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Abstract We consider the problem of designing piecewise affine policies for
two-stage adjustable robust linear optimization problems under right hand
side uncertainty. It is well known that a piecewise affine policy is optimal
although the number of pieces can be exponentially large. A significant chal-
lenge in designing a practical piecewise affine policy is constructing good pieces
of the uncertainty set. Here we address this challenge by introducing a new
framework in which the uncertainty set is “approximated” by a “dominating”
simplex. The corresponding policy is then based on the map from the uncer-
tainty set to the simplex. Although our piecewise affine policy has exponen-
tially many pieces, it can be computed efficiently by solving a compact linear
program. Furthermore, the performance of our policy is significantly better
than the affine policy for many important uncertainty sets both theoretically
and numerically. For instance, for hypersphere uncertainty set, our piecewise
affine policy can be computed by an LP and gives a O(m1/4)-approximation
whereas the affine policy requires us to solve a second order cone program and
has a worst-case performance bound of O(

√
m). To the best of our knowledge,

this is the first tractable approach for designing piecewise affine policies with
significantly improved theoretical performance guarantees.
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1 Introduction

Addressing uncertainty in problem parameters in an optimization problem is a
fundamental challenge in most real world problems where decisions often need
to be made in the face of uncertainty. Stochastic and robust optimization are
two approaches that have been studied extensively to handle uncertainty. In a
stochastic optimization framework, uncertainty is modeled using a probability
distribution and the goal is to optimize an expected objective [15]. We refer the
reader to Kall and Wallace [21], Prekopa [22], Shapiro [23], Shapiro et al. [24]
for a detailed discussion on stochastic optimization. While it is a reasonable
approach in certain settings, it is intractable in general and suffers from the
“curse of dimensionality”. Moreover, in many applications, we may not have
sufficient historical data to estimate a joint probability distribution over the
uncertain parameters.

Robust optimization is another paradigm where we consider an adversarial
model of uncertainty using an uncertainty set and the goal is to optimize over
the worst-case realization from the uncertainty set. This approach was first in-
troduced by Soyster [25] and has been extensively studied in recent past. We
refer the reader to Ben-Tal and Nemirovski [3–5], El Ghaoui and Lebret [16],
Bertsimas and Sim [13,14], Goldfarb and Iyengar [19], Bertsimas et al. [7] and
Ben-Tal et al. [1] for a detailed discussion of robust optimization. Robust opti-
mization leads to a tractable approach where an optimal static solution can be
computed efficiently for a large class of problems. Moreover, designing an un-
certainty set is significantly less challenging than estimating a joint probability
distribution for high-dimensional uncertainty. However, computing an optimal
adjustable (or dynamic) solution for a multi-stage problem is generally hard
even in the robust optimization framework.

In this paper, we consider two-stage adjustable robust linear optimization
problems with covering constraints and uncertain right-hand-side. In particu-
lar, we consider the following model ΠAR(U):

zAR(U) = min cTx+ max
h∈U

min
y(h)

dTy(h)

Ax+By(h) ≥ h ∀h ∈ U
x ∈ Rn1

+

y(h) ∈ Rn2
+ ,

(1.1)

where A ∈ Rm×n1
+ , c ∈ Rn1

+ ,d ∈ Rn2
+ ,B ∈ Rm×n2 . The right-hand-side h

belongs to the uncertainty set U ⊆ Rm+ . The goal in this problem is to select
the first-stage decision x, and the second-stage recourse decision, y(h), as a
function of the uncertain right hand side realization, h such that the worst-
case cost over all realizations of h ∈ U is minimized. We assume without loss
of generality that n1 = n2 = n and the uncertainty set U satisfies the following
assumption.
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Assumption 1. U ⊆ [0, 1]m is convex, full-dimensional with ei ∈ U for all
i = 1, . . . ,m, and down-monotone, i.e., h ∈ U and 0 ≤ h′ ≤ h implies that
h′ ∈ U .

The above assumption is without loss of generality since we can appro-
priately scale the uncertainty set and consider a down-monotone completion
without affecting the two-stage problem (1.1).

We would like to note that the objective coefficients c, d, the first-stage
constraint matrix A, and the decision variables x,y(h) are all non-negative.
This is restrictive as compared to general two-stage linear programs but the
above model still captures many important applications including set cover, fa-
cility location and network design problems under uncertain demand. Here the
right hand side, h models the uncertain demand and the covering constraints
capture the requirement of satisfying the uncertain demand.

The worst case scenario of problem (1.1) occurs on extreme points of U .
Therefore, given an explicit list of the extreme points of the uncertainty set U ,
the adjustable robust optimization problem (1.1) can be solved efficiently by
including the second-stage decisions and the covering constraints only for the
extreme points of U . However, in general the adjustable robust optimization
problem (1.1) is intractable; for example, when the number of extreme points
is large or due to other structural complexities of U . In fact, Feige et al. [18]
show that ΠAR(U) (1.1) is hard to approximate within any factor that is better
than Ω(logm). This motivates us to consider approximations for the problem.
Static robust and affinely adjustable solution approximations have been stud-
ied in the literature for this problem. In a static robust solution, we compute
a single optimal solution (x,y) that is feasible for all realizations of the un-
certain right hand side. Bertsimas et al. [11] relate the performance of static
solution to the symmetry of the uncertainty set and show that it provides a
good approximation to the adjustable problem if the uncertainty is close to
being centrally symmetric. However, the performance of static solutions can
be arbitrarily large for a general convex uncertainty set with the worst case
performance being Ω(m). El Housni and Goyal [17] consider piecewise static
policies for two-stage adjustable robust problem with uncertain constraint co-
efficients. These are a generalization of static policies where we divide the
uncertainty set into several pieces and specify a static solution for each piece.
However, they show that, in general, there is no piecewise static policy with a
polynomial number of pieces that has a significantly better performance than
an optimal static policy.

