions is made over time
subject to inventory constraints. Zhang and Cooper
(2005), Feldman and Topaloglu (2017b), Golrezaei
et al. (2014), and Gallego et al. (2016) have studied

the dynamic assortment-optimization problem for dif-
ferent models of customer-arrival sequence, both ad-
versarial and stochastic. Interestingly, when the dynamic
problem is restricted to single time periods, it boils down
to solving a static assortment-optimization problem as a
subroutine. Although the formulations and algorithmic
approaches considered in the aforementioned papers
work for a broad class of choice models, Feldman and
Topaloglu (2017b) focus their analysis on the Markov
chain choice model. They show that when all items share
a single resource constraint, the dynamic unconstrained
assortment-optimization problem can be efficiently
solved to optimality based on dynamic programming
(DP). To evaluate the DP recursion, the authors make use
of an algorithm for the static assortment-optimization
problem as a subroutine. For the general network
revenue-management setting, in which mapping of
items to resource consumption forms a bipartite net-
work, Feldman and Topaloglu (2017b) exploit the struc-
ture of the unconstrained assortment-optimization
problem to reduce the size of the large-scale LP that
needs to be solved.
It is worth pointing out that, unlike the resource con-

straints considered by Feldman and Topaloglu (2017b),
which model the inventory dynamics of raw materials
over time, our paper considers capacity limitations on
the size of the offer set. From a computational complexity
view, the two sets of constraints are also very different.
For instance, the single-resource revenue-management
problem can be solved exactly in polynomial time
provided that the underlying static unconstrained
assortment-optimization problem can be solved ex-
actly. In contrast, we show that the static assortment-
optimization problem with cardinality constraints is
already APX-hard. In Online Appendix B, we provide
more details on how adding a cardinality constraint
really affects the fundamental nature of the optimi-
zation problem and, in particular, why previous work
(such as that of Feldman and Topaloglu 2017b) does
not carry over to the network revenue-management
problem with an additional cardinality constraint. We
also show how our algorithmic approach can be used
in a dynamic setting to attain a constant factor ap-
proximation algorithm for the latter problem. In this
sense, our work complements the existing literature on
dynamic assortment-optimization problems.

1.3. The Markov Chain Model and
Additional Notation

We denote the universe of n items by the set 1 $
{1, 2, . . . , n} and the no-purchase option by zero with
the convention that 1+ $ 1 ∪ {0}. We consider a Mar-
kov chain } with states 1+ to model the substitution
behavior of customers. This model is completely spec-
ified by initial arrival probabilities λi for all states i ∈ 1+
and by the transition probabilities ρij for all (i, j) ∈ 12

+.
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When a retailer chooses to offer a subset of items S to
consumers, the corresponding states of the Markov
chain become absorbing states. A customer arrives in
state i with probability λi; if this state is not absorbing,
the customer transitions to a different state j '$ i, and the
process continues until the customer reaches an ab-
sorbing state, which is then purchased. In other words,
the probability of a random customer purchasing item i
with S being the offer set of items is the probability that
the customer reaches state i before any other absorbing
states in the underlying Markov chain.

Following Blanchet et al. (2016), we assume that for
each state j ∈ 1 there is a path to state zerowith nonzero
probability. For a given offer set S ⊆ 1, let π(i,S) be the
probability that item i is chosen when the assortment S
is offered. Let pi denote the price of item i. For any
assortment S, its expected revenue can be written as

R(S) $
∑

i∈S
π(i,S) · pi.

For any (possibly empty) pairwise-disjoint subsets
U,V,W ⊆ 1+, let Pj(U ≺ V ≺ W) denote the probability
that, starting from j, we first visit some state inU before
visiting any state inV ∪W and subsequently visit some
state in V before visiting any state in W with respect to
the transition probabilities of }. Let P(U ≺ V ≺ W) $∑n

j$1 λjPj(U ≺ V ≺ W). With this notation, we can write
π(i,S) $ P(i ≺ S+\{i}), where S+ $ S ∪ {0} for all S ⊆ 1
(in this case, W $ ∅).

1.4. Outline
The remainder of this paper is organized as follows. For
ease of exposition, we first consider the special case of
uniform-price items in Section 2. We also illustrate why
several greedy algorithms, including the one that is
provably good for uniform prices, do not provide non-
trivial approximations for arbitrary prices. In Sections 3
and 4, we present the externality-adjustment para-
digm and our algorithm for the cardinality-constrained
problem. We describe the extension to the capacity-
constrained problem in Section 5. In Section 6, we
establish our hardness results for the constrained
assortment-optimization problem under the Markov
chainmodel. Finally, our computational study is presented
in Section 7.

2. Revenue Function Properties and
Key Challenges

In this section, we examine several structural properties
of the revenue function and discuss the key challenges in
designing an algorithm for the cardinality- or capacity-
constrained versions of the assortment-optimization
problem under the Markov chain model. We also
consider the special case when the item prices are
uniform. This setting is quite common when items are

horizontally differentiated, that is, differ by character-
istics that do not affect quality or price, such as iPads
coming in a variety of colors or yogurt with different
amounts of fat content. We show that, for this special
case, the revenue function is both monotone and sub-
modular, implying that the cardinality- and capacity-
constrained assortment-optimization problems in this
setting can be efficiently approximated within a factor
of 1 − 1/e. With general prices, we show that the rev-
enue function is neither monotone nor submodular and
that several natural variants of the greedy algorithm can
lead to solutions with arbitrarily bad performance in
comparison with the optimal solution.

2.1. Uniform Prices: Constant Factor Approximation
We start by formally defining the notions of mono-
tonicity and submodularity.

Definition 1. A revenue function R : 21 → R+ is mono-
tone when, for all S ⊆ 1 and i ∈ 1, we have R(S ∪ {i}) ≥
R(S).
Definition 2. A revenue function R : 21 → R+ is sub-
modular when, for all S ⊆ T ⊆ 1 and i ∈ 1\T, we have
R(S ∪ {i}) − R(S) ≥ R(T ∪ {i}) − R(T).
When all prices are equal, we show that the revenue

function is both submodular and monotone.

Theorem 1. When all items have uniform prices, the rev-
enue function R(·) is submodular and monotone.

Proof. Let p be the price of every item in 1. Because
item prices are identical, for every subset S and item
i ∈ 1\S, we have

R(S ∪ {i}) $ R(S) + p · P(i ≺ 0 ≺ S).

To understand this equation, recall that P(i ≺ 0 ≺ S) is
the probability that the Markov chain visits state i and
then visits state 0 without visiting any state in S. When
all prices are equal, the marginal increase in revenue
by adding item i is only a result of the additional
demand that item i is able to capture. Consequently,
R(·) is monotone as the quantity p · P(i ≺ 0 ≺ S) is non-
negative. Moreover, the submodularity of R holds be-
cause, for all S ⊆ T,

R(S ∪ {i}) − R(S) $ p · P(i ≺ 0 ≺ S) ≥ p · P(i ≺ 0 ≺ T)
$ R(T ∪ {i}) − R(T). □

Consequently, by the classical result of Nemhauser
andWolsey (1978), we know that the greedy algorithm,
in which we iteratively add the item that increases
the objective value the most, guarantees a (1 − 1/e)-
approximation for (Cardinality-Assort) with uniform
prices. We refer to this procedure as the incremental
greedy algorithm.
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2.1.1. More General Constraints. As the revenue func-
tion is monotone and submodular for uniform prices,
we can exploit the existing machinery for approxi-
mately maximizing monotone submodular functions
subject to a wide range of constraints (see, for instance,
Lee et al. 2010, Calinescu et al. 2011, Kulik et al. 2013,
and Buchbinder et al. 2014). This way, constant factor
approximations can be obtained for assortment opti-
mization under the Markov chain model with more
general constraints on the set of items offered. For in-
stance, Kulik et al. (2013) give a (1 − 1/e)-approximation
for maximizing amonotone submodular function under
a fixed number of capacity (knapsack) constraints, and
Calinescu et al. (2011) obtain a similar performance
guarantee for maximizing a monotone submodular
function under a matroid constraint.

2.2. Challenges in Extensions to Arbitrary Prices
We begin by observing that, for arbitrary prices, the
expected revenue as a function of the assortment is
neither monotone nor submodular under the Markov
chain choice model. The proof of the next claim appears
in Appendix A.1.

Lemma 1. When items have arbitrary prices, the revenue
function R(·) is neither monotone nor submodular.

The examplesweuse to prove Lemma 1, althoughvery
simple, illustrate the fact that, conditioned on having
high-price items in an assortment, adding lower-priced
items may cannibalize the demand going into high-price
ones. As a result, adding items to an existing assort-
ment does not necessarily increase its expected revenue
(monotonicity). Similarly, it is not the case that the bigger
the assortment gets, the lesser of the impact addi-
tional items would have on the revenue function (sub-
modularity). In what follows, we identify the drawbacks
of the incremental greedy algorithm in approximating
(Cardinality-Assort) for arbitrary prices aswell as that of a
modified greedy heuristic.

2.2.1. Incremental Greedy Algorithm. The incremental
greedy algorithm that attains a (1 − 1/e)-approximation
for the cardinality-constrained assortment-optimization
problem with uniform prices does not extend to the
more general setting with arbitrary prices. We formalize
this intuition through the following result.

Lemma2. The approximation ratio of the incremental greedy
algorithm is Θ(1/k) for (Cardinality-Assort).

Intuitively, the performance of the incremental greedy
algorithm for general prices can be highly suboptimal
because of potentially making a low-price item ab-
sorbing, thereby blocking all probabilistic transitions
going into high-price items. This intuition is formalized
in Appendix A.2, in which we present the proof of
Lemma 2.

2.2.2. Modified Greedy Algorithm. The bad example for
the incremental greedy algorithm illustrates thatwemay
have been too focused on local improvements in each
iteration without taking into account the information of
the entire network induced by the probability transition
matrix or the number of remaining iterations. Therefore,
we consider a modified greedy algorithm that accounts
for the Markov chain structure by using the optimal
solution to the unconstrained assortment problem, in
which there is no restriction on the number of items
picked. This solution can be computed in polynomial
time via an algorithm proposed by Blanchet et al. (2016)
(as a side note, we give an alternative algorithm for the
unconstrained problem in Section 3.4). Intuitively, the
items picked by the unconstrained optimal assortment
should not block each other’s demand too much. Let U∗

be the optimal unconstrained assortment whose asso-
ciated revenue can be written as

R(U∗) $
∑

i∈U∗
P(i ≺ U∗

+\{i}) · pi. (1)

A natural candidate algorithm takes the k states with
the largest P(i ≺ U∗

+\{i}) · pi value within the uncon-
strained optimal solution U∗ and sets these states to
be absorbing. We show that even the modified greedy
algorithm performs poorly in the worst case.

