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We consider an online assortment optimization problem, where in every round, the retailer offers a K-
cardinality subset (assortment) of N substitutable products to a consumer, and observes the response. We
model consumer choice behavior using the widely used multinomial logit (MNL) model, and consider the
retailer’s problem of dynamically learning the model parameters, while optimizing cumulative revenues
over the selling horizon T . Formulating this as a variant of a multi-armed bandit problem, we present an
algorithm based on the principle of “optimism in the face of uncertainty.” A naive MAB formulation would
treat each of the

(N
K

)
possible assortments as a distinct “arm,” leading to regret bounds that are exponential

in K. We show that by exploiting the specific characteristics of the MNL model it is possible to design an
algorithm with Õ(

√
NT ) regret, under a mild assumption. We also establish a lower bound, by showing that

any algorithm must incur a regret of Ω(
√

NT/K) for K < N . This establishes that the performance of our
algorithm is tight for constant K.
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1. INTRODUCTION AND PROBLEM FORMULATION
Consider an online planning problem over a discrete option space containing N dis-
tinct elements each ascribed with a certain value. At each time step the decision maker
needs to select a subset S ⊂ N , with cardinality |S| ≤ K, after which s/he observes a
response that is dependent on the nature of the elements contained in S. Thinking of
the N primitive elements as products, the subset S as an assortment, K as a display
constraint, and assuming a model that governs how consumers respond and substitute
among their choice of products (a so-called choice model), the set up is referred to in
the literature as an (dynamic) assortment optimization problem. Such problems have
their origin in retail, but have since been used in a variety of other application areas.
Roughly speaking, the typical objective in such problems is to determine the assort-
ment that maximizes a yield-related objective, involving the likelihood of an item in
the assortment being selected by a consumer and the value it creates for the retailer.
In settings where the consumer response and substitution patterns are not known a
priori and need to be inferred over the course of repeated (say, T ) interactions, the
problem involves a trade off between exploration (learning consumer preferences) and
exploitation (selecting the optimal assortment), and this variant of the problem is the
subject of the present paper. In particular, foreshadowing what is to come later, our
interest focuses on the complexity of the problem as measured primarily by the inter-
action between N and K (governing the static combinatorial nature of the problem)
and T (the problem horizon over which the aforementioned exploration and exploita-
tion objectives need to be suitably balanced).

To formally state the online assortment optimization problem, let us index the N
products described above by 1, 2, · · · , N and their values will be referred to henceforth
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as revenues, and denoted as r1, · · · , rN , respectively. Since the consumer need not select
any product in a given assortment, we model this “no purchase option” as an additional
product denoted “0” which augments the product index set. Let pi(S) be the probability,
specified by the underlying choice model that a consumer purchases product i when
assortment S is offered. Then the expected revenue corresponding to the assortment
S, R(S) is given by

R(S) =
∑
i∈S

ripi(S), (1)

and the corresponding static assortment optimization problem is

max
S∈S

R(S), (2)

where S is the set of feasible assortments, with the constraint

S = {S ⊂ {1, · · · , N} | |S| ≤ K} .
To complete the description of this problem, a choice model needs to be specified. The

Multinomial Logit model (MNL), owing primarily to its tractability, is the most widely
used choice model for assortment selection problems. (The model was introduced inde-
pendently by Luce [Luce 1959] and Plackett [Plackett 1975], see also [Ben-Akiva and
Lerman 1985; McFadden 1978; Train 2003; Wierenga 2008] for further discussion and
survey of other commonly used choice models.) Under this model the probability that
a consumer purchases product i when offered an assortment S ⊂ {1, · · · , N} is given
by,

pi(S) =


vi

v0 +
∑
j∈S vj

, if i ∈ S ∪ {0}

0, otherwise,
(3)

where vi is a parameter of the MNL model corresponding to product i. Without loss
of generality, we can assume that v0 = 1. It is also assumed that the MNL parameter
corresponding to any product is less than or equal to one, i.e. vi ≤ 1. This is assumption
is equivalent to claiming that the no purchase option is preferred to any other product
(an observation which holds in most realistic retail setting and certainly in online
display advertising). From (1) and (3), the expected revenue when assortment S is
offered is given by

R(S) =
∑
i∈S

ripi(S) =
∑
i∈S

rivi
1 +

∑
j∈S vj

. (4)

As alluded to above, many instances of assortment optimization problems commence
with very limited or even no a priori information about consumer preferences. Tradi-
tionally, due to production considerations, retailers used to forecast the uncertain de-
mand before the selling season starts and decide on an optimal assortment to be held
throughout. There are a growing number of industries like fast fashion and online dis-
play advertising where demand trends change constantly and new products (or adver-
tisements) can be introduced (or removed) from offered assortments in a fairly friction-
less manner. In such situations, it is possible (and in fact essential) to experiment by
offering different assortments and observing resulting purchases. Of course, gathering
more information on consumer choice in this manner reduces the time remaining to
exploit said information. Balancing this exploration-exploitation tradeoff is essential
for maximizing expected revenues over the planning horizon. To formalize this, con-
sider a time horizon T , where assortments can be offered at time periods t = 1, · · · , T .
If S∗ is the optimal assortment for (2), when the values of pi(S), as given by (3), are



known a priori, and the decision maker has chosen to offer S1, · · · , ST at times 1, · · · , T
respectively, then his/her objective would be to select a (non-anticipating) sequence of
assortments in a path-dependent manner (namely, based on observed responses) to
maximize cumulative expected revenues over said horizon, or alternatively, minimize
the regret defined as

Reg(T ) =

T∑
t=1

R(S∗)− E[R(St)], (5)

where R(S) is the expected revenue when assortment S is offered as defined in (1).
This exploration-exploitation problem, which we refer to as bandit-MNL, is the focus
of this paper.

Further discussion on the MNL choice model. McFadden [McFadden 1973] showed that
the multinomial logit model is based on a random utility model, where consumer’s
utilities for different products are independent Gumbel random variables and the con-
sumers prefer the product that maximizes their utility. In particular, the utility of a
product i is given by: Ui = µi + ξi, where µi ∈ R denotes the mean utility that the
consumer assigns to product i. ξ0, · · · , ξN are independent and identically distributed
random variables having a Gumbel distribution with location parameter 0 and scale
parameter 1. If we let µi = log vi, then the choice probabilities are given by the equa-
tion (3). Note that from equation (3), the probability of a consumer choosing product i
decreases if there is a product in the offer set with high mean utility and increases if
the products in the offer set with low mean utilities. Although, MNL is restricted by
the independence of irrelevant attributes (pi(S)/pj(S) is independent of S), the struc-
ture of choice probabilities (3) offers tractability in finding the optimal assortment and
estimating the parameters vi.

1.1. Our Contributions
Our main contributions are the following.

Parameter Independent Regret Bounds. We propose an online algorithm that ju-
diciously balances the exploration and exploitation trade-off intrinsic to our problem.
Under a mild assumption that no purchase outcome is the most frequent outcome,
our dynamic policy achieves a regret bound of O(

√
NT log T + N log3 T ); the bound

is non-asymptotic, the “big oh” notation is used for brevity. Subject to the aforemen-
tioned mild assumption, this regret bound is independent of the parameters of the
MNL choice model and hence holds uniformly over all problem instances. To the best
of our knowledge, this is the first policy to have a parameter independent regret bound
for the MNL choice model. It is also interesting to note that there is no dependence on
the cardinality constraint K, despite the combinatorial complexity that is dictated by
the relationship between N and K. Our algorithm is predicated on upper confidence
bound (UCB) type logic, originally developed in the context of the multi-armed bandit
(MAB) problem (cf. [Auer et al. 2002]); in this paper the UCB approach, also known
as optimism in the face of uncertainty, is customized to the assortment optimization
problem under the MNL model.