Ben-Tal et al. [2] introduce an affine adjustable solution (also known as
affine policy) to approximate adjustable robust problems. An affine policy
restricts the second-stage decisions, y(h) to being an affine function of the
uncertain right-hand-side h, i.e., y(h) = Ph + q for some P ∈ Rn×m and
q ∈ Rm are decision variables. An optimal affine policy can be computed
efficiently for a large class of problems and has a strong empirical performance.
Bertsimas et al. [12] and Iancu et al. [20] show that affine policies are optimal
for a class of multistage problems where there is a single parameter uncertain



4 A. Ben-Tal, O. El Housni, V. Goyal

in each period. Bertsimas and Goyal [10] show that affine policies are optimal
if the uncertainty set U is a simplex and give a worst case bound of O(

√
m) on

the performance of affine policy for general uncertainty sets for the adjustable
robust problem (1.1). Moreover, they show that this bound is tight for an
uncertainty set quite analogous to the intersection of the unit `2-norm ball
and the non-negative orthant, i.e.,

U = {h ∈ Rm+ | ||h||2 ≤ 1,h ≥ 0}. (1.2)

Bertsimas and Bidkhori [6] provide improved approximation bounds for affine
policies for ΠAR(U) that depend on the geometric properties of the uncertainty
set.

1.1 Our Contributions.

In this paper, we present a piecewise affine policy for the adjustable prob-
lem (1.1) where we consider pieces Ui, i ∈ [k] of the uncertainty set U such
that Ui ⊆ U and U is covered by the union of all pieces. For each Ui, we have
an affine solution yi(h) for h ∈ Ui. The piecewise affine policy is significantly
more general than static and affine policies and is known to be optimal for
the adjustable robust problem (1.1) if the uncertainty set is a polytope. How-
ever, the number of pieces can be exponentially large. Furthermore, finding
the optimal pieces is intractable in general. In fact, Bertsimas and Carama-
nis [8] show that it is NP-hard to construct the optimal pieces for piecewise
policies with only two pieces for two-stage robust linear programs. In a recent
paper, Bertsimas and Dunning [9] give a MIP based algorithm to adaptively
partition the uncertainty set. However, there are no theoretical guarantees on
the performance or the number of partitions. Our main contributions in this
paper are the following.

New Framework for Piecewise affine policy. We present a new frame-
work to efficiently construct a “good” piecewise affine policy for the adjustable
robust problem. As we mention earlier, one of the significant challenges in de-
signing a piecewise affine policy arises from constructing good pieces of the
uncertainty set. We consider a new approach where instead of directly finding
an explicit partition of U , we approximate U with a “simple” set Û satisfying
the following two properties:

1. the adjustable robust problem (1.1) over Û can be solved efficiently,

2. Û “dominates” U , i.e., for any h ∈ U , there exists ĥ ∈ Û such that h ≤ ĥ.

The domination property of Û preserves the feasibility of the adjustable robust
problem if we consider the uncertainty set Û instead of U . We consider Û
to be a simplex dominating U in our framework. Therefore, the adjustable
robust problem (1.1) over Û can be solved efficiently since Û only has m + 1
extreme points. The piecewise affine policy is constructed from an optimal
adjustable robust solution over Û using a piecewise affine map from h ∈ U
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to a point ĥ that dominates h. We show that the performance of our policy
is significantly better than the affine policy for many important uncertainty
sets both theoretically and numerically. We elaborate on the two ingredients
of designing our piecewise affine policy below, namely, constructing Û and
constructing the piecewise map below.

a) Constructing dominating uncertainty set. Our framework is based
on choosing an appropriate dominating simplex Û based on the geometric
structure of U . We consider Û to be a simplex of the following form

Û = β · conv (e1, . . . , em,v) ,

where β > 0 and v ∈ U are chosen appropriately such that Û domi-
nates U . Solving the adjustable robust problem over Û gives a feasible
solution for the adjustable robust problem over U due to the domina-
tion property. Moreover, the optimal adjustable solution over Û gives a
β-approximation for the adjustable robust problem over U since Û =
β · conv (e1, . . . , em,v) ⊆ β · U . The approximation bound, β, is related
to a geometric scaling factor that represents the Banach-Mazur distance
between U and Û . We would like to note that Û does not necessarily contain
U .
We also give an algorithm to construct the dominating set Û for a gen-
eral uncertainty set U . However, the algorithm requires us to solve an
MIP which is computationally much harder than the case of permutation
invariant sets but can be computed efficiently in practice. Moreover, the
construction of the dominating set Û is independent from the parameters
of the adjustable problem and depends only on the uncertainty set, U .
Therefore, it can be pre-computed offline and used to construct the piece-
wise affine policy for the adjustable problem efficiently.

b) Piecewise affine mapping. We consider the following piecewise affine

mapping that maps any h ∈ U to a dominating point ĥ such that h ≤ ĥ.

ĥ(h) = βv + (h− βv)
+
.

We show that for any h ∈ U , ĥ(h) is contained in the down-monotone
completion of 2 · Û . Our piecewise affine policy is based on the above piece-
wise affine mapping and gives a 2β-approximation for the adjustable robust
problem over U . In our piecewise affine policy, βv is covered by the static
component and (h− βv)

+
is covered by the piecewise linear component

of our policy. This is quite analogous to threshold policies that are widely
used in dynamic optimization. We would like to note that ĥ does not nec-
essarily belong to Û but is contained in the down-monotone completion of
2 · Û and therefore, we get an approximation factor of 2β instead of β. We
can construct a set-dependent piecewise affine map between U and Û that
allows us to construct a piecewise affine policy with a performance bound
of β.
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Given the dominating set, Û , our piecewise affine policy can be computed
efficiently; in fact, it can be computed even more efficiently than an affine
solution over U in many cases because the adjustable problem over Û is a
simple LP with only m + 1 constraints while the affine problem over U is a
general convex program for general convex uncertainty sets.

Performance bounds for Permutation invariant sets. We consider the
class of permutation invariant sets including norm-balls, intersection of norm-
balls and budget of uncertainty sets. This is an important family of uncertainty
sets that are widely used in practice. We show that we can efficiently construct
the dominating set Û and compute the scaling factor β for any permutation
invariant set U . In particular, we give an efficiently computable closed form
expression for computing β and v ∈ U to construct Û . Therefore we can
efficiently construct our piecewise affine solution with a performance bound of
2β(U , Û).

Using this framework, we provide approximation bounds for our piecewise
affine policy that are significantly better than the performance bound of an
optimal affine policy in [6] for many permutation invariant uncertainty sets.
For instance, we show that our policy gives a O(m1/4)approximation for the
two-stage adjustable robust problem (1.1) with hypersphere uncertainty set
as in (1.2), while the affine policy has an approximation bound of O(

√
m) [6].