Lemma 3. The approximation ratio of the modified greedy
algorithm is Θ(k/n) for (Cardinality-Assort).
The poor performance of the modified greedy algo-

rithm illustrates that an optimal assortment for the
constrained problem may be very different from that of
its unconstrained counterpart. Hence, searching within
an unconstrained optimal solution for a good approx-
imate solution to the constrained problem can be un-
fruitful in general. The proof of Lemma 3 is presented in
Appendix A.3.

2.2.3. Summary. As one can observe in the aforemen-
tioned examples, the incremental greedy algorithm
places too much emphasis on including the item that
would result in the highest incremental revenue while
ignoring the fact that such an item could have a lowprice
and would irreversibly cannibalize most of the cus-
tomer demand. On the other hand, the modified greedy
algorithm places too much emphasis on including high-
price items even though each item captures very lit-
tle demand. Clearly, a competitive algorithm needs to
properly address this revenue/price trade-off. How-
ever, naively taking the best of the two greedy algo-
rithms does not do well either. The analysis of the two
greedy variants provides important insights that we
utilize toward designing a provably good algorithm.
The main insight behind our algorithm comes from a
paradigm that enables us to quantify the revenue
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effect by which including a new item in our assortment
cannibalizes the demand to other items in the current
assortment.

3. Externality Adjustment–based
Algorithm Design

In this section, we present the general framework of
our approximation algorithms for the cardinality- and
capacity-constrained assortment-optimization prob-
lems under the Markov chain model.

3.1. High-Level Ideas
As the example in Figure A.1 illustrates, the incremental
greedy algorithm could end up with a highly subopti-
mal solution because of picking cannibalizing items,
that is, those blocking the demand for higher-price
items. Picking the highest-price itemwill eliminate such a
concern. However, a high-price item might only capture
very little demand and, therefore, generate very small
revenue as illustrated by the example in Figure A.2.
In the presence of a capacity constraint on the assort-
ment, picking such items may not be an optimal use of
the capacity. This motivates us to choose the highest-
price item in an appropriate consideration set. Intuitively,
the consideration set will consist of items that generate
sufficiently high incremental revenue.

We first give a high-level description of our algorithm
ALG that builds the solution iteratively. Let }t denote
the problem instance in any iteration t. The algorithm
performs the following two steps in each iteration t:

1. Item selection.Define an appropriate consideration
set Ct of items and pick the highest-price item from Ct.

2. Instance update (externality adjustment). Construct
a new instance, }t+1, of the constrained assortment-
optimization problemwith appropriatelymodified item
prices and transition probabilities such that

ALG(}t) $ ∆t + ALG(}t+1),

where ALG(·) is the revenue of the solution obtained
by the algorithm on a given instance and ∆t is the in-
cremental revenue in the objective value because of the
item selected in iteration t.

The instance update step linearizes the revenue func-
tion even though the original revenue function is
nonlinear, which is crucial for our iterative-solution
approach. The update rule is a framework to capture the
externality of our item selection in each iteration on the
remaining items. To completely specify the algorithm,we
need to provide a precise definition for the consideration
set in the item-selection step and for the instance-update
step. For both cardinality- and capacity-constrained
assortment-optimization problems, the instance update
step is similar as explained in Section 3.2. The consid-
eration set, however, depends on the particular opti-
mization problem being considered and is defined later.

The intuition is to include items whose incremental rev-
enue is above an appropriately chosen threshold.
Our algorithm can also be viewed in a local-ratio

framework (see, for instance, Bar-Yehuda and Even
1985, Bar-Yehuda et al. 2005, and Bar-Yehuda and
Rawitz 2006). We would like to note that the local-ratio
framework does not provide a general recipe for de-
signing an update rule or for analyzing the performance
bound. In most algorithms belonging to this frame-
work, the update rule follows from a primal-dual algo-
rithm.However, for the capacity-constrained assortment-
optimization problem under the Markov chainmodel,
we are not aware of any good LP formulation, and
therefore, the instance-update rule requires new ideas.

3.2. Instance Update or Externality Adjustment
3.2.1. Notation. Given an instance } of the Markov
chain model, we define an updated instance}(S), given
that the set of states S is made absorbing by modifying
the item prices as well as the probability-transition ma-
trix. Becausewe index the updates by a set S, the instance
}t introduced in the preceding discussion should be
thought of as}(St−1), where St−1 denotes the set of items
picked up to (and including) step t − 1. For an instance
}(S), we denote by pSi the updated price of item i and
by ρS

ij the updated transition probabilities for every i ∈ 1,

j ∈ 1+; the arrival rate to any state remains unchanged;
that is, λS

i $ λi for all i ∈ 1. We also denote byRS : 21 →
R the revenue function associated with the instance
}(S) and by PS(·) the probability of any event with
respect to }(S).

3.2.2. Price Update. First, we introduce the price up-
dates such that, when S is made absorbing, we account
for the revenue generated by every state j ∈ S. To this
end, consider a unit demand at state i /∈ S. This unit
demand generates a revenue of pi when i is made
absorbing. On the other hand, when i is not absorbing,
this unit demand at i generates a revenue of

∑

j∈S
Pi( j ≺ S+\{ j}) · pj.

This revenue, which was already accounted for by S, is
lost when i is also made absorbing in addition to S.
Hence, the net revenue per unit demand at i when we
make it absorbing, given that S is already absorbing, is

pi −
∑

j∈S
Pi( j ≺ S+\{ j})pj,

whichwe denote as the adjusted price pSi . This update is
explicitly described in Figure 1. Now, two important
remarks are in place:
• The adjusted prices can be negative, correspond-

ing to the situation in which adding an item decreases
the overall revenue.
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• The probabilities Pi( j ≺ S+\{ j}), needed for our
price updates, can be interpreted as the choice probability
π( j, S) for a modified instance with λi $ 1 and λ% $ 0 for
% '$ i. Therefore, these quantities can be efficiently com-
puted via traditional Markov chain tools (see, for in-
stance, Blanchet et al. 2016).

3.2.2. Transition Probabilities Update. Because the sub-
set of states S is set to be absorbing, we simply redirect
the outgoing probabilities from all states in S to zero as
described in Figure 1.

3.3. Structural Properties of the Updates
We first show that the externality-adjustment updates
allow us to linearize the revenue function.

Lemma 4. R(S1∪S2)$R(S1)+RS1(S2) for every S1,S2⊆1.

Proof. Weassumewithout lost of generality that S1 ∩ S2 $
∅ because all items in S1 ∩ S2 have zero as their adjusted
price, andwe can then apply the proof to S2\S1. Using the
definition of the externality-adjustment updates, we have

RS1(S2) $
∑

i∈S2
PS1(i ≺ S2+\{i})pS1i

$
∑

i∈S2
PS1(i ≺ S2+\{i})· pi −

∑

j∈S1
Pi( j ≺ S1+\{ j})pj

( )

$
∑

i∈S2
PS1(i ≺ S2+\{i})pi

−
∑

j∈S1

∑

i∈S2
PS1(i ≺ S2+\{i})Pi( j ≺ S1+\{ j})pj.

By definition of the transition probabilities ρS1 , note that
all items of S1 are redirected to zero. This, together with
the fact that S1 ∩ S2 $ ∅, implies that for all i ∈ S2 we have
PS1(i ≺ S2+\{i}) $ P(i ≺ (S2 ∪ S1)+\{i}). Consequently,

R(S1) + RS1(S2)

$
∑

j∈S1

(
P( j ≺ S1+\{ j})

−
∑

i∈S2
P(i ≺ (S2 ∪ S1)+\{i})Pi( j ≺ S1+\{ j})

)
pj

+
∑

i∈S2
P(i ≺ (S2 ∪ S1)+\{i})pi

$
∑

j∈S1

(
P( j ≺ S1+\{ j}) − P(S2 ≺ j ≺ S1+\{ j})

)
pj

+
∑

i∈S2
P(i ≺ (S2 ∪ S1)+\{i})pi

$
∑

j∈S1
P( j ≺ (S2 ∪ S1)+\{ j})pj

+
∑

i∈S2
P(i ≺ (S2 ∪ S1)+\{i})pi

$ R(S1 ∪ S2),

where the second equality holds because
∑

i∈S2
P(i ≺ (S2 ∪ S1)+\{i})Pi( j ≺ S1+\{ j})

$ P(S2 ≺ j ≺ S1+\{ j}),
as by theMarkov property, both the left and right terms
in this equality denote the probability that we visit
some state in S2 before any state in S1+, followed by
state j ∈ S1 before any other state in S1+. □

The next lemma shows that the composition of two
externality-adjustment updates over subsets S1 and S2
is equivalent to a single externality-adjustment update
over S1 ∪ S2. This property is crucial for repeatedly
applying externality-adjustment updates.

Lemma 5. Let S1 ⊆ 1 be some assortment, and let }1 $
}(S1). For any S2 with S1 ∩ S2 $ ∅, the instance }1(S2) is
identical to the instance }(S1 ∪ S2) in terms of item prices
and transition probabilities.

To establish this result, it suffices to verify that
(pS1i )S2 $ pS1∪S2i for all S1, S2 and i /∈ S1 ∪ S2 as this
identity clearly holds for the transition-matrix updates.
The proof is similar to that of Lemma 4 and is presented
in Appendix A.4. Putting the previous two lemmas to-
gether gives the following claim.

Lemma 6. RS1(S2 ∪ S3) $ RS1(S2) + RS1∪S2(S3) for any
pairwise-disjoint sets S1, S2, S3 ⊆ 1.

3.4. Warm-up: Exact Algorithm for the
Unconstrained Problem

As a warm-up, we first present an alternative exact al-
gorithm for the unconstrained assortment-optimization
problem under the Markov chain model by using
the externality-adjustment framework. Our algorithm
is based on the observation that it is always optimal to
offer the highest-price item for the unconstrained problem
as it does not cannibalize the demand of other items. The
latter property is implied by a slightly more general claim,
formalized as follows. For any x ∈ R, let [x]+ $ max(x, 0).
Lemma 7. Let S ⊆ 1. For any item i /∈ S with price pi ≥
[maxj∈S pj]+, we have R(S ∪ {i}) ≥ R(S).
Proof. By Lemma 4,

R(S ∪ {i}) $ R(S) + RS({i}) $ R(S) + PS(i ≺ 0) · pSi ,

Figure 1. Instance Update in Our Algorithm
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meaning that to prove the claim it remains to show pSi ≥ 0.
Indeed, by definition of the updated price in Figure 1,

pSi $ pi −
∑

j∈S
Pi( j ≺ S+\{j}) · pj ≥ 0,

where the last inequality holds because pi ≥ [maxj∈S pj]+.
□

3.4.1. Algorithm Overview. Based on Lemma 7, we pres-
ent an alternative exact algorithm for the unconstrained
assortment-optimization problem under the Markov
chain model. At a high level, our algorithm builds
an assortment iteratively. In each step, we select the
highest adjusted-price item (breaking ties arbitrarily)
and update the prices and transition probabilities
according to the externality-adjustment updates de-
scribed in Figure 1. This selection and updating process
is repeated until all adjusted prices are nonpositive.