Lower Bounds and Optimality. We establish a non-asymptotic lower bound for the
online assortment optimization problem under the MNL model. In particular, we show
that any algorithm must incur a regret of Ω(

√
NT ). The bound is derived via a reduc-

tion of the online problem with the MNL model to a parametric multi-armed bandit
problem, for which such lower bounds are constructed by means of standard informa-
tion theoretic arguments. In particular, the lower bound constructs a “hard” instance



of the problem by considering arms with Bernoulli distributions that are barely dis-
tinguishable (from a hypothesis testing perspective), yet incur “high” regret for any
algorithm. The online algorithm discussed above matches this lower bound up to a
logarithmic (in T ) term, establishing the near optimality of our proposed algorithm.
Intuitively, a large K implies combinatorially more possibilities of assortments, but it
also allows the algorithm to learn more in every round since the algorithm observes
consumer’s response on K products (though the response for one product is not in-
dependent of other products in the offered assortment). Our upper and lower bounds
demonstrate that the two factors balance each other out, so that the optimal algorithm
can achieve regret bounds independent of the value of K.

Outline. We provide a literature review in Section 2. In Section 3, we present our
algorithm for the bandit-MNL problem, and in Section 4, we prove our main result
that this algorithm achieves an Õ(

√
NT ) regret upper bound. Section 5 demonstrates

the optimality of our regret bound by proving a matching lower bound of Ω(
√
NT ).

2. RELATED WORK

Static Assortment Optimization. The static assortment planning literature focuses
on finding an optimal assortment assuming that the information on consumer prefer-
ences is known a priori and does not change throughout the entire selling period. Static
assortment planning under various choice models has been studied extensively; [Kök
and Fisher 2007] provides a detailed review, below we cite representative work avoid-
ing an exhaustive survey. [Talluri and Van Ryzin 2004] consider the unconstrained
assortment planning problem under the MNL model and establish that the optimal
assortment can be obtained by a greedy algorithm, where products are added to the
optimal set in order of their revenues. In the constrained case, recent work, follow-
ing [Rusmevichientong et al. 2010] that treats the cardinality constrained problem,
provides polynomial time algorithms to find optimal (or near optimal) assortments un-
der the MNL model under capacity constraints ([Désir and Goyal 2014]) and totally
unimodular constraints ([Davis et al. 2013]). As alluded to earlier, there are many ex-
tensions and generalization of the MNL that are still tractable, including mixed logit,
nested logit and Markov chain based choice models; for some examples of work on
these approaches, as well as further references see [Blanchet et al. 2013], [Davis et al.
2011], [Gallego et al. 2015], and [Farias et al. 2012].
Dynamic Assortment Optimization. In most dynamic settings, either the infor-
mation on consumer preferences is not known, the demand trends (and substitution
patterns) evolve over the selling horizon, or there are inventory constraints that are
part of the “state” descriptor. The formulation and analysis of these problems tend to
differ markedly. The present paper focuses on the case of dynamically learning con-
sumer preferences (while jointly optimizing cumulative revenues), and therefore we
restrict attention to relevant literature to this problem. To the best of our knowledge,
[Caro and Gallien 2007] were the first to study the dynamic assortment planning under
model/parameter uncertainty. Their work focuses on an independent demand model,
where the demand for each product is not influenced by the demand for other products
(that is, absent substitution), and employ a Bayesian learning formulation to estimate
demand rates. Closer to the current paper is the work by [Rusmevichientong et al.
2010] and [Sauré and Zeevi 2013]. They consider a problem where the parameters
of an ambient choice model are unknown a priori (the former exclusively focusing on
MNL, the latter extending to more general Luce-type models). Both papers design al-
gorithms that separate estimation and optimization into separate batches sequentially
in time. Assuming that the optimal assortment and second best assortment are “well



separated,” their main results are essentially upper bounds on the regret which are
predicated in the observation that one can localize the optimal solution with high prob-
ability. In particular, in [Rusmevichientong et al. 2010] it is shown that O

(
CN2 log T

)
exploration batches are needed while in [Sauré and Zeevi 2013] O (CN log T ) explo-
rations are required to compute an optimal solution with probability at least Ω

(
1− 1

T

)
.

As indicated, this leads to regret bounds which are O(CN2 log T ) for [Rusmevichien-
tong et al. 2010], and O(CN log T ) in [Sauré and Zeevi 2013], for a constant C that
depends on the parameters of the MNL. The number of exploration batches in their ap-
proach specifically depend on the separability assumption and cannot be implemented
in practice without an estimate of C.

Relationship to MAB problems. A naive translation of the bandit-MNL problem
to an MAB-type setting would create

(
N
K

)
“arms” (one for each assortment of size K).

For an “arm” corresponding to subset S, the reward is give by R(S). One can apply a
standard UCB-type algorithm to this structure. Of course the non-empty intersection
of elements in these “arms” creates dependencies which are not being exploited by any
generic MAB algorithm that is predicated on the arms being independent. Perhaps
more importantly, this translation would naturally result in a bound that is combina-
torial in the leading constant. Our approach in this paper customizes a UCB-type algo-
rithm to the specifics of the assortment problem in a manner that creates a tractable
complexity, which is also shown to be best possible in the sense of the achieved regret.

A closely related setting is that of bandit submodular maximization under cardi-
nality constraints, see [Golovin and Krause 2012], where the revenue for set S is
given by a submodulnar function f(S). On offering subset S, the marginal benefit
f(Si)− f(Si−1) of each item i in S is observed, assuming the items of S were offered in
some order. Under K-cardinality constraint, the best available regret bounds for this
problem (in non-stochastic setting) are upper and lower bounds of O(K

√
NT log(N))

and Ω(
√
KT logN), respectively [Streeter and Golovin 2009]. Many special cases of the

submodular maximization problem have been considered for applications in learning
to rank documents in web search (e.g., see [Radlinski et al. 2008]).

In comparison, in the bandit-MNL problem considered in this paper, the reward
function R(S) for assortment S is not submodular – it only has a restricted submodu-
larity property [Aouad et al. 2015], where the submodularity property holds over sets
containing less than certain number of elements. We provide an algorithm with re-
gret upper bound of Õ(

√
NT ) for any K ≤ N , and present a matching lower bound of

Ω(
√
NT ), in stochastic setting.

Other related work includes limited feedback settings where on offering S, only f(S)
is observed by the algorithm, and not individual feedback for arms in S. For example,
in [Hazan and Kale 2012], f(S) is submodular, and in linear bandit problem [Auer
2003], f(S) is a linear function. There, due to limited feedback, the available regret
guarantees are much worse, and depend linearly on (dimension) N .

3. ALGORITHM
In this section, we describe our algorithm for the bandit-MNL problem. The algorithm
is designed using the characteristics of MNL model based on the principle of optimism
under uncertainty.

3.1. Challenges and overview
A key difficulty in applying standard UCB-like multi-armed bandit techniques for this
problem is that the response observed on offering a product i is not independent of
other products in assortment S. Therefore, the N products cannot be directly treated



as N independent arms. As mentioned before, a naive extension of MAB algorithms for
this problem would treat each of the

(
N
K

)
possible assortments as an arm, leading to

a computationally inefficient algorithm with regret exponential in K. Our algorithm
utilizes the specific properties of the dependence structure in MNL model to obtain an
efficient algorithm with Õ(

√
NT ) regret.

Our algorithm is based on a non-trivial extension of the UCB algorithm [Auer et al.
2002]. It uses the past observations to maintain increasingly accurate upper confidence
bounds for MNL parameters {vi, i = 1, . . . , N}, and uses these to (implicitly) maintain
an estimate of expected revenue R(S) for every feasible assortment S. In every round,
it picks the assortment S with the highest estimated revenue. There are two main
challenges in implementing this scheme. First, the customer response on offering an
assortment S depends on the entire set S, and does not directly provide an unbiased
sample of demand for a product i ∈ S. In order to obtain unbiased estimates of vi for
all i ∈ S, we offer a set S multiple times: a chosen S is offered repeatedly until a no-
purchase happens. We show that on proceeding in this manner, the average number
of times a product i is purchased provides an unbiased estimate of parameter vi. The
second difficulty is the computational complexity of maintaining and optimizing rev-
enue estimates for each of the exponentially many assortments. To this end, we use
the structure of MNL model and define our revenue estimates such that the assort-
ment with maximum estimated revenue can be efficiently found by solving a simple
optimization problem. This optimization problem turns out to be a static assortment
optimization problem with upper confidence bounds for vi’s as the MNL parameters,
for which efficient solution methods are available.