More generally, the performance bound for our policy for the p-norm ball is

O(m
p−1

p2 ) as opposed to O(m
1
p ) given by an affine policy in [6]. Table 1 sum-

marizes the comparison between the performance bounds for our policy as
compared to the bounds for affine policy in [6]. We also present computa-
tional experiments and observe that our policy outperforms affine policy both
in terms of objective and computation time on the family test of instances
considered.(We would like to note that in [6], in Tables 1 and 2, there is a
typo in the performance bound for affine policies for p-norm balls. According
to Theorem 3 in [6], the bound should be

m
p−1
p +m

m
p−1
p +m

1
p

= O
(
m

1
p

)
,

instead of m
p−1
p +m

m
1
p+m

as mentioned in Table 2 in [6]).

General uncertainty sets. We give an algorithm to construct the domi-
nating set Û and a piecewise affine policy for general uncertainty set U . The
algorithm requires us to solve an MIP which is computationally much harder
than the case of permutation invariant sets but can be computed efficiently in
practice. Moreover, the construction of the dominating set Û is independent
from the parameters of the adjustable problem and depends only on the uncer-
tainty set, U . Therefore, it can be pre-computed offline and used to construct
the piecewise affine policy for the adjustable robust problem efficiently.

We show that our policy gives a O(
√
m)-approximation for general un-

certainty sets which is same as the worst-case performance bound for affine
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No. Uncertainty set Bounds in [6] Our Bounds

1
{
h ∈ Rm+

∣∣ ‖h‖2 ≤ 1
}

O (
√
m) O

(
m

1
4

)
2

{
h ∈ Rm+ | h

TΣh ≤ 1
}

— O
(
m

2
5

)
3

{
h ∈ Rm+

∣∣ ‖h‖p ≤ 1
}

O
(
m

1
p

)
O
(
m

p−1

p2

)
4

{
h ∈ Rm+

∣∣ ‖h‖p ≤ 1, ‖h‖q ≤ r
}

O
(
r−1m

1
q

)
O
(

min
(
r

1−p
p m

p−1
pq , r

1
qm

q−1

q2

))
5

{
h ∈ Rm+

∣∣ ∑m
i=1 hi ≤ k, ∀i ∈ [m] hi ≤ 1

}
O
(
k2+mk
k2+m

)
O
(
min

(
k, mk

))
Table 1 Comparison with performance bounds for affine policies in Bertsimas and Bidkhori
[6]. The ellipsoid in Example 2 is assumed to be permutation invariant set. There is no
specialized bound for this Ellipsoid in [6]. For intersection of norm-balls (Example 4 in the

table), we assume m
1
q
− 1
p ≥ r ≥ 1.

policy. We also show that the bound of O(
√
m) is tight. In particular, we show

that for the budget uncertainty set

U =

{
h ∈ Rm+

∣∣∣∣ m∑
i=1

hi =
√
m, 0 ≤ hi ≤ 1 ∀i ∈ [m]

}
,

the performance bound of our piecewise affine policy is Θ(
√
m). Furthermore,

we show that the bound of Θ(
√
m) holds even if we consider dominating sets

with a polynomial number of extreme points that are significantly more general
than a simplex. While this example shows that the worst-case performance of
our policy is the same as the worst-case performance of the affine policy, we
would like to emphasize that our policy gives a significantly better approxi-
mation than affine policies for many important uncertainty sets as discussed
above.

Outline. In Section 2, we present the new framework for approximating the
two-stage adjustable robust problem (1.1) via dominating uncertainty sets
and constructing piecewise affine policies. In Section 3 we provide improved
approximation bounds for (1.1) for permutation invariant sets. We present
the case of general uncertainty sets in Section 4. In Section 5, we present a
family of lower-bound instances where our piecewise affine policy has the worst
performance bound and finally in Section 6, we present a computational study
to test our policy and compare it to an affine policy over U .

2 Our framework for piecewise affine policies

We present a piecewise affine policy to approximate the two-stage adjustable
robust problem (1.1). Our policy is based on approximating the uncertainty set
U with a simple set Û such that the adjustable problem (1.1) can be efficiently
solved over Û . In particular, we select Û such that it dominates U and it is
close to U . We make these notions precise with the following definitions.

Definition 1 (Domination) Given an uncertainty set U ⊆ Rm+ , Û ⊆ Rm+
dominates U if for all h ∈ U , there exists ĥ ∈ Û such that ĥ ≥ h.
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Definition 2 (Scaling factor) Given a full-dimensional uncertainty set U ⊆
Rm+ and Û ⊆ Rm+ that dominates U . We define the scaling factor β(U , Û) as
following

β(U , Û) = min
{
β > 0 | Û ⊆ β · U

}
.

For the sake of simplicity, we denote the scaling factor β(U , Û) by β in
the rest of this paper. Note that this scaling factor always exists since U is
full-dimensional. Moreover, it is greater than one because Û dominates U . We
would like to emphasize that the dominating set Û does not necessarily contain
U . We illustrate this in the following example.

Example. Consider the uncertainty set U defined in (1.2) which is the inter-
section of the unit `2-norm ball and the non-negative orthant. We show later
in this paper (Proposition 1) that the simplex Û dominates U where

Û = m
1
4 · conv

(
e1, . . . , em,

1√
m
e

)
. (2.1)

In Figures 1 and 2, we demonstrate the sets U and Û for m = 3. Note that Û
does not contain U but only dominates U . This is an important property in
our framework.

Fig. 1 The uncertainty set (1.2) Fig. 2 The dominating set Û (2.1)

The following theorem shows that solving the adjustable problem over
the set Û gives a β-approximation to the two-stage adjustable robust prob-
lem (1.1).

Theorem 1 Consider an uncertainty set U that verifies Assumption 1 and
Û ⊆ Rm+ dominates U ⊆ Rm+ . Let β be the scaling factor of (U , Û). Moreover,

let zAR(U) and zAR(Û) be the optimal values for (1.1) on U and Û , respectively.
Then,

zAR(U) ≤ zAR(Û) ≤ β · zAR(U).
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The proof of Theorem 1 is presented in Appendix A.