3.4.2. Algorithm and Analysis. The specifics of our ap-
proach are formally described in Algorithm 1. Note
that this algorithm indeed falls within the general
framework of Sections 3.1 and 3.2 by defining the con-
sideration set in each iteration to be the entire set of items.

Algorithm 1 (Algorithm for Unconstrained Assortment)
1: Let S be the set of states picked so far, starting with
S $ ∅.

2: While there exists i ∈ 1\S such that pSi ≥ 0:
a. Let i∗ be the item for which pSi is maximized,

breaking ties arbitrarily.
b. Add i∗ to S.

3: Return S.

Theorem 2. Algorithm 1 computes an optimal solution for
the unconstrained assortment-optimization problem under
the Markov chain model.

Proof. The correctness of Algorithm 1 is based on the
observation that it is always optimal to offer the highest
adjusted price item as long as this price is nonnegative.
Suppose item 1 is the highest-price item. FromLemma 7,
we get R(S ∪ {1}) ≥ R(S) for any assortment S. There-
fore, we can assume that item 1 belongs to the optimal
assortment. By Lemma 4, we can write

max
S⊆1

R(S) $ R({1}) + max
S′⊆1\{1}

R{1}(S′).

It remains to show that, when we get to an iteration in
which our current absorption set is X and the adjusted
price of every state in the modified instance }(X) is
nonpositive, thenX is an optimal solution to}. To see this,
by repeated applications of Lemmas 4 and 5, we have

max
S⊆1

R(S) $ R(X) + max
S′⊆1\X

RX(S′).

However, because the adjusted price of every state in the
instance }(X) is nonpositive, we must have RX(S′) ≤ 0

for all S′ ⊆ 1\X. Hence, it is optimal not to make any
state in }(X) absorbing, which implies that X is an
optimal solution to }. □

3.4.3. Implications. Our algorithm provides interesting
insights for some known results about the optimal-
stopping problem and the assortment optimization un-
der the MNL choice model. Blanchet et al. (2016) relate
the unconstrained assortment problem to the optimal
stopping time on aMarkov chain (Chow et al. 1971). In
this problem, we need to decide at each state iwhether
to stop and get the reward pi or to proceed according
to the transition probabilities of the Markov chain.
Moreover, there is an absorbing state 0 with price
p0 $ 0. Algorithm 1 for the unconstrained assortment-
optimization problem gives an alternative strongly
polynomial-time algorithm for this optimal-stopping
problem.
Blanchet et al. (2016) also prove that the MNL choice

model is a special case of the Markov chain–based
model. Therefore, by analyzing Algorithm 1 to solve
the assortment-optimization problem under the MNL
model, we can recover the structure of the optimal
assortment being nested by price; that is, the optimal
assortment consists of the top %-priced items for some %.
Additional details on this application, including an
explicit expression for our externality-adjustment up-
dates, are given in Appendix B.

4. Cardinality-Constrained
Assortment Optimization

In this section, we present a (1/2 − ε)-approximation
for the cardinality-constrained assortment-optimization
problem under the Markov chain model for any fixed
ε> 0. Following the externality-adjustment framework
described in Section 3, our algorithm for the cardinality-
constrained case also selects in each step a state with a
high adjusted price from an appropriate consideration
set. The latter set is defined to avoid picking states that
have a high adjusted price but capture very little de-
mand. This effect is ensured by only considering items
whose incremental revenue exceeds a certain threshold.

4.1. The Algorithm
4.1.1. Overview. Before diving into the fine technical
details, we give an informal high-level overview. Our
algorithm builds an assortment iteratively in a similar
spirit to Algorithm 1. The main difference resides in the
selection step. Specifically, in each step, we select the
highest nonpositive adjusted price item only among
items whose marginal revenue increment with respect
to the assortment picked so far exceeds some pre-
determined threshold. We then proceed by updating
the prices and transition probabilities according to the
externality-adjustment updates described in Figure 1.
This selection and updating process is repeated until
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either k items have been picked or all remaining items
have insufficient marginal increments.

4.1.2. Algorithm. Our algorithm is iterative and selects a
single item in each step, following the framework de-
scribed in Section 3.1. Let St be the set of selected items by
the end of step t, startingwith S0 $ ∅.We use σt to denote
the item picked in step t, meaning that St $ {σ1, . . . ,σt}.
At every step t ≥ 1, we select the highest adjusted
price item (with respect to pSt−1 , breaking ties arbi-
trarily) among items in the following consideration
set:

Ct $ i ∈ 1\St−1 : RSt−1({i}) ≥ α
R(S∗)
k

{ }
,

where S∗ is the optimal solution, k is the cardinality
bound, and α ∈ (0, 1) is a parameter whose valuewill be
optimized later. Note that Ct is defined at the beginning
of step t, whereas St is defined at the end of step t and
includes the item selected in this step. Once the item σt
is selected, we recompute the adjusted prices via the
externality-adjustment update described in Figure 1
and update the consideration set to get Ct+1. The al-
gorithm terminates when either k items have already
been picked (i.e., upon the completion of step k) or
when the consideration set Ct becomes empty.

4.1.3. Guessing the Value of R(S∗). Because the optimal
revenue R(S∗) is not known a priori, we explain how
the value of R(S∗) is approximately guessed to com-
plete the algorithm’s description. A natural upper bound
on R(S∗) is R(U∗), where U∗ is the optimal unconstrained
solution. On the other hand, by Lemma 3, we know that
R(S∗) ≥ k

n · R(U∗). Now, given an accuracy parameter
0< ε< 1, let

Bj $
k
n
· R(U∗) · (1 + ε)j, j $ 1, . . . , J, (2)

where J $ min{j ∈ N : Bj ≥ R(U∗)} $ O(log(n/k)ε ). For each
guess Bj for the true value of R(S∗), we run the algo-
rithm and eventually return the best solution found
over all guesses. Algorithm 2 describes the resulting
procedure for a particular choice of Bj and threshold α
for the consideration set. Algorithm 3 describes the full
procedure for any given ε> 0.

Algorithm 2 (Algorithm with Guess Bj and Threshold α)
1: Let S be the set of states picked so far, starting with
S $ ∅.

2: For all S ⊆ 1, let C(S) $ {i ∈ 1\S : RS({i}) ≥ α·Bj

k }.
3: While |S|< k and C(S) '$ ∅:

a. Let i∗ be the item of C(S) for which pSi is max-
imized, breaking ties arbitrarily.

b. Add i∗ to S.
4: Return S.

Algorithm 3 (Algorithm for (Cardinality-Assort) with thresh-
old α)
1: Given an error parameter ε> 0, let J and {Bj}j∈[ J]

be defined according to (2).
2: For j ∈ [ J], let Sj be the solution returned by

Algorithm 2 with guess Bj and threshold α.
3: Return argmaxj∈[ J]R(Sj).

4.2. Technical Lemmas
Prior to analyzing the performance guarantee of our
algorithm, we present two technical lemmas. We first
prove that our revenue function is subadditive.

Lemma 8. For all S1,S2 ⊆ 1 consisting only of non-
negative priced items, R(S1 ∪ S2) ≤ R(S1) + R(S2).
Proof. We have that

R(S1 ∪ S2) $
∑

j∈S1
P( j ≺ (S1 ∪ S2)+\{ j}) · pj

+
∑

j∈S2\S1
P( j ≺ (S1 ∪ S2)+\{ j}) · pj

≤
∑

j∈S1
P( j ≺ (S1)+\{ j}) · pj

+
∑

j∈S2
P( j ≺ (S2)+\{ j}) · pj

$ R(S1) + R(S2). □

Next, we establish a technical lemma that allows us
to compare the revenue of the optimal solution R(S∗)
with the revenue of the set returned by our algorithm,
R(St). First, note that the consideration sets along dif-
ferent steps are nested (i.e., C1 ⊇ C2 ⊇ · · ·). Therefore,
once an item disappears from the consideration set, it
never reappears. This enables us to partition the items
of S∗ according to the moment they disappear from the
consideration set (because either their adjusted revenue
becomes too small or they get picked by the algorithm).
More precisely, letting Z0 $ S∗, for all t ≥ 1 we define
the following sets:
• Zt $ S∗ ∩ Ct denotes the items of S∗ that are in the

consideration set Ct.
• Yt $ Zt−1\Zt denotes the items of S∗ that disappear

from the consideration set during step t − 1.
• Y+

t $ {i ∈ Yt : pSt−1i ≥ 0} denotes the items of Yt that
have a nonnegative adjusted price at step t.
Note that these sets are all defined at the beginning of

step t. The following lemma relates the adjusted rev-
enue of items in Zt−1 and Zt in terms of the marginal
change in revenue, R(St) − R(St−1).
Lemma 9. For all t ≥ 1, R(St) − R(St−1) ≥ RSt−1(Zt)−
(RSt(Zt+1) + RSt(Y+

t+1)).
Proof. Recall that, by definition, Zt contains the items of
S∗ that are in the consideration set at the beginning of
step t. Because our algorithm picks the highest adjusted
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price item, σt, in the consideration set Ct, we have pSt−1σt ≥
pSt−1i ≥ 0 for all items i ∈ Zt. Therefore, by Lemma 7,

RSt−1(Zt) ≤ RSt−1(Zt ∪ {σt}). (3)

We now consider two cases, depending on whether the
item σt appears in the optimal solution S∗ or not.

Case (a). σt /∈ S∗. From Lemma 6, RSt−1(Zt ∪ {σt}) $
RSt−1({σt}) + RSt(Zt). Consequently, from inequality (3),
we have

RSt−1(Zt) ≤ RSt−1({σt}) + RSt(Zt)
$ RSt−1({σt}) + RSt(Zt+1 ∪ Yt+1)
≤ RSt−1({σt}) + RSt(Zt+1 ∪ Y+

t+1)
≤ RSt−1({σt}) + RSt(Zt+1) + RSt(Y+

t+1),

where the second inequality holds because removing
all negative adjusted price items can only increase net
revenue and the last inequality follows from Lemma 8.
Adding R(St−1) on both sides of the inequality yields
the desired inequality by Lemma 4.