3.2. Algorithmic details
We divide the time horizon into epochs, where in each epoch we offer an assortment
repeatedly until a no purchase outcome happens. Specifically, in each epoch `, we offer
an assortment S` repeatedly. Let E` denote the set of consecutive time steps in epoch
`. E` contains all time steps after the end of epoch ` − 1, until a no-purchase happens
in response to offering S`, including the time step at which no-purchase happens. The
length of an epoch |E`| is a geometric random variable with success probability as prob-
ability of no-purchase in S`. The total number of epochs L in time T is implicitly defined
as the minimum number for which

∑L
`=1 |E`| ≥ T .

At the end of every epoch `, we update our estimates for the parameters of MNL,
which are used in epoch ` + 1 to choose assortment S`+1. For any time step t ∈ E`, let
ct denote the consumer’s response to S`, i.e., ct = i if the consumer purchased product
i ∈ S, and 0 if no-purchase happened. We define v̂i,` as the number of times a product
i is purchased in epoch `.

v̂i,` :=
∑
t∈E`

I(ct = i) (6)

For every product i and epoch ` ≤ L, let Ti(`) be the set of epochs before ` that offered
an assortment containing product i, and let Ti(`) be the number of such epochs. That
is,

Ti(`) = {τ ≤ ` | i ∈ Sτ} , Ti(`) = |Ti(`)|. (7)

Then, we compute v̄i,` as the number of times product i was purchased per epoch,

v̄i,` =
1

Ti(`)

∑
τ∈Ti(`)

v̂i,τ . (8)



In Claim 2, we prove that for all i ∈ S`, v̂i,` and v̄i,` are unbiased estimators of the
MNL parameter vi. Using these estimates, we compute vUCBi,` as,

vUCBi,` := v̄i,` +

√
12v̄i,`
Ti(`)

log T +
30 log2 T

Ti(`)
. (9)

In next section (Lemma 4.2), we prove that vUCBi,` is an upper confidence bound on true
parameter vi, i.e., vUCBi,` ≥ vi,∀i, ` with high probability.

Based on the above estimates, we define an estimate R̃`+1(S) for expected revenue
of each assortment S, as

R̃`+1(S) :=

∑
i∈S

riv
UCB
i,`

1 +
∑
j∈S

vUCBj,`

. (10)

In epoch ` + 1, the algorithm picks assortment S`+1, computed as the assortment
S ∈ S with highest value of R̃`+1(S), i.e.,

S`+1 := argmax
S∈S

R̃`+1(S). (11)

We summarize the steps in our algorithm as Algorithm 1. Finally, we may remark

ALGORITHM 1: Exploration-Exploitation algorithm for bandit-MNL

Initialization: vUCBi,0 = 1 for all i = 1, · · · , N .
t = 1, keeps track of the time steps
` = 1, keeps count of total number of epochs
repeat

Compute S` = argmax
S∈S

R̃`(S) =

∑
i∈S

riv
UCB
i,`−1

1+

∑
j∈S

vUCBj,`−1

Offer assortment S`, observe the purchasing decision, ct of the consumer
if ct = 0 then

compute v̂i,` =
∑
t∈E`

I(ct = i), no. of consumers who preferred i in epoch `, for all i ∈ S`.
update Ti(`) = {τ ≤ ` | i ∈ S`} , Ti(`) = |Ti(`)|, no. of epochs until ` that offered product i.

update v̄i,` =
1

Ti(`)

∑
τ∈Ti(`)

v̂i,τ , sample mean of the estimates

update vUCBi,` =v̄i,` +

√
12v̄i,`
Ti(`)

log T +
30 log2 T

Ti(`)

` = `+ 1
else
E` = E` ∪ t, time indices corresponding to epoch `.

end
t = t+ 1

until t < T ;

on the computational complexity of implementing (11). Since we are only interested in
finding the assortment S ∈ S with the largest value of R̃`(S) in epoch `, we can avoid
explicitly calculating R̃`(S) for all S. Instead, we observe that (11) can be formulated



as a static K-cardinality constrained assortment optimization problem under MNL
model, with model parameters being vUCBi,` , i = 1, . . . , N . There are efficient polynomial
time algorithms to solve the static assortment optimization problem under MNL model
with known parameters. [Davis et al. 2013] showed a simple linear programming for-
mulation of this problem. [Rusmevichientong et al. 2010] proposed an enumerative
method that utilizes an observation that optimal assortment belongs to an efficiently
enumerable collection of N2 assortments.

4. REGRET ANALYSIS
Our main result is the following upper bound on the regret of Algorithm 1.

THEOREM 4.1. For any instance of the bandit-MNL problem with N products, 1 ≤
K ≤ N , ri ∈ [0, 1] and v0 ≥ vi for i = 1, . . . , N , the regret of Algorithm 1 in time T is
bounded as,

Reg(T ) = O(
√
NT log T +N log3 T ).

4.1. Proof Outline
The first step in our regret analysis is to prove the following two properties of the
estimates vUCBi,` computed as in (9) for each product i. Intuitively, these properties
establish vUCBi,` as upper confidence bounds converging to actual parameters vi, akin to
the upper confidence bounds used in the UCB algorithm for MAB [Auer et al. 2002].

(1a) The estimate vUCBi,` for every i, is larger than vi with high probability, i.e.,

vUCBi,` ≥ vi,∀i, `
(2a) As a product is offered more and more, its estimate approaches the actual parame-

ter vi, so that in epoch `, with high probability the difference between the estimate
and actual parameter can be bounded as

vUCBi,` − vi ≤ Õ
(√

vi
Ti(`)

+ 1
Ti(`)

)
,∀i, `

Lemma 4.2 provides the precise statements of above properties and proves that these
hold with probability at least 1 − O

(
1
T 2

)
. To prove this lemma, we first employ an ob-

servation conceptually equivalent to the IIA (Independence of Irrelevant Alternatives)
property of MNL model to show that in each epoch τ , v̂i,τ (the number of purchases of
product i) provides an independent unbiased estimates of vi. Intuitively, v̂i,τ is the ra-
tio of probabilities of purchasing product i to preferring product 0 (no-purchase), which
is independent of Sτ . This also explains why we chose to offer Sτ repeatedly until no-
purchase happened. Given these unbiased i.i.d. estimates from every epoch τ before
`, we apply a multiplicative Chernoff-Hoeffding bound to prove concentration of v̄i,`.
Then, above properties follow from definition of vUCBi,` .

The product demand estimates vUCBi,`−1 were used in (10) to define expected revenue es-
timates R̃`(S) for every set S. In the beginning of every epoch `, Algorithm 1 computes
the maximizer S` = arg maxS R̃`(S), and then offers S` repeatedly until no-purchase
happens. The next step in regret analysis is to use above properties of vUCBi,` to prove
similar, though slightly weaker, properties for estimates R̃`(S). We prove that the fol-
lowing hold with high probability.

(1b) The estimate R̃`(S∗) is an upper confidence bound on R(S∗), i.e., R̃`(S∗) ≥ R(S∗).
By choice of S`, it directly follows that

R̃`(S`) ≥ R̃`(S∗) ≥ R(S∗)



Note that we do not claim that for every S, R̃`(S) is an upper confidence bound
on R(S); infact we observe that this property holds only for S∗ and certain other
special S ∈ S. Above weaker guarantee will suffice for our regret analysis, and
it allows a more efficient algorithm that does not require to maintain an explicit
upper confidence bound for every set S.

(2b) The difference between the estimated revenue and actual expected revenue for the
offered assortment S` is bounded as

(1 +
∑
j∈S`

vj)(R̃`(S`)−R(S`)) ≤ Õ
(∑

i∈S`

√
vi
Ti(`)

+ 1
Ti(`)

)
,∀i, `

Lemma 4.3 and Lemma 4.4 provide the precise statements of above properties, and
prove that these hold with probability at least 1 − O

(
1
T 2

)
. The proof of the property

(1b) above involves careful use of the structure of MNL model to show that the value
of

R̃`(S`) = maxS∈S

∑
i∈S riv

UCB
i,`

1+
∑

j∈S v
UCB
j,`

is equal to the highest expected revenue achievable by any assortment (of at most
K-cardinality), among all instances of the problem with parameters in the range
[0, vUCBi ], i = 1, . . . , n. Since the actual parameters lie in this range with high prob-
ability, we obtain that R̃`(S`) is at least R(S∗). For property (2b) above, we prove a
Lipschitz property of function R̃`(S) and bound its error in terms of errors in individ-
ual product estimates |vUCBi,` − vi|.