2.1 Choice of Û

Theorem 1 provides a new framework for approximating the two-stage ad-
justable robust problem ΠAR(U) (1.1). Note that we require that Û to be such
that it dominates U and ΠAR(Û) can be efficiently solved over Û . In fact, the
latter is satisfied if the number of extreme points of Û is small and explicitly
given (typically polynomial of m). In our framework, we choose the dominating
set to be a simplex of the following form

Û = β · conv (e1, . . . , em,v) , (2.2)

for some v ∈ U . The coefficient β and v ∈ U are chosen such that Û dom-
inates U . For a given Û (i.e., β and v ∈ U), the adjustable robust problem,
ΠAR(Û) (1.1) can be solved efficiently as it can be reduced to the following
LP:

zAR(Û) = min cTx+ z

z ≥ dTyi, ∀i ∈ [m+ 1]

Ax+Byi ≥ βei, ∀i ∈ [m]

Ax+Bym+1 ≥ βv
x ∈ Rn+, yi ∈ Rn+, ∀i ∈ [m+ 1].

2.2 Mapping to dominating points

Consider the following piecewise affine mapping for any h ∈ U :

∀h ∈ U , ĥ(h) = βv + (h− βv)+. (2.3)

We show that this maps any h ∈ U to a dominating point contained in the
down-monotone completion of 2 · Û . First, let us introduce the following struc-
tural result.

Lemma 1 (Structural Result) Consider an uncertainty set U that verifies
Assumption 1. Consider β and v ∈ U such that Û = β · conv (e1, . . . , em,v)
dominates U . Then,

1

β

m∑
i=1

(hi − βvi)+ ≤ 1, ∀h ∈ U . (2.4)

Proof Consider h ∈ U . Since Û dominates U , there exists α1, α2, . . . , αm+1 ≥ 0
with α1 + . . .+ αm+1 = 1 such that

hi ≤ β (αi + αm+1vi) , ∀i = 1, . . . ,m. (2.5)
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Let

I(h) =

{
i ∈ [m]

∣∣∣∣ hi − βvi ≥ 0

}
.

Then,

m∑
i=1

(hi − βvi)+ =
∑
i∈I(h)

hi − β
∑
i∈I(h)

vi

≤
∑
i∈I(h)

β (αi + αm+1vi)− β
∑
i∈I(h)

vi

= β
∑
i∈I(h)

αi + (αm+1 − 1)β
∑
i∈I(h)

vi

≤ β,

where the first inequality follows from (2.5) and the last inequality holds be-
cause αm+1 − 1 ≤ 0, vi ≥ 0 , β ≥ 0 and

∑
i∈I(h) αi ≤ 1. We conclude that

1

β

m∑
i=1

(hi − βvi)+ ≤ 1.

ut

The following lemma shows that the mapping in (2.3) maps any h ∈ U to a
dominating point that belongs to the down-monotne completion of 2 · Û .

Lemma 2 For all h ∈ U , ĥ(h) as defined in (2.3) is a dominating point that
belongs to the down-montone completion of 2 · Û .

Proof It is clear that ĥ(h) dominates h because ĥ(h) ≥ βv + (h − βv) = h.
Moreover, for all h ∈ U , we have

ĥ(h) = βv +
1

β

m∑
i=1

(hi − βvi)+βei.

From Lemma 1,

1 +
1

β

m∑
i=1

(hi − βvi)+ ≤ 2.

Therefore, ĥ(h) belongs to the down-montone completion of 2 · Û . ut
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2.3 Piecewise affine policy

We construct a piecewise affine policy over U from the optimal solution of
ΠAR(Û) based on the piecewise affine mapping in (2.3). Let x̂, ŷ(ĥ) for ĥ ∈ Û
be an optimal solution of ΠAR(Û). Since Û is a simplex, we can compute this
efficiently. We consider the following piecewise affine policy for ΠAR(U) (1.1).

Piecewise affine policy.

x = 2x̂

y(h) =
1

β

m∑
i=1

(hi − βvi)+ ŷ(βei) + ŷ(βv), ∀h ∈ U .
(2.6)

The following theorem shows that the above piecewise affine policy gives a
2β-approximation for ΠAR(U) (1.1).

Theorem 2 Consider an uncertainty set U that verifies Assumption 1 and
Û = β · conv (e1, . . . , em,v) be a dominating set where v ∈ U . The piece-
wise affine solution in (2.6) is feasible and gives a 2β-approximation for the
adjustable robust problem, ΠAR(U) (1.1).

Proof First, we show that the policy (2.6) is feasible. We have,

Ax+By(h) = 2Ax̂+B

(
1

β

m∑
i=1

(hi − βvi)+ ŷ(βei) + ŷ(βv)

)

= (Ax̂+Bŷ(βv)) +Ax̂+
1

β

m∑
i=1

(hi − βvi)+Bŷ(βei)

≥ (Ax̂+Bŷ(βv)) +
1

β

m∑
i=1

(hi − βvi)+ (Bŷ(βei) +Ax̂)

≥ βv +

m∑
i=1

(hi − βvi)+ ei

≥ βv +

m∑
i=1

(hi − βvi) ei = h,

where the first inequality follows from Lemma 1 and the non-negativity of x̂
and A. The second inequality follows from the feasibility of x̂, ŷ(ĥ).
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To compute the performance of (2.6), we have for any h ∈ U ,

cTx+ dTy(h) = 2

(
cT x̂+ dT

(
1

2β

m∑
i=1

(hi − βvi)+ ŷ(βei) +
1

2
ŷ(βv)

))

≤ 2

(
cT x̂+ max

ĥ∈Û
dT ŷ(ĥ)

(
1

2β

m∑
i=1

(hi − βvi)+ +
1

2

))

≤ 2

(
cT x̂+ max

ĥ∈Û
dT ŷ(ĥ)

)
= 2 · zAR(Û),

where the second last inequality follows from Lemma 1. From Theorem 1,
zAR(Û) ≤ β · zAR (U). Therefore, the cost of the piecewise affine policy for any
h ∈ U

cTx+ dTy(h) ≤ 2β · zAR (U) ,

which implies that the piecewise affine solution (2.6) gives 2β-approximation
for the adjustable robust problem, ΠAR(U) (1.1). ut

The above proof shows that it is sufficient to find β and v ∈ U satisfy-
ing (2.4) in Lemma 1 to construct a piecewise affine policy that gives a 2β-
approximation for ΠAR(U) (1.1). Moreover, for any β, v ∈ U satisfying (2.4),
2β · conv (e1, . . . , em,v) dominates U in this case. In particular, we have the
following corollary.

Corollary 1 Consider an uncertainty set U satisfying Assumption 1. Con-
sider any β and v ∈ U satisfying (2.4). Then, the piecewise affine solution in
(2.6) gives a 2β-approximation for the adjustable robust problem, ΠAR(U) (1.1).
Moreover, 2β · conv (e1, . . . , em,v) dominates U .