Case (b).σt ∈ S∗. FromLemma6,RSt−1(Zt)$RSt−1({σt}) +
RSt(Zt\{σt}). Then, similar to the previous case, we have

RSt(Zt\{σt}) ≤ RSt((Zt+1 ∪ Y+
t+1)\{σt})

≤ RSt(Zt+1) + RSt(Y+
t+1\{σt}).

Note that RSt(Y+
t+1\{σt}) $ RSt(Y+

t+1) because pStσt $ 0 and
σt is an absorbing state in}(St). AddingR(St−1) on both
sides of the inequality concludes the proof. □

From this result, we obtain the following claim.

Lemma 10. For all t ≥ 0, we have R(St) ≥R(S∗) −
(RSt(Zt+1)+ ∑t+1

j$1R
Sj−1(Y+

j )).

Proof. By summing the inequality stated in Lemma 9
over j $ 1, . . . , t, we obtain a telescopic sum that yields

R(St) ≥ R(Z1) − RSt(Zt+1) +
∑t+1

j$2
RSj−1(Y+

j )
( )

.

Because every item in S∗ must have a nonnegative
price and S∗ $ Z1 ∪ Y1 by definition, we have R(S∗) ≤
R(Z1) + R(Y1) by subadditivity of the revenue function
(see Lemma 8). Combining these two inequalities con-
cludes the proof. □

4.3. Analysis
In the following theorem, we show that the exter-
nality adjustment–based algorithm gives a (1/2 − ε)-
approximation for (Cardinality-Assort).

Theorem 3. For any ε> 0,Algorithm 3 computes a (1/2 −
ε/2)-approximation for (Cardinality-Assort). Moreover,
the running time is polynomial in the input size and 1/ε.

Proof. Given a fixed error parameter ε> 0, let j∗ be the
unique integer forwhich R(S∗)

1+ε ≤ Bj∗ ≤ R(S∗). SettingB $ Bj∗ ,
consider the solution returned by Algorithm 2 with
guess B and threshold α. We consider two cases based
on the condition by which the algorithm terminates.

1. If the algorithm stops after completing step k,
then, by linearity of the revenue when using the
externality-adjustment updates (Lemmas 4 and 5), the
resulting solution Sk has a revenue of

R(Sk) $
∑k

t$1
RSt−1({σt}) ≥ αB ≥ α

1 + ε
· R(S∗)

≥ (1 − ε)αR(S∗),

where the inequality holds because the item σt be-
longs to the consideration set Ct, and therefore, RSt−1 ·
({σt}) ≥ αB/k.

2. Now, suppose the algorithm stops at the end
of step k′ < k after discovering that Ck′+1 $ ∅. From
Lemma 10, we get

R(Sk′) + RSk′ (Zk′+1) ≥ R(S∗) −
∑k′+1

j$1
RSj−1(Y+

j ).

Now, because Ck′+1 $ ∅, this implies that Zk′+1 $ ∅.
Moreover, from Lemma 8, we also have RSj−1(Y+

j )< |Y+
j | ·

α · B/k for all j $ 1, . . . , k′ + 1. Therefore,

∑k′+1

j$1
RSj−1(Y+

j ) ≤ α · B
k
·
∑k′+1

j$1
|Y+

j | ≤ αB ≤ αR(S∗),

where the second inequality holds because ∑k′+1
j$1 |Y+

j | ≤
k and the last inequality holds as B ≤ R(S∗). Therefore,

R(Sk′) ≥ R(S∗) − αR(S∗) $ (1 − α) · R(S∗).

This shows that the approximation ratio attained by
our algorithm is min{(1 − ε)α, 1 − α}. Picking α $ 1/2,
we obtain a (1/2 − ε/2)-approximation for (Cardinality-
Assort). In terms of running time, Algorithm 3 considers
J $ O(1ε log(n/k)) guesses for R(S∗), and for any given
guess, the running time of Algorithm 2 is polynomial in
the input size. Therefore, the overall running time of
Algorithm3 is polynomial in the input size and1/ε. □

4.3.1. Tight Example. Theorem 3 shows that running
Algorithm 2with an input guess B $ R(S∗) and threshold
α $ 1/2 guarantees an approximation ratio of at least 1/2.
Here, we show that, for these input parameters, there
exists an instance inwhich the approximation ratio of 1/2
is tight. For this purpose, we consider an instance with
three items. The Markov chain has four states 1+ $
{s, 1, 2, 0}. The prices are ps $ 1 and p1 $ p2 $ 2. The
arrival rate for state s isλs $ 1, and all other states have an
arrival rate of zero. The transition probabilities are given
in Figure 2. Consider the cardinality-constrained as-
sortment problem with k $ 1. The optimal assortment
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is S∗ $ {s} with R(S∗) $ 1. With guess R(S∗) and α $ 1/2,
the consideration set in the first step is {s, 1, 2}, and
therefore, Algorithm 2 picks either one or two, obtaining
a revenue of R(S∗)/2.

We would like to note that Algorithm 2 is employed
as a subroutine in Algorithm 3 for each of the guesses
{Bj}j∈[ J] and returns the best solution across all guesses.
Therefore, the performance bound of our algorithm is
at least 1/2 −O(ε) and possibly better. In fact, in our
computational study (see Section 7), we observe that the
empirical performance of this algorithm is significantly
better than its theoretical worst-case bound of 1/2 −O(ε).
It is an interesting open question to provide a tighter
analysis of the approximation bound for Algorithm 3 that
returns the best solution among all guesses of R(S∗).
5. Capacity-Constrained

Assortment Optimization
In this section, we show that the capacity-constrained
assortment problem under the Markov chain model
can be approximated within factor 1/3 − ε for any fixed
ε> 0. Recall that, unlike the simpler cardinality case,
now each item i has an arbitrary weight wi, and we
have an upper bound ofW on the total weight of items
picked. We assume without loss of generality that each
item individually satisfies the capacity constraint; that
is, wi ≤ W for all i ∈ 1.

5.1. The Algorithm
5.1.1. Overview. In what follows, we describe an ex-
ternality adjustment–based algorithm, similar in spirit
to the one for the cardinality-constrained problem by
suitably adapting the way consideration sets are de-
fined. For this purpose, instead of considering items
whose incremental absorption revenue exceeds a cer-
tain threshold, we only consider items whose incre-
mental absorption revenue per unit of weight exceeds a
certain threshold.

Our algorithm is similar in spirit to Algorithm 3 other
than its selection step. In particular, we select in each
step the highest nonpositive adjusted price item only
among items that increase the revenue of the assort-
ment picked so far by at least some predetermined
threshold multiplied by the weight of the item. We then
proceed by updating the prices and transition proba-
bilities according to the externality-adjustment updates
described in Figure 1. This selection and updating
process is repeated until either the capacity constraint is
violated or no further items can be picked.

5.1.2. The Algorithm. Again, our algorithm selects a
single item in each step. Let St be the set of selected
items by the end of step t, starting with S0 $ ∅. We
use σt to denote the item picked in step t, meaning
that St $ {σ1, . . . , σt}. At every step t ≥ 1, we select
the highest adjusted price item (with respect to pSt−1 ,

breaking ties arbitrarily) among items in the following
consideration set:

Ct $ i ∈ 1\St−1 :
RSt−1({i})

wi
≥ α

R(S∗)
W

{ }
,

where S∗ is the optimal solution, W is the capacity
bound, and α ∈ (0, 1) is a parameter whose value will
be optimized later. Once the item σt is selected, we
recompute the adjusted prices via the externality-
adjustment update described in Figure 1. This selec-
tion and update process is repeated until either the
consideration set becomes empty or adding the cur-
rent item violates the capacity constraint; the step by
which this condition is met is denoted by t′. In the
former case, we stop and return St′−1. In the latter case,
we take either St′−1 or {σt′}, depending on which of
these sets has a larger total revenue.

5.1.3. Guessing R(S∗). As in the case of cardinality
constraints, because the value of R(S∗) is unknown,
we explain how to approximately guess it. We use a
procedure similar to the one given in Section 4.1 with
the exception of utilizing R(U∗)/|U∗| as a lower bound
(see proof of Lemma 2 in Appendix A.2), where U∗ is
the optimal unconstrained solution. In particular, we
consider the following guesses for R(S∗):

Bj $
1

|U∗| · R(U
∗) · (1 + ε) j, j $ 1, . . . , J, (4)

where J $min{ j∈N :Bj ≥R(U∗)}$O(lognε ). Algorithm 4
provides a formal description of our approximation al-
gorithm for (Capacity-Assort), given a particular guess Bj
for R(S∗) and threshold α, and Algorithm 5 describes
the complete procedure.

Algorithm 4 (Algorithm with Guess Bj and Threshold α)
1: Let S be the set of states picked so far, starting with
S $ ∅.

2: For all S ⊆ 1, let C(S) $ {i ∈ 1 : R
S({i})
wi

≥ α · Bj
W}.

3: While ∑
i∈S wi <W and C(S) '$ ∅:

a. Let i∗ be the item of C(S) for which pSi is max-
imized, breaking ties arbitrarily.

b. If ∑i∈S∪{i∗} wi <W, add i∗ to S.
c. Else return the highest revenue set among {i∗}

and S.
Return S.

Figure 2. A Tight Example for Algorithm 3
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Algorithm 5 (Algorithm for (Capacity-Assort) with Thresh-
old α)

1: Given an error parameter ε> 0, let J and {Bj}j∈[J]
be defined according to (4).

2: For j ∈ [J], let Sj be the solution returned by
Algorithm 4 with guess Bj and threshold α.

3: Return argmaxj∈[J]R(Sj).

5.2. Analysis
To analyze this algorithm, it is convenient to have a
technical claim similar to Lemma 10. By defining the
same sets Yt and Zt with respect to the optimal as-
sortment S∗ to (Capacity-Assort) and the adapted con-
sideration sets Ct, precisely the same lemma statement
holds. We, therefore, do not repeat this claim and its
proof as these are identical to those of Lemma 10.
The following theorem, whose proof is presented in
Appendix A.5, shows that the externality adjustment–
based algorithm gives a (1/3 − ε)-approximation for
(Capacity-Assort).

Theorem 4. For any ε> 0, Algorithm 5 computes a (1/3−
ε/3)-approximation for (Capacity-Assort). Moreover, the
running time is polynomial in the input size and 1/ε.

5.2.1. Tight Example. Theorem 4 shows that executing
Algorithm 4 with the true value of R(S∗) and threshold
α $ 2/3 as its inputs generates a 1/3-approximate so-
lution, which is the highest achievable worst-case ratio
for Algorithm 4 if we must fix a set of input parameters
a priori. Here we show that, for this guess of input
parameters, there exists an instance in which the ratio
approximation of 1/3 is tight.