Given above properties, the rest of the proof is relatively straightforward. Recall
that in epoch `, assortment S` is offered, for which expected revenue is R(S`). Epoch
` ends when a no purchase happens on offering S`, where the probability of the no-
purchase event is 1/(1 +

∑
j∈S`

vj). Therefore, expected length of an epoch is given by
(1 +

∑
j∈S`

vj). Using these observations, we show that the total expected regret can be
bounded by

Reg(T ) ≤ E[

L∑
`=1

(1 + V (S`))(R(S∗)−R(S`))],

where V (S`) :=
∑
j∈S`

vj . Then, using property (1b) and (2b) above, we can further
bound this as

Reg(T ) ≤
∑
`

(1+V (S`))(R̃`(S`)−R(S`)) ≤
∑
`

Õ

(∑
i∈S`

√
vi
Ti(`)

+
1

Ti(`)

)
= Õ(

∑
i

√
viTi),

where Ti denotes the total number of epochs in which product i was offered. Note that∑
i Ti ≤ TK, since in each epoch, the set S` can contain at most K products, and there

are at most T epochs. Using this loose bound, we would obtain that in worst case,
Ti = TK/N , and using vi ≤ 1 for each i, we get that regret is bounded by Õ(

√
NKT ).

We derive a more careful bound on number of epochs Ti based on the value of corre-
sponding parameter vi to obtain an Õ(

√
NT ) regret, as stated in Theorem 4.1.

In rest of this section, we follow the above outline to provide a detailed proof of The-
orem 4.1. The proof is organized as follows. In Section 4.2, we prove Property (1a) and
(2a) for estimates vUCBi,` . In Section 4.3, we prove Property (1b) and (2b) for estimates
R̃`(S`). Finally, in Section 4.4, we utilize these properties to complete the proof of The-
orem 4.1 .



4.2. Properties of estimates vUCBi,`

First, we focus on the concentration properties of v̂i,` and v̄i,`, and then utilize those to
establish the necessary properties of vUCBi,` .

4.2.1. Unbiased Estimates. It is not clear if the estimates v̂i,`, ` ≤ L are independent of
each other. In our setting, it is possible that the distribution of estimate v̂i,` depends
on the offered assortment S`, which in turn depends on previous estimates. In the
following result, we show that the moment generating of v̂i,` only depends on the pa-
rameter vi and not on the offered assortment S`, there by establishing that estimates
are identically and independently distributed. Using the moment generating function,
we show that v̂i,` is an unbiased estimate for vi, i.e., E(v̂i,`) = vi and bounded with
high probability.

CLAIM 1. The moment generating function of estimate v̂i, E
(
eθv̂i,`

)
is given by,

E
(
eθv̂i,`

)
=

1

1− vi(eθ − 1)
, for all θ ≤ log 2, for all i = 1, · · · , N.

PROOF. From (3), we have that probability of no purchase event when assortment
S` is offered is given by

p0(S`) = 1
1+

∑
j∈S`

vj
.

Let n` be the total number of offerings in epoch ` before a no purchased occurred, i.e.,
n` = |E`| − 1. Therefore, n` is a geometric random variable with probability of success
p0(S`). And, given any fixed value of n`, v̂i,` is a binomial random variable with n` trials
and probability of success given by

qi(S`) = vi∑
j∈S`

vj
.

In the calculations below, for brevity we use p0 and qi respectively to denote p0(S`) and
qi(S`). Hence, we have

E
(
eθv̂i,`

)
= En`

{
E
(
eθv̂i,`

∣∣n`)} .
Since the moment generating function for a binomial random variable with parameters
n, p is

(
peθ + 1− p

)n, we have

E
(
eθv̂i,`

∣∣n`) = En`

{(
qie

θ + 1− qi
)n`
}
.

If α(1− p) < 1 and n is a geometric random variable with parameter p, we have

E(αn) =
p

1− α(1− p)
.

Note that for all θ < log 2, we have
(
qie

θ + (1− qi)
)

(1− p0) = (1− p0) + p0vi(e
θ − 1) < 1.

Therefore, we have E
(
eθv̂i,`

)
=

1

1− vi(eθ − 1)
for all θ < log 2.

We can establish that v̂i,` is unbiased estimator of vi by computing the differential
the moment generating function and setting θ = 0. Since v̂i,` is an unbiased estimate, it
follows by definition (refer to (8)) that v̄i,` is also an unbiased estimate for vi. Therefore,
from Claim 1, we have the following result.

CLAIM 2. We have the following claims.

(1) v̂i,`, ` ≤ L are unbiased i.i.d estimates of vi, i .e.E (v̂i,`) = vi ∀ `, i.
(2) E (v̄i,`) = vi



(3) P (v̂i, > 8 log T ) ≤ 2
T 3 for all i = {1, · · · , N}

(4) P (v̄i,` > 2vi + 8 log T ) ≤ 2
T 3 for all i = {1, · · · , N}

PROOF. We establish (1) by differentiating the moment generating function es-
tablished in Claim 1 and setting θ = 0 . (2) directly follows from (1). Evaluating the
moment generating function at θ = log 3/2 and using Chernoff bound, we establish (3).
Applying Chernoff bounds on

∑`
τ=1 v̂i,` and using the fact that v̂i,` are i.i.d., we show

(4). The proof for (4) is non trivial and the details are provided in Claim A.1.

4.2.2. Concentration Bounds. From Claim 2, it follows that v̂i,τ , τ ∈ Ti(`) are i.i.d ran-
dom variables that are bounded with high probability and E(v̂i,τ ) = vi for all τ ∈ Ti(`).
We will combine these two observations and extend multiplicative Chernoff-Hoeffding
[Babaioff et al. 2011] inequality to establish the following result.

CLAIM 3. We have the following inequalities.

(1) P
(
|v̄i,` − vi| ≥

√
12

v̄i,`
Ti(`)

log T +
30 log2 T

Ti(`)

)
≤ O

(
1

T

)
.

(2) P
(
|v̄i,` − vi| ≥

√
6
vi
Ti(`)

log T +
30 log2 T

Ti(`)

)
≤ O

(
1

T

)
.

Note that to apply Chernoff-Hoeffding inequality, we must have the individual sample
values bounded by some constant, which is not the case with our estimates v̂i,τ . How-
ever, we proved earlier that these estimates are bounded by Ω (8 log T ) with probability
at least 1−O( 1

T 3 ) and we use truncation technique to establish Claim 3. We complete
the proof of Claim 3 in Appendix A.

The following result follows from Claim 2 and 3, and establishes the necessary prop-
erties of vUCBi.` alluded to as properties 1(a) and 2(a) in the proof outline.

LEMMA 4.2. We have the following claims.

(1) vUCBi,` ≥ vi with probability at least 1−O
(
1
T

)
for all i = 1, · · · , N .

(2) There exists constants C1 and C2 such that

vUCBi,` − vi ≤ C1

√
vi
Ti(`)

log T + C2
log2 T

Ti(`)

with probability at least 1−O
(
1
T

)
.

4.3. Properties of estimate R̃(S)

In this section we establish properties of upper bound estimate R̃`(S). First, we estab-
lish the following result (property 1(b) in the proof outline).

LEMMA 4.3. Suppose S∗ ∈ S is the assortment with highest expected revenue, and
Algorithm 1 offers S` ∈ S in each epoch `. Then, for any epoch `, we have

R̃`(S`) ≥ R̃`(S∗) ≥ R(S∗) with probability at least 1−O
(

1

T

)
.

Let R(S,w) denote the expected revenue when assortment S is offered and if the pa-
rameters of the MNL were given by the vector w, i.e.

R(S,w) :=
∑
i∈S

wiri
1 +

∑
j∈S wj

,



Then, R(S) = R(S,v), and from definition of R̃`(S) (refer to (10)),

R̃`(S) = R(S,vUCB` ).