Proof The first part of the corollary follows directly from the proof of Theorem
2. Let us prove that 2β · conv (e1, . . . , em,v) dominates U . Denote s ≥ 0 such
that

1

β

m∑
i=1

(hi − βvi)+ + s = 1.

For any h ∈ U , let

ĥ =

m∑
i=1

(hi − βvi)+ ei + β(1 + s)v.

Then for all i = 1, . . . ,m,

ĥi = (hi − βvi)+ + β(1 + s)vi

≥ (hi − βvi)+ + βvi ≥ hi.
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Therefore, ĥ dominates h. Moreover,

ĥ = 2β

(
m∑
i=1

(hi − βvi)+

2β
ei +

1 + s

2
v

)
∈ 2β · conv (e1, . . . , em,v) .

We conclude that 2β · conv (e1, . . . , em,v) dominates U . ut

We would like to note that our piecewise affine policy in not necessarily an
optimal piecewise policy. However, for a large class of uncertainty sets, we
show that our policy is significantly better than affine policy and can even be
computed more efficiently than an affine policy.

3 Performance Bounds for Permutation Invariant Sets

In this section, we consider the class of permutation invariant sets includ-
ing norm-balls, intersection of norm-balls and budget of uncertainty sets and
present the performance bounds for our policy. These are widely used sets in
theory and practice and have nice symmetry properties.

Definition 3 (Permutation Invariant Sets) U is a permutation invariant
set if x ∈ U implies that for any permutation τ of {1, 2, . . . ,m}, xτ ∈ U where
xτi = xτ(i).

We first introduce some structural properties of permutation invariant sets.
Consider any permutation invariant set, U satisfying Assumption 1. For all
k = 1, . . . ,m, let

γ(k) =
1

k
·max

{
k∑
i=1

hi

∣∣∣ h ∈ U} . (3.1)

The coefficients, γ(k) for all k = 1, . . . ,m describe the geometric structure of
U . In particular, we have the following lemma.

Lemma 3 Le U be a permutation invariant set and γ(·) be as defined in (3.1).
Then,

γ(k) ·
k∑
i=1

ei ∈ U , ∀k = 1, . . . ,m

We present the proof of Lemma 3 in Appendix B. For the sake of simplicity,
we denote γ(m) by γ in the rest of the paper. From the above lemma, we know
that γ · e ∈ U .
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3.1 Our Piecewise affine policy for Permutations Invariant Sets

For any permutation invariant set U , we consider the following dominating
uncertainty set, Û of the form (2.2) with v = γe, i.e.,

Û = β · conv (e1, e2, . . . , em, γe) (3.2)

where β is the scaling factor such that Û dominates U . The above dominating
set is motivated by the symmetry of the permutation invariant set, U . In this
section, we show that we can efficiently compute the minimum β such that Û
in (3.2) dominates U . In particular, we give an efficiently computable closed
form expression to compute β for any permutation invariant set U .

From Corollary 1 we know that to construct a piecewise affine policy with
an approximation bound of 2β, it is sufficient to find β such that

1

β
max
h∈U

m∑
i=1

(hi − βγ)
+ ≤ 1. (3.3)

Furthermore, any β that satisfy (3.3) implies that 2β ·conv (e1, e2, . . . , em, γe)
dominates U . So, we will concentrate on finding the minimum β that satisfies
(3.3), i.e.,

min

{
β ≥ 1

∣∣∣ 1

β
max
h∈U

m∑
i=1

(hi − βγ)
+ ≤ 1

}
. (3.4)

The following lemma characterizes the structure of the optimal solution for
the maximization problem in (3.3) for a fixed β.

Lemma 4 Consider the maximization problem in (3.3) for a fixed β. There
exists an optimal solution h∗ such that

h∗ = γ(k) ·
k∑
i=1

ei,

for some k = 1, . . . ,m.

We present the proof of Lemma 4 in Appendix C. The following lemma char-
acterizes the optimal β for (3.4).

Lemma 5 Let U a permutation invariant uncertainty set satisfying Assump-
tion 1. Then the optimal solution for (3.4) is given by

β = max
k=1,...,m

γ(k)

γ + 1
k

. (3.5)

Proof Using Lemma 4, we can reformulate (3.4) as follows.

min

{
β ≥ 1

∣∣∣ 1

β
max

k=1,...,m

k∑
i=1

(γ(k)− βγ) ≤ 1

}
,
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i.e.,

min

{
β ≥ 1

∣∣∣ β ≥ γ(k)

γ + 1
k

, ∀k = 1, . . . ,m

}
.

Therefore,

β = max
k=1,...,m

γ(k)

γ + 1
k

.

ut

The above lemma computes the minimum β that satisfies (3.3). Therefore,
from Corollary 1, we have the following theorem.

Theorem 3 Let U be a permutation invariant set satisfying Assumption 1.
Let γ = γ(m) be as defined in (3.1) and β be as defined in (3.5),

Û = β · conv (e1, . . . , em, γe) ,

and let x̂, ŷ(ĥ) for ĥ ∈ Û be an optimal solution for ΠAR(Û) (1.1). Then the
following piecewise affine solution

x = 2x̂

y(h) =
1

β

m∑
i=1

(hi − βγ)
+
ŷ(βei) + ŷ(βγe) ∀h ∈ U ,

(3.6)

gives a 2β-approximation for ΠAR(U) (1.1). Moreover, the set 2 · Û dominates
U .

Therefore, for any permutation invariant uncertainty set, U , we can compute
the piecewise-affine policy for ΠAR(U)(1.1) efficiently; in fact, even more effi-
ciently than an affine policy over U in many cases.

3.2 Examples

We present the approximation bounds for several permutation invariant un-
certainty sets that are commonly used in the literature and practice including
norm balls, intersection of norm balls and budget of uncertainty sets. In par-
ticular, we show that for these sets, the performance bounds of our piecewise
affine policy are significantly better than the best known performance bounds
for affine policy.

Proposition 1 (Hypersphere) Consider the uncertainty set U = {h ∈
Rm+ | ||h||2 ≤ 1} which is the intersection of the unit hypersphere and the
nonnegative orthant. Then,

Û = m
1
4 · conv

(
e1, e2, . . . , em,

1√
m
e

)
,

dominates U and our piecewise affine solution (3.6) gives O(m
1
4 ) approxima-

tion to (1.1).
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Proof We have for k = 1, . . . ,m,

γ(k) =
1

k
·max

{
k∑
i=1

hi| h ∈ U

}
=

1√
k
.