Consider the instance given in Figure 3. For a capacity
bound of W $ 1, the optimal assortment is S∗ $ {b, c}
with R(S∗) $ 3/7. Initially, all items are in the consid-
eration set, and the algorithm picks item a, the highest-
price item. In the next step, no item can be added to the
assortment. The algorithm, therefore, returns S $ {a} be-
causeR({a})>R({d}) and yields a revenue of (1 + 2ε)/7 $
R(S∗)/3 +O(ε). When ε tends to zero, the approxima-
tion ratio tends to 1/3.

Similar to the cardinality-constrained setting, we
would like to note that Algorithm 4 is employed as a
subroutine ofAlgorithm5 for each of the guesses {Bj}j∈[J]
over which the best solution is returned. Therefore, the
practical performance bound of our algorithm is possi-
bly much better than 1/3 −O(ε) as we observed in our
computational study (see Section 7).

6. Hardness of Approximation
In this section, we present our hardness of approximation
results for the constrained assortment-optimization
problem under the Markov chain choice model.

6.1. APX-Hardness for a Cardinality Constraint with
Uniform Prices

We show that (Cardinality-Assort) is APX-hard; that is,
this problem is NP-hard to approximate within a given
constant, strictly smaller than one. In particular, we prove
this result even when all items have uniform prices.

Theorem 5. (Cardinality-Assort) is APX-hard even when
all items have equal prices.

Our proof, presented in Appendix A.6, is based on a
gap-preserving reduction from the minimum vertex
cover problem on three regular (or cubic) graphs. This
problem is known to be APX-hard (Alimonti and Kann
2000). In other words, for some constant α> 0, it is NP-
hard to determine whether the minimum-cardinality
vertex cover for a cubic graph is of size at most k or at
least (1 + α)k.

6.2. Totally Unimodular Constraints
We consider the assortment-optimization problem un-
der the Markov chain model for the more general
case of totally unimodular constraints. For an as-
sortment S ⊆ 1, let xS ∈ {0, 1}|1| denote its incidence
vector, where xSi $ 1 if i ∈ S and xSi $ 0 otherwise. The
assortment-optimization problem subject to a totally
unimodular constraint can be formulated as

max
S⊆1

R(S) : AxS ≤ b
{ }

, (TU-Assort)

where A is a totally unimodular matrix and b is an
integer vector. Note that (Cardinality-Assort) is a special
case of (TU-Assort). In AppendixA.7, we show that (TU-
Assort) for the Markov chain model is NP-hard to ap-
proximatewithin factorO(n1/2−ε) for any fixed ε> 0. This
result drastically contrasts that of Davis et al. (2013), who

Figure 3. A Tight Example for Algorithm 5
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proved that the assortment-optimization problem with
totally unimodular constraints can be solved in poly-
nomial time when consumers choose according to the
MNL model.

Theorem 6. It is NP-hard to approximate (TU-Assort) in
polynomial time within factor O(n1/2−ε) for any fixed ε> 0.

From a technical perspective, to establish our inap-
proximability results for (TU-Assort), we demonstrate
that totally unimodular constraints in the Markov chain
model capture the distribution-over-permutations model
as a special case. Aouad et al. (2018) show that even
unconstrained assortment optimization under a general
distribution-over-permutations (or rankings) model
is hard to approximate within factor O(n1−ε) for any
fixed ε> 0. In an instance of the latter model, we are
given a collection of items 1 $ {1, . . . ,n} with prices
p1 ≤ · · · ≤ pn, respectively. In addition, we are given
an arbitrary (known) distribution on K preference lists,
L1, . . . ,LK, each of which specifies a subset of the items
listed in decreasing order of preference. A customerwith
a given preference list selects the most preferred item
that is offered (possibly the no-purchase item) according
to the customer’s list. The goal is to find an assortment
whose expected revenue is maximized. Further details
are provided in Appendix A.7.

7. Computational Experiments
In this section, we present an extensive computational
study to evaluate the performance of our algorithms for
the cardinality- and capacity-constrained assortment-
optimization problems under the Markov chain choice
model. In particular, we focus in Section 7.1 on test-
ing (i) the practical performance of our algorithm
with respect to its theoretical worst-case guarantee and
(ii) the running time of this algorithm. In Section 7.2,
we conduct experiments in settings in which the in-
stance parameters can be correlated to better under-
stand which factors can potentially cause the practical
performance of our algorithms to deteriorate. In Sec-
tion 7.3, we present numerical experiments to show-
case the benefits of using a Markov chain model over
a simpler MNL model. In each of these settings,
to evaluate the quality of the solution returned by
our algorithms, we propose a MIP formulation for
(Cardinality-Assort), whose specifics are provided in
Online Appendix A.

7.1. Practical Performance and Running Time
7.1.1. Settings Tested. We begin by describing the
families of random instances being tested in our com-
putational experiments. Here, each item’s price pi is
uniformly distributed over the interval [0, 1]. Note that
because we present statistics regarding approximation
factors, any constant here will give identical results,
so the choice of one is arbitrary. For each instance, we

compute the optimal unconstrained assortment U∗

using the LP given by Blanchet et al. (2016). We then
choose the cardinality constraint k uniformly between
one and |U∗|/2. For the transition probabilities ρij and
the arrival rates λi, we test our algorithm on three
different settings:

1. We generate n2 independent random variablesXij,
each picked uniformly over the interval [0, 1]. We then
set ρij $ Xij/

∑n
k$0 Xik for all i, j such that i '$ j. Because

we do not allow self-loops (i.e. ρii $ 0), the number of
random variables needed is n2. For the arrival rates, we
then generate n independent random variables Yi, each
picked uniformly over the interval [0, 1], and set λi $
Yi/

∑n
j$1 Yj for all i '$ 0.

2. In this setting, we sparsify the transition matrix of
setting 1. More precisely, we additionally generate n2
independent random variables Zij, each following a
Bernoulli distribution with parameter 0.2. For all i, j
such that i '$ j, we set ρij $ ZijXij/

∑n
k$0 ZikXik, where Xij

are generated as in setting 1. This is equivalent to
eliminating each transition (i, j)with probability 0.8 and
then renormalizing. The arrival rates are generated
similarly to setting 1.

3. The transitionmatrix here is one of a randomwalk.
More precisely, we generate n2 independent random
variables Xij, each following a Bernoulli distribution
with parameter 0.5. We then set ρij $ Xij/

∑n
j$0 Xij for all

i, j such that i '$ j. We also generate n random variables
Yi, each following a Bernoulli distribution with param-
eter 0.5 and set λi $ Yi/

∑n
j$1 Yj for all i '$ 0.

7.1.2. Results and Discussion. We examine how our
algorithm performs in terms of both approximation
and running time. Table 1 shows the approximation
ratio of Algorithm 3 (with ε $ 0.1) for the different
settings and the different values of n. We use the MIP
formulation proposed in Online Appendix A to com-
pute the optimal assortment. As can be observed, the
actual performance of our algorithm is significantly
better than its theoretical worst-case guarantee. Indeed,
in all settings tested, the average approximation ratio is
always above 0.97. Moreover, the worst approximation
ratio over all instances is above 0.77.
The running time of our algorithm also scales nicely.

Table 2 shows the performance of Algorithm 3 in terms
of running time for setting 2. For the other settings,
the running times are very similar and are, therefore,
omitted. On the other hand, although the MIP running
time can be competitive in some cases, it blows up
when the number of items n increases (see Table 2).
Note that 12 out of the 100 instances tested for n $ 100
had a MIP running time of at least 30 minutes. For
n $ 200, we set a time limit of two hours for the MIP.
Out of the 20 random instances generated, 16 reached
the time limit without terminating. These numerical ex-
periments suggest that Algorithm 3 is computationally

Désir et al.: Constrained Assortment Optimization for the Markov Chain Model
712 Management Science, 2020, vol. 66, no. 2, pp. 698–721, © 2019 INFORMS



efficient and that its numerical performance is signif-
icantly better than the theoretical worst-case guarantee.
We would like to note that the mixed integer program-
ming formulation (A.3) for the constrained assortment-
optimization problem has a large integrality gap, and
therefore, the corresponding LP relaxation is very weak,
which explains the large running times as we increase
the number of items. It is an interesting open question to
develop a formulation with a small integrality gap for
our problem.

We also test Algorithm 5 for (Capacity-Assort). To this
end, we draw each item’s weight wi uniformly over the
interval [0,1] and choose the capacity constraint W
uniformly over [2 ·mini wi,w(U∗)], where w(U∗) de-
notes the weight of the optimal unconstrained assort-
ment. In Table 3, we report the empirical performance
guarantee of Algorithm 5 for the three settings tested.
As in the cardinality-constrained case, the numerical
performance is significantly better than the theoretical
worst-case guarantee. In particular, the ratio between
the expected revenue computed by our algorithm and
the optimal revenue is roughly 0.98, on average, and
at least 0.74 over all instances tested; both are signif-
icantly better than the worst-case bound of 1/3 − ε.
We also report the running time of our algorithm in
Table 4. Again, our numerical experiments suggest
that Algorithm 5 is also computationally efficient and
significantly outperforms the theoretical worst-case
guarantees.

These results are encouraging as they show that the
average performance of our algorithms far exceeds their

theoretical worst-case guarantee. In the next section,
inspired by the bad example described in Figure 2, we
explore instances whose parameters are correlated. In
particular, we show that when the correlation is high
and the size of the constraint is moderate, the perfor-
mance of our algorithm slightly degrades.

7.2. Performance on Correlated Instances
The previous section highlights the very appealing
performance of our algorithms when the problem pa-
rameters are generated independently. Moreover, their
running times nicely scalewith the number of items n. In
this section, we further investigate which factors can
potentially cause our algorithms to perform worse. For
this purpose, we fix the number of items at n $ 30 and
consider a family of cardinality-constrained instances
whose parameters are correlated.

7.2.1. Settings Tested. We generate the parameters of
our random instances as follows.
• Prices: We generate n independent random vari-

ables Yi, each picked uniformly over the interval [0, 1].
We denote by Y(i) the ith smallest realized value and set
pi $ Y(i) for i ∈ [n].
• Transition probabilities: We generate independent

random variables Xij for i '$ j, each picked uniformly
over the interval [0, 1]. Further, we generate indepen-
dent random variables Zij for i '$ j and j '$ 0, each fol-
lowing a Bernoulli distribution with parameter µ if
i> j and with 1 − µ if i< j. We then set ρij $ ZijXij/∑n

k$0 XikZik for all i, j such that i '$ j.