CLAIM 4. Assume 0 ≤ wi ≤ vUCBi for all i = 1, · · · , n. Suppose S is an optimal
assortment when the MNL are parameters are given by w. Then,

R(S,vUCB) ≥ R(S,w).

PROOF. We prove the result by first showing that for any j ∈ S, we have

R(S,w(j)) ≥ R(S,w), (12)

where w(j) is vector v with the jth component increased to vUCBj ,

w(j) =

{
wi if i 6= j

vUCBj if i = j
.

We first establish that for any j ∈ S, rj ≥ R(S). For the sake of contradiction, suppose
for some j ∈ S, we have, rj < R(S), then by multiplying with wj on both sides of the
inequality, we have,

wjrj(1 +
∑
i∈S

wi) < wj(
∑
i∈S

riwi),

adding (
∑
i∈S riwi)(

∑
i∈S wi + 1) to both sides of the inequality, we get,

(
∑
i∈S

riwi)(
∑
i∈S

wi + 1) + wjrj(1 +
∑
i∈S

wi) < (
∑
i∈S

riwi)(
∑
i∈S

wi + 1) + wj(
∑
i∈S

riwi).

Rearranging the terms from the above inequality, it follows that,

(
∑
i∈S

riwi)(
∑
i∈S

wi + 1)− wjrj(1 +
∑
i∈S

wi) > (
∑
i∈S

riwi)(
∑
i∈S

wi + 1)− wj(
∑
i∈S

riwi).

implying, ∑
i∈S riwi − wjrj

1 +
∑
i∈S wi − wj

>

∑
i∈S riwi∑
i∈S wi + 1

,

which can be rewritten as, ∑
i∈S/j riwi

1 +
∑
i∈S/j wi

>

∑
i∈S riwi∑
i∈S wi + 1

contradicting that S is the optimal assortment when the parameters are w. Therefore,

rj ≥

∑
i∈S

riwi

1 +
∑
i∈S

wi
for all j ∈ S.

Multiplying by (vUCBj − wj)(
∑
i∈S/j wi + 1) on both sides of the above inequality, we

obtain

(vUCBj − wj)rj

∑
i∈S/j

wi + 1

 ≥ (vUCBj − wj)

∑
i∈S/j

wiri

 ,



from which we have inequality (12). The result follows from (12), which establishes
that increasing one parameter of MNL to the highest possible value increases the
value of R(S,w).

Let Ŝ,w∗ be maximizers of the following optimization problem.

max
S∈S

max
0≤wi≤vUCB

i,`

R(S,w).

Then applying Claim 4 on assortment Ŝ and parameters v∗ and noting that vUCBi,` > vi
with high probability, we have that

R̃`(S`) = max
S∈S

R(S,vUCB` ) ≥ max
S∈S

max
0≤wi≤vUCB

i,`

R(S,w) ≥ R(S∗).

Now we will establish the connection between the error on the expected revenues
and the error on the estimates of MNL parameters. In particular, we have the following
result.

LEMMA 4.4. There exists constants C1 and C2 such that

(1+
∑
j∈S`

vj)(R̃`(S`)−R(S`)) ≤ C1

√
vi
|Ti(`)| log T+C2

log2 T
|Ti(`)| , with probability at least 1−O

(
1
T

)
The above result follows directly from the following result and Lemma 4.2.

CLAIM 5. If 0 ≤ vi ≤ vUCBi,` for all i ∈ S`, then

R̃`(S`)−R(S`) ≤

∑
j∈S`

(
vUCBj,` − vj

)
1+
∑
j∈S`

vj
.

PROOF.

R̃`(S`)−R(S`) =

∑
i∈S`

riv
UCB
i,`

1+
∑
j∈S`

vUCBj,`

−
∑
i∈S`

rivi
1+
∑
j∈S`

vj
.

Since 1 +
∑
i∈S`

vUCBi,` ≥ 1 +
∑
i∈S`

vi,`, we have

R̃`(S`)−R(S`) =

∑
i∈S`

riv
UCB
i,`

1+
∑
j∈S`

vUCBj,`

−
∑
i∈S`

rivi
1+
∑
j∈S`

vUCBj,`

,

≤

∑
i∈S`

(
vUCBi,` − vi

)
1 +

∑
j∈S`

vUCBj,`

≤

∑
i∈S`

(
vUCBi,` − vi

)
1 +

∑
j∈S`

vj

4.4. Putting it all together: Proof of Theorem 4.1
In this section, we formalize the intuition developed in the previous sections and com-
plete the proof of Theorem 4.1.

Let S∗ denote the optimal assortment and rt(S`) be the expected revenue generated
by offering the assortment S` at time t. Our objective is to minimize the regret defined
in (5), which is same as

Reg(T ) = E

(
L∑
`=1

∑
t∈E`

(R(S∗)− rt(S`))

)
. (13)

For every epoch `, let t` denote the time index when the no purchase happened, after
which the algorithm progressed to the next epoch. Observe Algorithm 1 by design,



offers an assortment until a no purchase happens. Hence, the conditional expectation
of rt(S`) given S`, E (rt(S`) |S`) is not the same as R(S`), but is given by

E (rt(S`) |S`) =

{
E (rt(S`) |S`, {rt(S`) 6= 0}) if t 6= t`
E (rt(S`) |S`, {rt(S`) = 0}) if t = t`

.

Hence, we have

E (rt(S`) |S`) =


1 +

∑
j∈S`

vj∑
i∈S`

vi
R(S`) if t < t`

0 if t = t`

.

Note that L, E`, S` and rt(S`) are all random variables and the expectation in equation
(13) is over these random variables. Therefore, the regret can be reformulated as

Reg(T ) = E


L∑
`=1

(1 +
∑
j∈S`

vj) [R(S∗)−R(S`)]

 , (14)

the expectation in equation (14) is over the random variables L and S`. We now provide
the proof for Theorem 4.1.

PROOF. of Theorem 4.1 Let V (S`) =
∑
j∈S`

vj , from equation (14), we have that

Reg(T ) = E

{
L∑
`=1

(1 + V (S`)) (R(S∗)−R(S`))

}
For sake of brevity, let ∆R`=(1 + V (S`)) (R(S∗)−R(S`)), for all ` = 1, · · · , L. Now the
regret can be reformulated as

Reg(T ) = E

{
L∑
`=1

∆R`

}
(15)

Let Ti denote the total number of epochs that offered an assortment containing
product i. Let A0 denote the complete set Ω and for all ` = 1, . . . , L, event A` is given
by

A` =

{
vUCBi,` < vi or vUCBi,` > vi + C1

√
vi
Ti(`)

log T + C2
log2 T

Ti(`)
for some i ∈ S` ∪ S∗

}
.

Noting that A` is a rare event and our earlier results on the bounds are true whenever
event Ac` happens, we try to analyze the regret in two scenarios, one when A` is true
and another when Ac` is true. For any event A, let I(A) denote the indicator random
variable for the event A. Hence, we have

E (∆R`) = E
[
∆R` · I(A`−1) + ∆R` · I(Ac`−1)

]
Using the fact that R(S∗) and R(S`) are both bounded by one and V (S`) ≤ K, we have

E (∆R`) ≤ (K + 1)P(A`−1) + E
[
∆R` · I(Ac`−1)

]
.

Whenever I(Ac`−1) = 1, from Lemma 4, we have R̃`(S∗) ≥ R(S∗) and by our algorithm
design, we have R̃`(S`) ≥ R̃`(S∗) for all ` ≥ 2. Therefore, it follows that

E {∆R`} ≤ (K + 1)P(A`−1) + E
{[

(1 + V (S`))(R̃`(S`)−R(S`))
]
· I(Ac`−1)

}



From Lemma 4.4, it follows that[
(1 + V (S`))(R̃`(S`)−R(S`))

]
· I(Ac`−1) ≤ log T

∑
i∈S`

(
C1

√
vi
Ti(`)

+
C2 log T

Ti(`)

)
Therefore, we have

E {∆R`} ≤ (K + 1)P (A`−1) + CE

log T
∑
j∈S`

(√
vi
Ti(`)

+
log T

Ti(`)

) (16)

where C = max{C1, C2}. Combining equations (15) and (16), we have

Reg(T ) ≤ E


L∑
`=1

(K + 1)P (A`−1) + C log T
∑
j∈S`

(√
vi
Ti(`)

+
log T

Ti(`)

) .