In particular, γ = 1√
m

. From Lemma 5 we get,

β = max
k=1,...,m

γ(k)

γ(m) + 1
k

= max
k=1,...,m

1√
k

1√
m

+ 1
k

.

The maximum of this problem occurs for k =
√
m. Then, β = m

1
4

2 . We con-

clude from Theorem 3 that Û dominates U and our piecewise affine policy
gives O(m

1
4 ) approximation to the adjustable problem (1.1). ut

Proposition 2 (p-norm ball) Consider the p-norm ball uncertainty set U ={
h ∈ Rm+

∣∣ ‖h‖p ≤ 1
}

where p ≥ 1. Then

Û = 2β · conv
(
e1, e2, . . . , em,m

− 1
p e
)

dominates U with

β =
1

p
(p− 1)

p−1
p ·m

p−1

p2 = O(m
p−1

p2 ).

Our piecewise affine solution (3.6) gives O(m
p−1

p2 ) approximation to (1.1).

Proof We have for k = 1, . . . ,m,

γ(k) =
1

k
·max

{
k∑
i=1

hi| h ∈ U

}
= k

−1
p .

In particular, γ = m
−1
p . From Lemma 5 we get,

β = max
k=1,...,m

γ(k)

γ(m) + 1
k

= max
k=1,...,m

k
−1
p

m
−1
p + 1

k

=
1

p
(p− 1)

p−1
p ·m

p−1

p2 = O
(
m

p−1

p2

)
.

We conclude from Theorem 3 that Û dominates U and our piecewise affine

policy gives O(m
p−1

p2 ) approximation to the adjustable problem (1.1). ut
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Proposition 3 (Intersection of two norm balls) Consider U the intersec-
tion of the norm balls U1 =

{
h ∈ Rm+

∣∣ ‖h‖p ≤ 1
}

and U2 =
{
h ∈ Rm+

∣∣ ‖h‖q ≤ r}
where p > q ≥ 1 and m

1
q−

1
p ≥ r ≥ 1. Then

Û = β · conv
(
e1, e2, . . . , em,

(
rm−

1
q

)
e
)
,

where

β = min(β1, β2), β1 = r
1−p
p m

p−1
pq , and β2 = r

1
qm

q−1

q2 .

Our piecewise affine solution (3.6) gives 2β approximation to (1.1).

Proof To prove that Û dominates U1 ∩ U2, it is sufficient to consider h in the
boundary of U1 or U2 and find α1, α2, . . . , αm+1 ≥ 0 with α1 + . . .+αm+1 = 1
such that for all i ∈ [m],

hi ≤ β
(
αi + rm−

1
qαm+1

)
.

Case 1: β = β1.

Let h ∈ U1 such that ‖h‖p = 1, we take αi =
hpi
p for i ∈ [m] and αm+1 = p−1

p .

First, we have
∑m+1
i=1 αi = 1 and for all i ∈ [m],

β
(
αi + rm−

1
qαm+1

)
= β1

(
hpi
p

+
p− 1

p
rm−

1
q

)
≥ β1 (hpi )

1
p

(
rm−

1
q

) p−1
p

= hi,

where the inequality follows from the weighted AM-GM inequality. Therefore
Û dominates U1 ∩ U2.

Case 2: β = β2.

Let h ∈ U2 such that ‖h‖q = r, we take αi =
hqi
rqq for i ∈ [m] and αm+1 = q−1

q .

First, we have
∑m+1
i=1 αi = 1 and for all i ∈ [m],

β
(
αi + rm−

1
qαm+1

)
= β2

(
hqi
rqq

+
q − 1

q
rm−

1
q

)
≥ β2

(
hqi
rq

) 1
q (
rm−

1
q

) q−1
q

= hi,

where the inequality followed from the weighted AM-GM inequality. Therefore,
Û dominates U1 ∩ U2. ut

We also consider a permutation invariant uncertainty set that is the inter-
section of an ellipsoid and the non-negative orthant , i.e.,

U =
{
h ∈ Rm+ | h

TΣh ≤ 1
}

(3.7)
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where Σ � 0. For U to be a permutation invariant set satisfying Assumption
1, Σ must be of the following form

Σ =


1 a . . . a
a 1 . . . a
...

...
. . .

...
a a . . . 1

 (3.8)

where 0 ≤ a ≤ 1.

Proposition 4 (Permutation invariant ellipsoid) Consider the uncer-
tainty set U defined in (3.7) where Σ is defined in (3.8). Then

Û = β · conv (e1, e2, . . . , em, γe) ,

dominates U with

β =

(
a

2
+

(1− a)
1
2

(am2 + (1− a)m)
1
4

)−1
= O

(
m

2
5

)
and

γ =
1√

(am2 + (1− a)m)
.

Our piecewise affine policy (3.6) gives O
(
m

2
5

)
approximation to the adjustable

robust problem (1.1).

The proof of Proposition 4 is presented in Appendix D.

Proposition 5 (Budget of uncertainty set) Consider the budget of un-
certainty set

U =

{
h ∈ Rm+

∣∣ m∑
i=1

hi ≤ k, ∀i ∈ [m], hi ≤ 1

}
.

Then,

Û = β · conv
(
e1, e2, . . . , em,

k

m
e

)
where β = min

(
k, mk

)
. In particular, our piecewise affine policy (3.6) gives 2β

approximation to the adjustable problem (1.1).

The proof of Proposition 5 is presented in Appendix E.
Table 1 summarizes the performance bounds for our piecewise affine policy

and the bounds for affine policy in [6] for these sets. Our piecewise affine
policy performs significantly better than the known bounds for affine policy
for many interesting sets. For instance, our policy gives O(m

1
4 )-approximation

for the hypersphere uncertainty set and O(m
p−1

p2 )-approximation for the p-

norm ball while affine policy gives O(m
1
2 )-approximation for hypersphere and
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O(m
1
p )-approximation for the p-norm ball [6]. We would like to mention that

Table 1 presents the best known performance bounds in the literature for affine
policies [6]. It is possible that for some uncertainty sets, the actual performance
bound for affine policy is better significantly lower.