Table 1. Performance of Algorithm 3 for (Cardinality-Assort)

Approximation ratio Number of instances within x% of OPT

Setting n Average Minimum 2% 5% 10% 20% Number of instances

1 30 0.9783 0.7771 664 812 972 998 1,000
2 30 0.9784 0.7734 662 858 956 995 1,000
3 30 0.9830 0.7693 708 884 976 998 1,000
1 60 0.9803 0.8671 622 838 997 1,000 1,000
2 60 0.9796 0.8094 621 888 982 1,000 1,000
3 60 0.9854 0.8885 693 941 998 1,000 1,000
1 100 0.9763 0.9132 52 79 100 100 100
2 100 0.9782 0.8882 59 91 99 100 100
3 100 0.9848 0.9142 70 97 100 100 100

Table 2. Running Time of Algorithm 3 and the MIP for Setting 2

Average running time Maximum running time

n Algorithm 3 MIP Algorithm 3 MIP Number of instances

30 0.18 0.17 0.67 0.25 1,000
60 0.74 0.67 1.25 29.34 1,000
100 3.18 278.20 9.16 10,226.98 100
200 31.98 ** 47.38 ** 20

Note. We use “**” to denote cases hitting the time limit of two hours for n $ 200.
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• Arrival rates: We generate n independent random
variables Wi, each picked uniformly over the interval
[0, 1], and set λi $ Wi/

∑n
j$1 Wj for all i '$ 0.

It is worth noting that the parameter µ captures
certain correlation between the generated parameters.
Indeed, because the prices are ordered, the only al-
lowed transitions are toward cheaper (respectively,
more expensive) items when µ $ 1 (respectively, µ $ 0).
For each instance, we compute the optimal uncon-
strained assortment U∗ and choose a cardinality con-
straint k uniformly between one and |U∗|. Letting ρ $
k/|U∗|, this parameter represents the relative size of the
constraint with respect to the size of the optimal un-
constrained assortment. Intuitively, the problem is ex-
pected to be harder for moderate values of ρ. Indeed,
when ρ $ 1, the optimal unconstrained assortment is
also optimal for the constrained problem;when ρ is very
small, the number of feasible assortments is small as
well. For each value of µ ∈ {0, 0.1, . . . , 1}, we generate
10,000 random instances and report the average and
minimum approximation ratio of Algorithm 3 (with
ε $ 0.5) as a function of ρ.

7.2.2. Results and Discussion. Figure 4 reports the
results of these experiments via a heat map. The con-
straint size parameter ρ varies along the x-axis and the
correlation parameter µ along the y-axis. As hinted by
the worst-case example in Figure 2, the average per-
formance of our algorithm indeed depends on the
correlation present in the instance. We observe that the
average performance degrades when µ is close to zero

or one. Additionally, one can notice that the perfor-
mance worsens for moderate values to ρ. In particular,
the worst parameter combinations for our algorithm
occurs at (ρ, µ) ∈ {(0.5, 1), (0.5, 0)}, that is, preciselywhen
there is a strong correlation and when the relative
size of the constraint is moderate. In this regime,
the average approximation ratio can decrease down
to 93.5% from up to 97% for other combinations of the
parameters.
Perhaps more surprisingly, the minimum approxi-

mation ratio occurs in a different regime. As shown in
Figure 4(b), we incur the worst minimum approxi-
mation ratio when ρ is very small, that is, when the
constraint is relatively small. In those cases, because
our algorithm can only pick a small number of items, a
bad choice can potentially lead to significant losses
in revenue. That said, a simple search over the feasible
assortments would be sufficient to identify the optimal
assortment. These results highlight some of the factors
that can drive down the performance of our algorithm.

7.3. Comparison Between the Markov Chain and
MNL Models

In this section, we aim to better understand the value of
utilizing the Markov chain model in comparison with
a simpler option, such as an MNL model. Although,
Blanchet et al. (2016) show that the Markov chain model
generalizes MNL, this question is particularly interest-
ing in our setting given that the constrained assortment
problem can be solved exactly under anMNLmodel but
only approximately under a Markov chain model. It is,

Table 3. Performance of Algorithm 5 for (Capacity-Assort)

Approximation ratio
Number of instances
within x% of OPT

Setting n Average Minimum 2% 5% 10% 20% Number of instances

1 30 0.9854 0.7447 814 926 965 993 1,000
2 30 0.9833 0.7828 776 890 963 995 1,000
3 30 0.9850 0.7668 801 902 969 999 1,000
1 60 0.9870 0.7587 836 930 973 996 1,000
2 60 0.9844 0.8091 772 900 981 1,000 1,000
3 60 0.9847 0.7321 775 913 974 998 1,000
1 100 0.9917 0.8868 88 97 98 100 100
2 100 0.9852 0.8966 77 92 99 100 100
3 100 0.9851 0.8892 74 91 99 100 100

Table 4. Running Time of Algorithm 5 and the MIP for Setting 2

Average running time Maximum running time

n Algorithm 5 MIP Algorithm 5 MIP Number of instances

30 0.36 1.23 0.03 0.09 1,000
60 2.69 6.86 0.18 1.99 1,000
100 9.33 17.97 2.54 101.14 100
200 46.59 69.21 463.72 2,275.52 20
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therefore, unclear a priori whether using the Markov
chain model, the more complex option, is advantageous
in this setting.

To conduct our experiments, we use a mixture-of-
MNLmodel [which can approximate any randomutility
model (McFadden and Train 2000)] as a ground truth
model and evaluate the quality of the assortments re-
turned when employing an MNL model or a Markov
chainmodel as an approximation. It isworth emphasizing
that we focus here on the performance of the assortment
optimization algorithm and not on the prediction per-
formance or on the estimation procedure itself. Both of
these questions have been considered in previous litera-
ture (Blanchet et al. 2016, Feldman and Topaloglu 2017a,
Simsek and Topaloglu 2017).

7.3.1. Settings Tested. In a mixture-of-MNL model,
each item i (including the no-purchase option) has K
utility parameters, ui,k, one for each class k $ 1, . . . ,K.
We are also given probabilities θk for each class k that
represents the fraction of customers belonging to that
particular class. For any given assortment S, each item
i ∈ S is picked with probability

πtruth(i,S) $
∑K

k$1
θk ·

ui,k
u0,k +

∑
j∈S uj,k

.

To generate the mixture-of-MNL parameters, similar to
Feldman and Topaloglu (2017a), we assume that there
is an intrinsic correlation between the quality of an item
and its price. In particular, we generate n independent
random numbers Vi uniformly in [0, 1] and let pi $ V(i)
for i ∈ [n], where V(i) is the ith smallest generated
number. For the utilities, we generate n independent

random number Ui uniformly in [0, 1]. We also select,
for each class k, two integers 1 ≤ %k ≤ Lk ≤ K and set

ui,k $
U(i), if 1 ≤ %k ≤ i ≤ Lk
1, if i $ 0
0, otherwise,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

where U(i) denotes the ith smallest generated number.
For a given k, we generate the pair (%k,Lk) by first
sampling %k uniformly in [1,n] and then Lk uniformly in
[%k,n]. Note that we normalize the no-purchase utility
to one in all classes. To make sure that each item has a
nonzero probability of being purchased, we assume
that %1 $ 1 and L1 $ n. This choice models a situation in
which each class of customers has a maximal threshold
on prices and a minimal threshold on quality and re-
sembles the consideration sets considered by Aouad
et al. (2015). The probabilities θk are generated uni-
formly at random in [0, 1] and are normalized to have
a sum of one. To generate the cardinality constraint k,
we compute the optimal unconstrained assortment U∗

under the ground-truth model and set k to be a random
integer uniformly in [|U∗|/2]. We mention in passing
that even the unconstrained assortment optimization
problem is NP-hard under a mixture of MNL model
(Rusmevichientong et al. 2014). However, the latter
problem admits an MIP formulation (see, for instance,
Méndez-Dı́az et al. 2014).
For every generated ground-truth instance, the

revenue of any assortment under the true underlying
model can be computed as

Rtruth(S) $
∑

i∈S
pi · πtruth(i,S).

Figure 4. (Color online) Average and Minimum Approximation Ratio of Algorithm 5 as a Function of the Relative Size of the
Constraint ρ (x-Axis) and the Correlation Parameter µ (y-Axis)

(b)(a)
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We compare Rtruth(SMNL) and Rtruth(SMC), where SMNL

(respectively, SMC) is the assortment obtained using an
MNL (respectively, Markov chain) approximation. More
precisely, to obtain SMNL, we solve (Cardinality-Assort)
assuming the underlying model is an MNL model, in
which each utility parameter is set to its expected
value; that is, for each item i, we let ûi $ ∑

k θk · ui,k.
Note that the optimal constrained assortment SMNL can be
computed via linear programming (Davis et al. 2013).
To obtain SMC, we solve (Cardinality-Assort) using Algo-
rithm 3 (with ε $ 0.5), assuming the underlying model is
a Markov chain model, whose parameters are obtained
using the procedure proposed by Blanchet et al. (2016).
Even though the Markov chain model generalizes
MNL, it is unclear a priori whether wewould indeed get
Rtruth(SMC) ≥ Rtruth(SMNL) because of solving theMarkov
chain model in an approximate way.

7.3.2. Results and Discussion. Table 5 reports the
average, minimum, andmaximum performance of SMC

over SMNL over 1,000 randomly generated instances.
More precisely, for each set of parameters (n,K), we
compute the average, minimum, and maximum value
of Rtruth(SMC)/Rtruth(SMNL). We also report in the
last column the percentage of instances in which
Rtruth(SMC) ≥ Rtruth(SMNL).

We observe that, for a wide range of parameters, the
Markov chain model outperforms the MNLmodel. This
dominance is exhibited despite the fact that SMC is
computed using Algorithm 3, meaning that it is an
approximate solution to (Cardinality-Assort) under the
Markov chainmodel. On average, using aMarkov chain
model increases the revenue by more than 12% in all
settings tested and up to 50% on average for n $ 60 and
K $ 10. The increase can be as substantial as 1,200% in
the best case; that is, there is at least one instance for
which the gap is as wide. Looking more deeply at the
results, the Markov chain model outperforms the MNL
model in 60%–80% of the instances for all sets of pa-
rameters but one. Finally, the performance gap between
the twomodels widens as the number of classes K in the
ground truth increases. This confirms our intuition that
MNL is a fair approximation for mixture-of-MNL when

the number of mixtures is small. However, as K in-
creases, MNL can no longer approximate the hetero-
geneity of the utility parameters as well as the Markov
Chain model can.
From a computational efficiency perspective, as n and

K increase, the running time of our algorithm out-
performs the one needed to solve the MIP under the
mixture-of-MNL model. In Table 6, we present the
average and maximum tMIP/tALG ratios, where tMIP
and tALG are the running times (in seconds) incurred by
theMIP andAlgorithm3, respectively. For k ∈ {5, 10, 15},
this performance measure is taken over 1,000 instances,
and for k $ 20 over only 50 instances (because of sig-
nificantly high running times), with n $ 100 items in
all cases. As can easily be observed, the time needed
to solve the latter MIP (ground-truth model) can be
as much as eight times slower, on average, for K $ 15
and as much as several thousand times slower in the
worst case for K $ 15. These results suggest that the
Markov chain model not only outperforms a simpler
model, such as MNL, in terms of expected revenue but
also provides a more tractable alternative (in terms of
running time) over a more complex model, such as a
mixture of MNL.