Therefore, from Lemma 4.2, we have

Reg(T ) ≤ CE


L∑
`=1

K + 1

T
+
∑
j∈S`

√
vi
Ti(`)

log T +
∑
j∈S`

log2 T

Ti(`)

 ,

(a)

≤ CK + CN log3 T + (C log T )E

(
n∑
i=1

√
viTi

)
(b)

≤ CK + CN log3 T + (C log T )

N∑
i=1

√
viE(Ti)

(17)

Inequality (a) follows from the observation that L ≤ T , Ti ≤ T ,
Ti∑

Ti(`)=1

1√
Ti(`)

≤
√
Ti

and
Ti∑

Ti(`)=1

1

Ti(`)
≤ log Ti, while Inequality (b) follows from Jensen’s inequality.

For any realization of L, E`, Ti, and S` in Algorithm 1, we have the following relation∑L
`=1 n` ≤ T . Hence, we have E

(∑L
`=1 n`

)
≤ T. Let S denote the filtration correspond-

ing to the offered assortments S1, · · · , SL, then by law of total expectation, we have,

E

(
L∑
`=1

n`

)
= E

{
L∑
`=1

ES (n`)

}
= E

{
L∑
`=1

1 +
∑
i∈S`

vi

}

= E

{
L+

n∑
i=1

viTi

}
= E{L}+

n∑
i=1

viE(Ti).

Therefore, it follows that ∑
viE(Ti) ≤ T. (18)

To obtain the worst case upper bound, we maximize the bound in equation (17) subject
to the condition (18) and hence, we have Reg(T ) = O(

√
NT log T +N log3 T )



5. LOWER BOUNDS
In this section, we establish that any algorithm must incur a regret of Ω(

√
NT/K).

More precisely, we prove the following result.

THEOREM 5.1. There exists a (randomized) instance of the bandit-MNL problem
with v0 ≥ vi , i = 1, · · · , N , such that for any N , K < N , T ≥ N , and any algorithm A
that offers assortment SAt , |SAt | ≤ K at time t, we have

E [Reg(T )] := E

(
T∑
t=1

R(S∗)−R(SAt )

)
≥ C

√
NT

K

where S∗ is (at-most) K-cardinality assortment with maximum expected revenue, and
C is a universal constant.

5.1. Proof Overview
We prove Theorem 5.1 by a reduction to a parametric multi-armed bandit (MAB) prob-
lem, for which a lower bound is known.

Definition 5.2 (MAB instance IMAB). Define IMAB as a (randomized) instance of
MAB problem with N ≥ 2 Bernoulli arms, and following parameters (probability of
reward 1)

µi =

{
α, if i 6= j,
α+ ε, if i = j,

for all i = 1, · · · , N,

where j is set uniformly at random from {1, · · · , N}, α < 1 and ε = 1
100

√
Nα
T .

LEMMA 5.3. For any N ≥ 2, α < 1, T and any online algorithm A that plays arm

At at time t, the expected regret of algorithm A on instance IMAB is at least
εT

6
. That is,

E

[
T∑
t=1

(µj − µAt
)

]
≥ εT

6
,

where expectation is both over the randomization in generating the instance (value of
j), and the random outcomes of pulled arms during execution of the algorithm on an
instance.

The proof of Lemma 5.3 is a simple extension of the proof of Ω(
√
NT ) lower bound

for the Bernoulli instance with parameters 1
2 and 1

2 + ε (for example, see [Bubeck and
Cesa-Bianchi 2012]), and has been provided in Appendix for the sake of completeness.
We use the above lower bound for MAB to prove that any algorithm must incur at least
Ω(
√
NT/K) regret on the following instance of the bandit-MNL problem.

Definition 5.4 (bandit-MNL instance IMNL). Define IMNL as the following (ran-
domized) instance of bandit-MNL problem with K-cardinality constraint, N̂ = NK

products, parameters v0 = K and for i = 1, . . . , N̂ ,

vi =

{
α, if d iK e 6= j,
α+ ε, if d iK e = j,

where j is set uniformly at random from {1, . . . , N}, α < 1, and ε = 1
100

√
Nα
T .



We will show that any bandit-MNL algorithm has to incur a regret of Ω
(√

NT
K

)
on

instance IMNL. The main idea in our reduction is to show that if there exists an algo-
rithm AMNL for bandit-MNL that achieves o(

√
NT
K ) regret on instance IMNL, then we

can use AMNL as a subroutine to construct an algorithm AMAB for MAB that achieves
strictly less than εT

6 regret on instance IMAB in time T , thus contradicting the lower
bound of Lemma 5.3. This will prove Theorem 5.1 by contradiction.

5.2. Construction of algorithm AMAB using AMNL

ALGORITHM 2: Algorithm AMAB

Initialization: t = 0, ` = 0.
AMNL suggests to offer assortment SAMNL

0 ⊂ [N̂ ] such that |SAMNL
0 | ≤ K

repeat
Update ` = `+ 1;
Call AMNL, receive assortment S` ⊂ [N̂ ];
Repeat until ‘exit loop’
With probability 1

2
, send Feedback to AMNL ‘no product was purchased’, exit loop;

provide feedback to AMNL no product was purchased, and exit;
Update t = t+ 1;
Pull arm At = d i

K
e,where i ∈ S` is chosen uniformly at random.

If reward is 1, send Feedback to AMNL ‘i was purchased’ and exit loop;
until t ≤ T ;

Algorithm 2 provides the exact construction of AMAB . AMAB simulates AMNL al-
gorithm as a blackbox. Note that AMAB pulls arms at time steps t = 1, . . . , T . These
arm pulls are interleaved by simulations of AMNL steps (Call AMNL , Feedback to
AMNL ). When step ` of AMNL is simulated, it uses the feedback from 1, . . . , ` − 1 to
suggest an assortment S`; and expects a feedback from AMAB about which product (or
no product) was purchased out of those offered in S`, where the probability of purchase
of product i ∈ S` must be vi

v0+
∑

i∈S`
vi

. Following claim shows that AMAB provides the
right feedback to AMNL . Proof is omitted due to space constraints.

CLAIM 6. For any assortment S` suggested by AMNL , for each i ∈ S`, let PS`
(i)

denote the probability that AMAB gives the feedback that product i is purchased. And,
let PS`

(0) denote the probability that AMAB gives the feedback that no product is pur-
chased. Then, for each i ∈ S` ∪ {0},

PS`
(i) =

vi
v0 +

∑
j∈S`

vj
.

Let L be the total number of calls to AMNL in AMAB . Intuitvely, after any call to
AMNL (“Call AMNL ” in Algorithm 2), many iterations of the following loop may be
executed; in roughly 1/2 of those iterations, an arm is pulled and t is advanced (with
probability 1/2, the loop is exited without advancing t). Therefore, T should be at least
a constant fraction of L. Following claim makes this intuition precise.

CLAIM 7. Let L be the total number of calls to AMNL when AMAB is executed for T
time steps. Then,

P(T ≥ L

3
) ≥ Ω(1− 1

T
).



Next, we use the properties of this construction to relate regret of AMAB in T time
steps to regret of AMNL in L steps.

5.3. Relating regret of AMNL and AMAB to prove Theorem 5.1
Let S∗ be the optimal assortment for IMNL. For any instantiation of IMNL, it is easy
to see that the optimal assortment contains K items, all with parameter α + ε, i.e.,
it contains all i such that d iK e = j. Therefore, V (S∗) = K(α + ε) = Kµj . The follow-
ing lemmas relate regret of AMNL to regret of AMAB by bounding both in terms of
(
∑
` V (S∗)− V (S`)).

LEMMA 5.5. Total expected regret of AMAB on instance IMAB in T time steps is
upper bounded as

Reg(AMAB , T ) ≤ 1

(1 + α)

L∑
`=1

1

K
(V (S∗)− V (S`)).