However, we present a family examples where an optimal affine policy
gives an Ω(

√
m)-approximation, while our policy gives a significantly better

O(m
1
4 )-approximation for the adjustable robust problem (1.1). In particular,

we consider the worst-case examples for affine policy in [10]. For any δ > 0,
Bertsimas and Goyal [10] give a family of examples such that

zAff(U) = Ω(m
1
2−δ) · zAR(U).

The uncertainty set in the family of examples is a polytope with exponential
number of extreme points which is close to the hypersphere. The instance
in [10] is given by

c = 0 d = e

A = 0

Bij =

{
1 if i = j
θ0 otherwise.

for all i, j = 1, . . . ,m

U = conv
(
h0,h1, . . . ,hN

) (3.9)

where θ0 = 1

m
1−δ
2

, r = dm1−δe , N =
(
m
r

)
+m+ 2 and

h0 = 0

hj = ej ∀j = 1, . . . ,m

hm+1 =
1√
m
· e

hm+2 = θ0 · [1, . . . , 1︸ ︷︷ ︸
r

, 0 . . . , 0]

where exactly r coordinates are non-zero, each equal to θ0. Extreme points hj ,
j ≥ m+3 are permutations of the non-zero coordinates of hm+2. Therefore, U
has exactly

(
m
r

)
extreme points of the form of hm+2. Note that all the non-zero

extreme points of U are roughly on the boundaries of the unit hypersphere or
exactly on the boundary of the hypersphere when m1−δ is integer.

Lemma 6 Our piecewise affine policy (2.6) gives an O(m
1
4 )-approximation

for the adjustable robust problem (1.1) for instance (3.9).

Proof Let S be the unit hypersphere intersected with the non-negative orthant.
For any extreme point hj ∈ U , j = 0, . . . , N , ‖hj‖2 ≤

√
2. Therefore, U ⊆√

2 · S. From Proposition 1, we know that m
1
4 · conv

(
e1, e2, . . . , em,

1√
m
e
)

dominates S. Let

Û =
√

2 ·m 1
4 · conv

(
e1, e2, . . . , em,

1√
m
e

)
.
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Therefore, Û dominates U . Moreover,

conv

(
e1, e2, . . . , em,

1√
m
e

)
⊆ U ,

which implies that the scaling factor

β
(
U , Û

)
= O

(
m

1
4

)
.

Therefore, our piecewise affine policy gives O(m
1
4 )-approximation for instance

(3.9) using Û as a dominating set. ut

Since the performance of the affine policy is Ω(m
1
2−δ) for the instance

(3.9), our policy provides a significant improvement. We would like to note
that since Û is a simplex, an affine policy is optimal for ΠAR(Û). In particular,
we have the following

zAR(U) ≤ zAR(Û) = zAff(Û) ≤ O(m1/4) · zAR(U),

where the first inequality follows as Û dominates U and the last inequality
follows from Lemma 6. Moreover, from [10], we know that for instance (3.9),

zAff(U) = Ω(m1/2−δ) · zAR(U).

Therefore,
zAff(U) = Ω(m1/4−δ) · zAff(Û),

which is quite surprising since Û dominates U . We would like to emphasize
that Û does not contain U and this is crucial to get a significant improvement
for our piecewise affine policy constructed through the dominating set.

4 General uncertainty set

In this section, we consider the case of general uncertainty sets. The main
challenge in our framework of constructing the piecewise affine policy is the
choice of the dominating simplex, Û . More specifically, the choice of β and v ∈
U such that β · conv (e1, . . . , em,v) dominates U . For a permutation invariant
set, U , we choose v = γe and we can efficiently find β using Lemma 5 to
construct the dominating set. However, this does not extend to general sets
and we need a new procedure to find those parameters.

Corollary 1 shows that to construct a good piecewise affine policy over U ,
it is sufficient to find β and v ∈ U such that for all h ∈ U

1

β

m∑
i=1

(hi − βvi)+ ≤ 1. (4.1)

In this section, we present an iterative algorithm to find such β and v ∈
U satisfying (4.1). In each iteration t, the algorithm maintains a candidate
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Algorithm 1 Computing β and v for general uncertainty sets

1: Initialize t = 0, u0 = 0

2: while

{
max
h∈U

∑m
i=1 (hi − uti)

+
> t

}
do

3: ht ∈ argmax
h∈U

∑m
i=1 (hi − uti)

+

4: for i = 1, . . . ,m do
5: if uti = 1 then hti = 0
6: end if
7: ut+1

i = min(1, uti + hti)
8: end for
9: t = t+ 1

10: end while
11: return β = t, v = ut

β .

solution, βt and vt ∈ U . Let ut = βt · vt. The algorithm solves the following
maximization problem:

max
h∈U

m∑
i=1

(
hi − uti

)+
(4.2)

The algorithm stops if the optimal value is at most βt. Otherwise, let ht be
an optimal solution for (4.2). The candidate solutions are updated as follows

βt+1 = βt + 1

ut+1
i = min

(
1, uti + hti

)
.

This corresponds to updating vt+1 = 1
βt+1 · ut+1. Algorithm 1 presents the

steps in detail.
The correctness of the algorithm is straightforward. In fact, the algorithm

will stop when the inequality (4.1) is verified for all h ∈ U . The number of
iterations β is finite since U is compact. The following theorem shows that v
returned by the algorithm belongs to U and the corresponding piecewise affine
policy is a O(

√
m)-approximation for the adjustable problem (1.1).

Theorem 4 Suppose Algorithm 1 returns β, v. Then v ∈ U . Furthermore,
the piecewise affine policy (2.6) with parameters β and v gives a O(

√
m)-

approximation for the adjustable problem (1.1).

Proof Suppose Algorithm 1 returns β,v. Note that β is the number of itera-
tions in Algorithm 1. First, we have

uβ ≤
β−1∑
t=0

ht.

Moreover 1
β ·
∑β−1
t=0 h

t ∈ U since U is convex. Therefore v = uβ

β ∈ U by
down-monotonicity of U .
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Let us prove that β = O(
√
m). First, note that, when we set hti = 0 for

uti = 1. The objective of the maximization problem in the algorithm does
not change and ht still belongs to U by down-monotonicity. Then, for any
t = 0, . . . , β − 1

m∑
i=1

(
hti − uti

)+
> t.

Moreover, hti ≥ 0 and uti ≥ 0, hence hti ≥ (hti − uti)
+ and therefore for all

t = 0, . . . , β − 1
m∑
i=1

hti > t.