8. Conclusions
In this paper, we consider the cardinality- and capacity-
constrained assortment-optimization problems under
the Markov chain model. We prove that this problem is
APX-hard even when all item prices are uniform. We
present a (1/2 − ε)-approximation for the cardinality-
constrained assortment-optimization problem and a
(1/3 − ε)-approximation for the capacity-constrained
version. Our algorithmic approach is based on a new
externality-adjustment paradigm that allows us to ex-
actly capture the externality of adding an item to any
given assortment on the remaining set of items. This
approach enables us to linearize the revenue function,
which is generally nonlinear, nonmonotone, and non-
submodular. Our overall framework also provides new
insights toward the optimal stopping problem aswell as
for assortment optimization in additional models such
as MNL.
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Table 5. Performance of the Markov Chain Model Against
the MNL Model for (Cardinality-Assort)

Rtruth(SMC)/Rtruth(SMNL)

n K Average Minimum Maximum MC ≥ MNL

30 5 1.121 0.658 5.494 79.9%
30 10 1.160 0.615 4.314 81.1%
60 5 1.126 0.816 10.538 60.3%
60 10 1.529 0.799 12.096 83.5%
100 5 1.163 0.782 22.756 47.9%
100 10 1.728 0.790 17.097 62.5%
100 15 1.809 0.734 14.212 83.8%

Table 6. Running Time Comparison Between Algorithm 3
and the MIP for Mixture of MNL

tMIP/tALG

K Average Maximum

5 0.33 6.08
10 0.89 21.24
15 8.39 3,629.47
20 35.20 696.75
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Appendix A. Additional Proofs
A.1. Proof of Lemma 1
Let us consider the following example with three items; that
is, 1 $ {1, 2, 3}.

• Prices: p1 $ 1, p2 $ 1/2, p3 $ 1.
• Arrival probabilities: λ1 $ 1, λ2 $ λ3 $ 0.
• Transition probabilities: ρ1,2 $ 1, ρ2,3 $ 1, ρ3,0 $ 1, and

all other unspecified transition probabilities are zero.
Now consider S $ {3} and T $ {2, 3}. Then, R(S ∪ {2}) $

1/2< 1 $ R(S), meaning that the revenue function is not
monotone. Furthermore, R(T ∪ {1}) − R(T) $ 1/2 and R(S ∪
{1})− R(S) $ 0. Therefore, this example illustrates that the
revenue function is not submodular as well.

A.2. Proof of Lemma 2
We prove the desired result in two steps. We first show that
the incremental greedy algorithm guarantees a 1/k-approxi-
mation for (Cardinality-Assort) We then exhibit an instance in
which incremental greedy obtains only an 1/k-fraction of the
optimal revenue, thus completing the proof.

Step 1. Approximation guarantee. The fact that the incre-
mental greedy algorithm guarantees a 1/k-approximation for
(Cardinality-Assort) is an immediate corollary of the following
(more general) claim. Let Sg be the solution returned by the
incremental greedy algorithm, and let S be any subset of states.
Then, R(Sg) ≥ R(S)/|S|. To prove this claim, recall that the
incremental greedy algorithm iteratively builds the assort-
ment, and in each iteration, it adds the item that increases the
expected revenue by themost. Let j be the first item selected by
the algorithm, which necessarily exists as long as there is an
item i with pi > 0. Then, by definition of the greedy algorithm,
we have R({ j}) ≥ R({i}) for every item i ∈ S. Therefore,

R(Sg) ≥ R({ j}) ≥ 1
|S| ·

∑

i∈S
R({i}) ≥ R(S)

|S| ,

where the last inequality follows from the subadditivity of the
revenue function (see Lemma 8).

Step 2. Bad example. Consider the following instance of
(Cardinality-Assort) with n $ k + 1 items, where k is the upper
bound specified by the cardinality constraint. We have a state
s and states i $ 0, . . . , k. The arrival rates are all equal to zero,
except for λs $ 1. Moreover,

pi $
(1/k) + ε, if i $ s

1, if i $ 1, . . . , k,

{

ρij $
1/k, if i $ s and j $ 1, . . . , k
1, if i $ 1, . . . , k and j $ 0
0, otherwise,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

where ε ≤ 1/(2k). Figure A.1 provides a graphical represen-
tation of this instance.

The incremental greedy algorithm first picks item s as
R({s}) $ (1/k) + ε, and R({i}) $ 1/k for i $ 1, . . . k. Once s is
selected, adding any other state cannot increase the revenue.
Therefore, the greedy algorithm gives a revenue of (1/k) + ε.
However, the optimal solution is to offer item 1 to k with a
revenue of one in total. When ε tends to zero, the approxi-
mation ratio goes to 1/k.

A.3. Proof of Lemma 3
Step 1. Approximation guarantee. Let Smg be the set of states
selected by the modified greedy algorithm. Note that, for
every i ∈ Smg, we have that P(i ≺ Smg

+ \{i}) ≥ P(i ≺ U∗
+\{i})

because Smg is a subset of U∗. Thus,

R(Smg) $
∑

i∈Smg

P(i ≺ Smg
+ \{i})pi

≥
∑

i∈Smg

P(i ≺ U∗
+\{i})pi

≥ k
|U∗| ·

∑

i∈U∗
P(i ≺ U∗

+\{i})pi

$ k
|U∗| · R(U

∗)

≥ k
n
· R(S∗),

where S∗ is the optimal solution to (Cardinality-Assort). Here,
the second inequality holds because of picking the top k states
in terms of P(i ≺ U∗

+\{i}) · pi values. The last inequality holds
because the optimal unconstrained revenue provides an
upper bound on the optimal revenue in the constrained case.

Step 2. Bad example. We present an example in which the
revenue of every subset of k items within the optimal solution
U∗ is a factor k/n away from optimal. Consider the following
instance of the problemwith n + 2 items (or states). We have a
state s, states i $ 1, . . . , n, and state 0 corresponding to the no-
purchase option. The arrival rates are all equal to zero except
for λs $ 1. Moreover,

pi $
1 − ε, if i $ s

1, if i $ 1, . . . ,n,

{

ρij $
1/n, if i $ s and j $ 1, . . . , n
1, if i $ 1, . . . ,n and j $ 0
0, otherwise.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Figure A.2 provides a graphical representation of this instance.

Figure A.1. A Bad Example for the Incremental Greedy
Algorithm
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For this example, the unconstrained optimal assortment is
U∗ $ {1, . . . , n}, and the modified greedy algorithm on U∗

selects k items among U∗, meaning that a total revenue of k/n
is obtained. However, the optimal solution of the constrained
problem is to only offer item s, which gives a revenue of 1 − ε.
As ε tends to zero, the approximation ratio goes to k/n.

A.4. Proof of Lemma 5
To verify that (pS1i )S2 $ pS1∪S2i for all S1, S2 and i /∈ S1 ∪ S2, note
that

(pS1i )S2 $ pS1i −
∑

j∈S2
PS1
i ( j ≺ S2+\{ j})pS1j

$ pi −
∑

l∈S1
Pi(l ≺ S1+\{l})pl

⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟
A

−
∑

j∈S2
PS1
i ( j ≺ S2+\{ j})pS1j

⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟
B

.

Using the definition of the updated prices,

B $
∑

j∈S2
PS1
i ( j ≺ S2+\{ j})pj

−
∑

j∈S2
PS1
i ( j ≺ S2+\{ j})

∑

l∈S1
Pj(l ≺ S1+\{l})pl

$
∑

j∈S2
Pi( j ≺ (S2 ∪ S1)+\{ j})pj

−
∑

j∈S2
PS1
i ( j ≺ S2+\{ j})

∑

l∈S1
Pj(l ≺ S1+\{l})pl

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
C

.

We can now combine A and C,

A − C $
∑

l∈S1

(
Pi(l ≺ S1+\{l})

−
∑

j∈S2
Pi( j ≺ (S2 ∪ S1)+\{ j})Pj(l ≺ S1+\{l})

)
pl

$
∑

l∈S1
Pi(l ≺ S1+\{l}) − Pi(S2 ≺ l ≺ S1+\{l})( )pl

$
∑

l∈S1
Pi(l ≺ (S2 ∪ S1)+\{ j})pl.

Putting everything together, we get

(pS1i )S2 $ pi −
∑

j∈(S2∪S1)
Pi( j ≺ (S2 ∪ S1)+\{j})pj $ pS1∪S2i .

A.5. Proof of Theorem 4
Given an error parameter ε> 0, let j∗ be the unique integer for
which R(S∗)

1+ε ≤ Bj∗ ≤ R(S∗). Letting B $ Bj∗ , consider the solution
returned by Algorithm 4 with guess B and threshold α. We
consider two cases based on the condition by which the al-
gorithm terminates. Let t′ be the step at which the algorithm
terminates.

1. Suppose we stop the algorithm because adding the item
σt′ violates the capacity constraint; that is,

∑t′
t$1 wσt >W. In this

case, we return either St′−1 or {σt′}, depending on which of
these sets has a larger revenue. We argue that this choice
guarantees a revenue of at least αR(S∗)/2 because

max R(St′−1),R({σt′}){ } ≥ max
∑t′−1

t$1
RSt ({σt}),RSt′−1 ({σt′})

{ }

≥ max α
B
W

∑t′−1

t$1
wσt ,α

B
W

wσt′

{ }

$ α
B
W

·max
∑t′−1

t$1
wσt ,wσt′

{ }

≥ α
B
2

≥ α · R(S∗)
2(1 + ε)

≥ (1 − ε)α · R(S
∗)

2
,

where the third inequality holds because max{∑t′−1
t$1 wσt ,wσt′} ≥

W/2 and the fourth inequality follows as B ≥ R(S∗)/(1 + ε).
2. Suppose the algorithm terminates because Ct′+1 $ ∅.