LEMMA 5.6. Total expected regret of AMNL on instance IMNL in L time steps is
lower bounded as

Reg(AMNL , L) ≥ 1

(1 + α)

L∑
`=1

1

K
(V (S∗)− V (S`))−

εv∗L

(1 + α)2
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A. MULTIPLICATIVE CHERNOFF BOUNDS
LEMMA A.1. Let v̂1, · · · , v̂m be m be i.i.d random variables such that the moment

generating function is given by

E
(
eθv̂`

)
=

1

1− v(eθ − 1)
, for all θ < log 2,

where v ≤ 1. Let v̄m =

∑m
`=1 v̂`
m

. Then, it follows that

P (v̄m > 2v + a) ≤ exp

(
−m · a

3

)
.

PROOF.

P (v̄m > 2v + a) = P

(
m∑
`=1

v̂` > 2m · v +m · a

)
,

P (v̄m > 2v + a) ≤
E {exp (θ

∑m
`=1 v̂`)}

eθ(m·v+m·a)
,

= e−θm·a
(
E {exp (θv̂`)}

e2θ·v

)m
.

The last equality follows the fact that v̂` are i.i.d. Therefore,

P (v̄m > 2v + a) ≤ e−θm·a 1

[(1− v(eθ − 1))e2θv]
m .

Let

f(θ, v) = log
[
(1− v(eθ − 1))e2θv

]
.



Note that f(θ, v) is a concave function in v ∈ [0, 1] for all θ < log 2 and hence the
minimum value of f(θ, v) occurs at a boundary point for all θ. In particular, we have

f(θ, v) ≥ min{0, log(2e2θ − e3θ)}
Substituting θ = log 3/2, we get f(θ, v) ≥ 0. Therefore, it follows that

P (v̄m > 2v + a) ≤ e−(log 3/2)m·a ≤ exp

(
−m · a

3

)
.

We will use the following concentration inequality from [Mitzenmacher and Upfal
2005].

THEOREM A.2. Consider n i.i.d random variables X1, · · · , Xn with values in [0,1]
and EX1 = µ. Then:

Pr

{∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ > δµ

}
< 2e−µnδ

2/3 for any δ ∈ (0, 1).

Theorem A.2 requires that the random variables be bounded, which is not the case
with our estimate, v̂i,τ . However, Corollary 2 established that our estimate is bounded
by 8 log T with high probability. Therefore, we can use a truncation technique to derive
Chernoff bounds for our estimate. Define truncated random variables, Xi,τ , τ ∈ Ti(`),

Xi,τ = v̂i,τ I (v̂i,τ ≤ 8 log T ) for all τ ∈ Ti(`),
and let X̄i,` be the sample mean of Xi,τ , τ ∈ Ti(`),

X̄i,` =
1

|Ti(`)|

|Ti(`)|∑
τ∈Ti(`)

Xi,τ

We have from Lemma 1 that the random variables Xi,τ , τ ∈ Ti(`) are independent and
indentical in distribution. Now, we will adapt a non-standard corollary from [Babaioff
et al. 2011] and [Kleinberg et al. 2008] to our estimates to obtain sharper bounds.

LEMMA A.3. vi − E(Xi,τ ) ≤ 6 log2 T

T
, if T > 10

PROOF. Define Yi = v̂i,1 −Xi,τ . Note that Yi = v̂i,1I(v̂i,1 > 8 log T ) and hence

E(Yi) =

∞∑
y=8 log T

yP (Yi = y)

≤
∞∑

y=8 log T

yP (Yi ≥ y)

=

∞∑
y=8 log T

yP (v̂i,1 ≥ y).

Using Lemma 1 we can prove that for all m ≥ 1,

P
(
v̂i,1 > 2m+2 log T

)
≤ 1

T 1+m
,

using Chernoff bound techniques as we did in Corollary 2. Bounding each term in the
summation in interval

[2m · 8 log T, 2m+1 · 8 log T ]



by 2m+1 · 8 log T , we have

E(Yi) ≤ 32
log2 T

T 2

∞∑
m=1

(
4

T

)m
≤ 64

log2 T

T 2
≤ 6

log2 T

T
, if T > 10.

We will prove equivalent of Lemma 3 for the truncated variables.

LEMMA A.4. Let E(Xi,τ ) = µi. Then:

(1) P

(∣∣X̄i,` − vi
∣∣ ≥√ 12v̄i,`

|Ti(`)|
log T +

30 log2 T

|Ti(`)|

)
≤ 4

T 2
for all i = 1, · · · , n.

(2) P

(∣∣X̄i,` − vi
∣∣ ≥√ 6vi

|Ti(`)|
log T +

30 log2 T

|Ti(`)|

)
≤ 4

T 2
for all i = 1, · · · , n.

PROOF. Fix i, First assume µi ≤
24 log2 T

|Ti(`)|
. From Lemma A.3, we have

vi ≤ µi +
6 log2 T

T
≤ 30 log2 T

|Ti(`)|

and hence, we have X̄i,` − vi ≥ −30 log2 T
|Ti(`)| . Since v̄i,` ≥ X̄i,`, we have,

P
(
X̄i,` > vi +

30 log2 T

T
+

6 log T

|Ti(`)|

)
≤ P

(
v̄i,` > 2vi +

6 log T

|Ti(`)|

)
.

From Lemma A.1, we have P
(
v̄i,` > 2vi + log T

|Ti(`)|

)
≤ 1

T 2 . Hence, trivially we have

P
(
v̄i,` > 2vi + 30 log2 T

|Ti(`)|

)
≤ 1

T 2 . Therefore it follows that,

P
(∣∣X̄i,` − vi

∣∣ > 30 log2 T

|Ti(`)|

)
≤ 1

T 2
. (19)

Now suppose µi ≥
24 log2 T

|Ti(`)|
, using Lemma A.2 with δ = 1

2

√
24 log2 T
µi|Ti(`)| , we have

P
(∣∣∣∣ X̄i,`

log T
− µi

log T

∣∣∣∣ < δ
µi

log T

)
≥ 1− 2 exp

(
−µi|Ti(`)|δ2

3 log T

)
= 1− 2

T 2
.

Substituting the value of δ, and noting that vi ≥ µi, we have

P

∣∣X̄i,` − µi
∣∣ <

√
6vi log2 T

|Ti(`)|

 ≥ P
∣∣X̄i,` − µi

∣∣ <
√

6µi log2 T

|Ti(`)|

 ≥ 1− 2

T 2
.

From Lemma A.3, we have,

P

∣∣X̄i,` − vi
∣∣ <

√
6vi log2 T

|Ti(`)|
+ 6

log T

T

 ≥ 1− 4

T 2
. (20)



By assumption, we have δ ≤ 1
2 and hence P

(
2X̄i,` ≥ µi

)
≥ 1− 2

T 2 . Since v̄i,` > X̄i,`, we
have,

P

∣∣X̄i,` − µi
∣∣ <

√
12v̄i,` log2 T

|Ti(`)|

 ≥ P
∣∣X̄i,` − µi

∣∣ <
√

12X̄i,` log2 T

|Ti(`)|

 ≥ 1− 4

T 2
.

From Lemma A.3, we have,

P

∣∣X̄i,` − vi
∣∣ <

√
12v̄i,` log2 T

|Ti(`)|
+ 6

log T

T

 ≥ 1− 4

T 2
. (21)

From (19), (20) and (21), we have the required result.
We will break up the error on the estimate into two scenarios, one where v̂i,τ is

bounded by 8 log T and other wise. In the first scenario, we will use Lemma A.4 to
bound the error estimates and since the second scenario is a rare event, we have
bounded the errors with high probability.

Proof of Lemma 3 Fix i. Define the events,

Ai,` =

{
|v̄i,` − vi| > 4

√
v̄i,`
|Ti(`)|

log T +
4 log2 T

|Ti(`)|

}
.

We will prove the result by showing P (Ai,`)is bounded by 4
T 2 .

Let Ni,` denote the event,

Ni,` = {v̂i,τ > 8 log T for some τ = {1, · · · , |Ti(`)|}} .
Note that the event Ni,` is an extremely low probability event. Whenever N c

i,` is true,
we have the estimate v̂i,τ bounded and can use multiplicative Chernoff Bounds to
bound the difference between sample mean of the estimates v̂i,τ and vi. Our proof will
follow a similar approach, where we first show the probability of event Ni,` is O( 1

T 2 )
and then derive concentration bounds assuming N c

i,` is true.

P (Ai,`) = P (Ai,` ∩Ni,` ) + P
(
Ai,` ∩N c

i,`

)
,

≤ P (Ni,`) + P
(
Ai,` ∩N c

i,`

)
,

≤ P

 ⋃
τ∈Ti(`)

{v̂i,τ > 8 log T}

+ P
(
Ai,` ∩N c

i,`

)
≤

∑
τ∈Ti(`)

2

T 3
+ P

(
Ai,` ∩N c

i,`

)
≤ 2

T 2
+ P

(
Ai,` ∩N c

i,`

)
.

(22)

The second inequality in (22) follows from the union bound and last inequality follows
from Lemma 2. Observe that,

P
(
Ai,` ∩N c

i,`

)
≤ P

∣∣∣∣∣∣ 1

|Ti(`)|

|Ti(`)|∑
`=1

v̂i,τ I (v̂i,τ ≤ 8 log T )− vi

∣∣∣∣∣∣ >
√

12v̄i,`
|Ti(`)|

log T +
30 log2 T

|Ti(`)|

 ,

(23)
where (23) follows from Lemma A.4. We can establish the second inequality in a similar
manner.



B. LOWER BOUND
We follow the proof of Ω(

√
NT ) lower bound for the Bernoulli instance with parameters

1
2 . We first establish a bound on KL divergence, which will be useful for us later.

LEMMA B.1. Let p and q denote two Bernoulli distributions with parameters α + ε
and α respectively. Then, the KL divergence between the distributions p and q is bounded
by 4Kε2,

KL(p‖q) ≤ 4

α
ε2.

PROOF.

KL(p‖q) = α · log
α

α+ ε
+ (1− α) log

1− α
1− α− ε

= α

log
1− ε

1− α
1 + ε

α

− log

(
1− ε

1− α

)

= α log

(
1− ε

(1− α)(α+ ε)

)
− log

(
1− ε

1− α

)
using 1 − x ≤ e−x and bounding the Taylor expansion for − log 1− x by x + 2 ∗ x2 for
x =

ε

1− α
, we have

KL(p‖q) ≤ −αε
(1− α)(α+ ε)

+
ε

1− α
+ 4ε2

= (
2

α
+ 4)ε2 ≤ 4

α
ε2

Fix a guessing algorithm, which at time t sees the output of a coin at. Let P1, · · · , Pn
denote the distributions for the view of the algorithm from time 1 to T , when the biased
coin is hidden in the ith position. The following result establishes for any guessing
algorithm, there are at least N

3 positions that a biased coin could be and will not be
played by the guessing algorithm with probability at least 1

2 . Specifically,

LEMMA B.2. Let A be any guessing algorithm operating as specified above and let
t ≤ Nα

60ε2 , for ε ≤ 1
4 and N ≥ 12. Then, there exists J ⊂ {1, · · · , N} with |J | ≥ N

3 such that

∀j ∈ J, Pj(at = j) ≤ 1

2

PROOF. Let Ni to be the number of times the algorithm plays coin i up to time t. Let
P0 be the hypothetical distribution for the view of the algorithm when none of the N
coins are biased. We shall define the set J by considering the behavior of the algorithm
if tosses it saw were according to the distribution P0. We define,

J1 =

{
i

∣∣∣∣EP0
(Ni) ≤

3t

N

}
, J2 =

{
i

∣∣∣∣P0(at = i) ≤ 3

N

}
and J = J1 ∩ J2. (24)

Since
∑
iEP0

(Ni) = t and
∑
i P0(at = i) = 1, a counting argument would give us

|J1| ≥
2N

3
and |J2| ≥

2n

3
and hence |J | ≥ N

3
. Consider any j ∈ J , we will now prove that

if the biased coin is at position j, then the probability of algorithm guessing the biased



coin will not be significantly different from the P0 scenario. By Pinsker’s inequality, we
have

|Pj(at = j)− P0(at = j)| ≤ 1

2

√
2 log 2 ·KL(P0‖Pj), (25)

where KL(P0‖Pj) is the KL divergence of probability distributions P0 and Pj over the
algorithm. Using the chain rule for KL-divergence, we have

KL(P0‖Pj) = EP0
(Nj)KL(p||q),

where p is a Bernoulli distribution with parameter α and q is a Bernoulli distribution
with parameter α+ ε. From Lemma B.1 and (24), we have that Therefore,

KL(P0‖Pj) ≤
4ε2

α
,

Therefore,

Pj(at = j) ≤ P0(at = j) +
1

2

√
2 log 2 ·KL(P0‖Pj)

≤ 3

N
+

1

2

√
(2 log 2)

4ε2

α
EP0(Nj)

≤ 3

N
+
√

2 log 2

√
3tε2

Nα
≤ 1

2
.

(26)

The second inequality follows from (24), while the last inequality follows from the fact
that N > 12 and t ≤ Nα

60ε2 .

Proof of Lemma 5.3 . Let ε =
√

N
60αT . Suppose algorithm A plays coin at at time

t for each t = 1, · · · , T . Since T ≤ Nα
60ε2 , for all t ∈ {1, · · · , T − 1} there exists a set

Jt ⊂ {1, · · · , N} with |Jt| ≥ N
3 such that

∀ j ∈ Jt, Pj(j ∈ St) ≤
1

2

Let i∗ denote the position of the biased coin. Then,

E (µat | i∗ ∈ Jt) ≤
1

2
· (α+ ε) +

1

2
· α = α+

ε

2

E (µat | i∗ 6∈ Jt) ≤ α+ ε

Since |Jt| ≥ N
3 and i∗ is chosen randomly, we have P (i∗ ∈ Jt) ≥ 1

3 . Therefore, we have

µat ≤
1

3
·
(
α+

ε

2

)
+

2

3
· (α+ ε) = α+

5ε

6

We have µ∗ = α+ ε and hence the Regret ≥ Tε
6 .

Proof of Lemma 5.5 Let us label the loop following the `th call toAMNL in Algorithm
2 as `th loop. Then, we show that the total expected regret of AMAB over the arm pulls
in loop ` is

V (S∗)− V (S`)

(K + V (S`))

The lemma statement will then follow from substituting V (S`) ≥ Kα and summing
over ` = 1, . . . , L.



To see above, note that the probability of exiting the loop is p = E[ 12 + 1
2µAt ]

= 1
2 + 1

2KV (S`). In every step of the loop until exited, an arm is pulled with
probability 1/2. The optimal strategy would pull the best arm so that the total ex-
pected optimal reward in the loop is

∑∞
r=1(1− p)r−1 1

2µj =
µj

2p = 1
2KpV (S∗). Algorithm

AMAB pulls a random arm from S`, so total expected algorithm’s reward in the loop is∑∞
r=1(1− p)r−1 1

2KV (S`) = 1
2KpV (S`). Subtracting the algorithm’s reward from optimal

reward, and substituting p, we obtain the above expression for expected regret over
the arm pulls in a loop.

Proof of Lemma 5.6 Now we are ready to prove Theorem 5.1. From the previous two
lemmas, we have

Reg(AMAB , T ) ≤ Reg(AMNL , L) +
εv∗L

(1 + α)2

Now for contradiction suppose that the regret of the AMNL , Reg(AMNL , L) ≤ c

√
N̂L
K

for a constant c to be prescribed in the following. Then, from above,

Reg(AMAB , T ) ≤ c

√
N̂L

K
+

εv∗L

(1 + α)2

From Claim 7, we have that L ≤ 3T with high probability. In what follows, for an easy
understanding of the proof, we assume that the above event occur with probability 1.
It is easy to derive a rigorous proof without this assumption, but we omit that here

due to space constraints. Now, c
√

N̂L
K = c

√
NL ≤ c

√
3NT = cεT

√
3
α < εT

12 on setting
c < 1

12

√
α
3 . Also, using v∗ = α + ε ≤ 2α, and L ≤ 3T , and setting α to be a small

enough constant, we can get that the second term above is also strictly less than εT
12 .

Combining these observations, we have
Reg(AMAB , T ) < εT

12 + εT
12 = εT

6 ,

thus arriving at a contradiction. This proves that Reg(AMNL , L) > c

√
N̂L
K for a con-

stant c.