Using Lemma 10 adapted to the capacitated case, we have

R(St′ ) + RSt′ (Zt′+1) ≥ R(S∗) −
∑t′+1

j$1
RSj−1 (Y+

j ).

Because Ct′+1 $ ∅, this implies that Zt′+1 $ ∅. Moreover, from
Lemma 8, for all j $ 1, . . . , t′ + 1, we have

RSj−1 (Y+
j )<αB ·

∑
i∈Y+

j
wi

W
.

Because our algorithm stopped prior to reaching the ca-
pacity constraint, we have ∑t′+1

j$1
∑

i∈Y+
j
wi ≤ W. Consequently,

∑t′+1
j$1 RSj−1 (Y+

j )<αB ≤ αR(S∗), and therefore,

R(St′ ) ≥ R(S∗) − αR(S∗) $ (1 − α)R(S∗).

As a result, the approximation ratio attained by our algo-
rithm is min{(1 − ε) α2 , 1 − α}. By setting α $ 2/3, we obtain an
approximation factor of 1/3 − ε/3. From a running time per-
spective, Algorithm 5 considers J $ O(1ε log n) guesses of R(S∗).
Each run of Algorithm 4 for a given guess terminates in
polynomial time. Therefore, the overall running time of
Algorithm 5 is polynomial in the input size and 1/ε.

A.6. Proof of Theorem 5
Our proof is based on a gap-preserving reduction from the
minimum vertex cover problem on three regular (or cubic)

Figure A.2. A Bad Example for the Modified Greedy
Algorithm
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graphs to which we refer as VCC. This problem is known to
be APX-hard (Alimonti and Kann 2000). In other words, for
some constant α> 0, it is NP-hard to determine whether the
minimum-cardinality vertex cover for a cubic graph is of size
at most k or at least (1 + α)k.

Consider an instance ( of VCC, consisting of a cubic graph
G $ (V,E) on n vertices V $ {v1, . . . , vn}. We can assume that
k> |E|/3, or otherwise, the distinction between the two cases is
easy. We construct an instance}(() of (Cardinality-Assort) as
follows. Each vertex vi ∈ V corresponds to an item i of 1. In
addition, we also have the no-purchase item 0. For each vertex
v ∈ V, let N(v) denote the neighborhood of v in G; that is,
N(v) $ {u : (u, v) ∈ E}, consisting of exactly three vertices. Now,
for all (i, j) ∈ 1 ×1+ the transition probabilities are defined as

ρij $ 1/4, if vj ∈ N(vi) or j $ 0
0, otherwise.

{

Finally, for all items i ∈ 1, we have an arrival rate ofλi $ 1/n and
a price of pi $ 1. Out of these items, at most k can be selected.

The goal in VCC is to choose a minimum-cardinality set of
vertices such that every edge is incident to at least one of the
chosen vertices. Let U∗ ⊆ V be a minimum vertex cover in G.
We show that the optimal assortment for the instance }(()
satisfies the following properties:

a. R(S∗) ≥ 3
4 + k

4n when |U∗| ≤ k.
b. R(S∗) ≤ 3

4 + k
4n − α

16 when |U∗| ≥ (1 + α)k.
This implies that (Cardinality-Assort) cannot be approxi-

mated within a factor larger than 1 − α
16 unless P $ NP. To see

this, note that the ratio between 3
4 + k

4n − α
16 and 3

4 + k
4n is

monotone-increasing in k, meaning that the maximum value
attained is 1 − α

16.
Case (a). |U∗| ≤ k. In this case, we can augment U∗ with k −

|U∗| additional vertices chosen arbitrarily from V \U∗ and
obtain a (not necessarily minimum) vertex cover U with
|U| $ k. Now, consider the assortment S $ {i : vi ∈ U}, which
is indeed a feasible solution. Because all prices are equal to
one, we can write the expected revenue of this set as

R(S) $ P(S ≺ 0) $
∑

i∈S
λi +

∑

i/∈S
λiPi(S ≺ 0) $ k

n
+ 1
n
∑

i/∈S
Pi(S ≺ 0).

(A.1)

When starting at any state i /∈ S, the Markov chain moves to
zero with probability 1/4 and gets absorbed.With probability
3/4, the Markov chain moves from i to one of the vertices in
N(i). Because U is a vertex cover, it follows that N(i) ⊆ S.
Therefore, Pi(S ≺ 0) $ 3/4 for all i /∈ S. Based on these ob-
servations, for the optimal assortment S∗ we have

R(S∗) ≥ R(S) $ k
n
+ 3(n − k)

4n
$ 3
4
+ k
4n

.

Case (b). |U∗| ≥ (1 + α)k. Let S be some assortment con-
sisting of k items. In this case, Equation (A.1) is still a valid
decomposition of R(S), and we need to consider two cases for
items i /∈ S. If N(i) ⊆ S, then Pi(S ≺ 0) $ 3/4 as in Case (a).
However, when N(i)?S, there exists j ∈ N(i) such that j /∈ S.
Therefore, there is a probability of 1/16 that, starting from i,
the Markov chain moves to j and from there to zero. Con-
sequently, for such items, Pi(S ≺ 0) ≤ 3

4 − |N(i)\S|
16 . Therefore,

R(S) $ k
n
+ 1
n

∑

i /∈S:N(i)⊆S

3
4
+ 1
n

∑

i /∈S:N(i)?S
Pi(S ≺ 0)

≤ 3
4
+ k
4n

− 1
16n

∑

i /∈S:N(i)?S
|N(i)\S|. (A.2)

To upper bound the latter term, let V(S) be the set of vertices
of V corresponding to S; that is, V(S) $ {vi : i ∈ S}. Let Ē(S)
be the set of edges that are not covered by V(S). We have
2 · |Ē(S)| $ ∑

i/∈S:N(i)?S |N(i)\S|. The important observation is
that |Ē(S)| ≥ αk. Otherwise,V(S) can be augmented to a vertex
cover via the addition of fewer than αk vertices, contradicting
|U∗| ≥ (1 + α)k. Now,

|Ē(S)| ≥ αk ≥ α
3
· |E| $ αn

2
,

where the second inequality follows from k> |E|/3 and the
last equality holds because |E| $ 3n/2 as G is cubic. By in-
equality (A.2), we have

R(S) ≤ 3
4
+ k
4n

− |Ē(S)|
8n

≤ 3
4
+ k
4n

− α
16

.

Because the above upper bound on R(S) holds for any as-
sortment S of k items, this must also be true for themaximum-
revenue one, S∗.

Figure A.3. Sketch of Our Construction for an Instance of Four Items, in Which L1 $ (1 1 2 1 3 1 4), L2 $ (1 1 3 1 4),
L3 $ (2 1 3), and L4 $ (1 1 2 1 4).

Note. Note, for example, that the state (2, 2) corresponds to the second item of L2, which is item 3.
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A.7. Proof of Theorem 6
Aouad et al. (2018) show that unconstrained assortment
optimization for the distribution-over-permutations model is
hard to approximate within factor O(n1−ε) for any fixed ε> 0
even when the number of preference lists is equal to the
number of items; that is, K $ n.

We consider an instance ( of the assortment-optimization
problem for the distribution-over-permutations model with
n preference lists: L1, . . . , Ln. We construct a corresponding
instance }(() of the assortment optimization problem un-
der the Markov chain model as follows. Each of the original
items in1 has a separate copy as a state in}(() for every list
that contains it. More precisely, for every list Li and for every
1 ≤ j ≤ |Li|, we have a state ( j, i) corresponding to the jth
most preferred item in Li. In addition, there is a state 0
corresponding to the no-purchase option. Therefore, the set
of states is

6 $ {0} ∪ {( j, i) : 1 ≤ i ≤ n, 1 ≤ j ≤ |Li|}.
The transition probabilities between these states are given by

ρ((j,i),s) $
1, if j< |Li| and s $ ( j + 1, i)
1, else if j $ |Li| and s $ 0
0, otherwise.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

In other words, for each list, there is a directed path (with
transition probabilities one) over its corresponding states in
decreasing order of preference, ending at the no-purchase
option. This construction is illustrated in Figure A.3, in which
each row corresponds to a list and each column correspond to
an item. Finally, the arrival rates are defined by

λ( j,i) $ ψi, if j $ 1
0, otherwise,

{

where ψi is the probability of list Li.
To obtain a one-to-one correspondence between the so-

lutions to ( and}((), it remains to ensure that, when item i is
offered in (, all of its corresponding copies (appearing in the
same column) are offered in }(() and vice versa. This re-
striction can be captured by the constraints x( j,i) $ x(k,%) for
every i, % ∈ {1, . . . , n} such that j ≤ |Li|, k ≤ |L% |, and such that
the jth item in Li is the kth item in L%. This way, we guarantee
that each column is either completely picked or completely
unpicked in the instance }((). The resulting set of inequal-
ities specifies a constraint matrix with a single appearance of
+1 and −1 in each row, and all other entries are zero. Such
matrices are well known to be totally unimodular (see, for
example, Schrijver 1986).

To complete the proof, note that the original instance (
consists of n items and n preference lists, and therefore, the
Markov chain instance }(() has O(n2) states. Because the
former problem is NP-hard to approximate within factor
O(n1−ε) for any fixed ε> 0, it follows that (TU-Assort) cannot
be efficiently approximated within O(n1/2−ε) unless P $ NP.

Appendix B. Application of Algorithm1 to theMNLModel
In the MNLmodel, we are given a collection of items, 1, . . . ,n,
along with the no-purchase option, which is designated as
item 0. Each item i has a utility parameter ui and a price pi.

Without loss of generality, we can assume that∑n
i$0 ui $ 1. For

any given assortment S, the choice probability of each item
i ∈ S is given by

π(i, S) $ ui
u0 +∑

%∈S u%
,

making the expected revenue

R(S) $
∑

i∈S

uipi
u0 +∑

%∈S u%
.

Blanchet et al. (2016) prove that the MNL choice model is a
special case of theMarkov chainmodel. More precisely, when
ρij $ uj for all j and λi $ ui for all i, the choice probabilities of
the two models are identical. In this special case, our exter-
nality adjustment updates can be written as

pSi $
0, if i ∈ S

pi −
∑

j∈S

ujpj
u0 +∑

%∈S u%
, otherwise.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Note that, in this update, the subtracted term is independent of
i. Therefore, the ordering of the prices does not change after each
update. Because we are picking the highest adjusted price item
at each step, it follows that the optimal assortment is nested by
price, that is, consists of the top % priced items, for some %. This is
a well-known structural property (see, for instance, Talluri and
van Ryzin 2004) that we recover here as a direct consequence
of our algorithm. Moreover, the updated prices provide a cri-
terion for when to stop adding items to the assortment.
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