Then,
β−1∑
t=0

m∑
i=1

hti >

β−1∑
t=0

t =
1

2
β(β − 1). (4.3)

Note that, if uti = 1 at some iteration t, then ht
′

i = 0 for any t′ ≥ t. Hence, for
any i ∈ [m],

β−1∑
t=0

hti ≤ u
β
i + 1 ≤ 2. (4.4)

Hence, from (4.3) and from (4.4) we get, 2m > 1
2β(β−1), i.e., β ·(β−1) ≤ 4m,

which implies, β = O(
√
m). ut

We would like to note that the maximization problem (4.2) that Algo-
rithm 1 solves in each iteration t is not a convex optimization problem. How-
ever, (4.2) can be formulated as the following MIP:

max

m∑
i=1

zi

zi ≤ (hi − uti) + (1− xi) ∀i ∈ [m],

zi ≤ xi ∀i ∈ [m]

zi ≥ 0, ∀i ∈ [m]

xi ∈ {0, 1} ∀i ∈ [m]

h ∈ U .

(4.5)

Therefore, the procedure to find β and v ∈ U to construct the dominating set
for U is computationally much more challenging than the case of permutation
invariant sets. However, we would like to note that the computation of β
and v only depends on the uncertainty set and not on the problem instance.
Therefore, we can compute this offline and use it to efficiently construct a good
piecewise affine policy.

Connection to Bertsimas and Goyal [10]. We would like to note that Al-
gorithm 1 is quite analogous to the explicit construction of good affine policies
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in [10]. The analysis of the O(
√
m)-approximation bound for affine policies is

based on the following projection result (which is a restatement of Lemma 8
and Lemma 9 in [10]).

Theorem 5 [Bertsimas and Goyal 2011] Consider any uncertainty set U
satisfying Assumption 1. There exists β ≤

√
m, v ∈ U such that∑

j:βvj<1

hj ≤ β, ∀h ∈ U .

Suppose J = {j | βvj < 1}. The affine solution in [10] covers βv using the
static component and the components J using a linear solution. The linear
solution does not exploit the coverage of βvi for i ∈ J from the static solution.
The approximation factor is O(β) since for all h ∈ U ,

∑
j∈J hj ≤ β.

Our piecewise affine solution given by Algorithm 1 finds analogous β, v ∈ U
such that

m∑
i=1

(hi − βvi)+ ≤ β, ∀h ∈ U .

In the piecewise affine solution, the static component covers βv and the re-
maining demand (h − βv)+ is covered by a piecewise-linear function that
exploits the coverage of βv. This allows us to improve significantly as com-
pared to the affine policy for a large family of uncertainty sets. We would like
to note again that our policy is not necessarily an optimal one and there can
be examples where affine policy is better than our policy.

5 Worst case example for the domination policy

From Theorem 4, we know that our piecewise affine policy gives an O(
√
m)-

approximation for the adjustable robust problem (1.1). In this section, we
show that this bound is tight for a budget of uncertainty set. In particular, we
consider the following budget of uncertainty set with a budget equal to

√
m:

U =

{
h ∈ Rm+

∣∣∣∣ m∑
i=1

hi =
√
m, 0 ≤ hi ≤ 1 ∀i ∈ [m]

}
. (5.1)

We show that our dominating simplex based piecewise affine policy gives
an Ω(

√
m)-approximation to the adjustable robust problem (1.1). The lower

bound of Ω(
√
m) holds even when we consider more general dominating sets

than simplex. We show that for any ε > 0, there is no polynomial number of
points in U such that the convex hull of those points scaled by m

1
2−ε dominates

U . In particular, we have the following theorem.

Theorem 6 Given any 0 < ε < 1/2, and k ∈ N, consider the budget of
uncertainty set, U (5.1) with m sufficiently large. Let P (m) ≤ mk. For any
z1, z2, . . . zP (m) ∈ U , the set

Û = m
1
2−ε · conv

(
z1, z2, . . . zP (m))

)
,

does not dominate U .



24 A. Ben-Tal, O. El Housni, V. Goyal

Proof Suppose for a sake of contradiction that there exists z1, z2, . . . ,zP (m) ∈
U such that Û = m

1
2−ε · conv

(
z1, z2, . . . zP (m)

)
dominates U .

By Caratheodory’s theorem, we know that any point in U can be expressed
as a convex combination of at most m+ 1 extreme points of U . Therefore

Û ⊆ m 1
2−ε · conv

(
y1,y2, . . . ,yQ(m))

)
,

where y1,y2, . . . ,yQ(m) are extreme points of U and

Q(m) ≤ (m+ 1) · P (m) = O(mk+1).

Consider any I ⊆ {1, 2, . . . ,m} such that |I| =
√
m. Let h be an extreme

point of U corresponding to I, i.e.,t hi = 1 if i ∈ I and hi = 0 otherwise. There
exists ĥ ∈ Û such that h ≤ ĥ. Let

ĥ = m
1
2−ε

Q(m)∑
j=1

αjyj ,

where
∑Q(m)
j=1 αj = 1 and αj ≥ 0 for all j = 1, 2, . . . , Q(m). Therefore,

1 ≤ m 1
2−ε

Q(m)∑
j=1

αjyji, ∀i ∈ I.

Summing over i ∈ I, we have,

√
m = |I| ≤ m 1

2−ε
∑
i∈I

Q(m)∑
j=1

αjyji.

Therefore,

mε ≤
Q(m)∑
j=1

αj
∑
i∈I

yji,

≤
Q(m)∑
j=1

αj max
j=1,2,...,Q(m)

∑
i∈I

yji

= max
j=1,2,...,Q(m)

∑
i∈I

yji.

Let F =
{
I ⊆ {1, 2, . . . ,m}

∣∣ |I| = √m}. Note that the cardinality of F is

|F| =
(
m√
m

)
.

For any I ∈ F there exists y ∈ {y1,y2, . . .yQ(m)} such that∑
i∈I

yi ≥ mε.
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Therefore, there exists y ∈ {y1,y2, . . .yQ(m)} and F̃ ⊆ F such that

|F̃ | ≥ 1

Q(m)

(
m√
m

)
, and

∑
i∈I

yi ≥ mε, ∀I ∈ F̃ .

(5.2)

Note that y is an extreme point of U . Hence, y has exactly
√
m ones and

the remaining components are zeros. The maximum cardinality of the subsets
I ⊆ [m] that satisfy (5.2) is

k=
√
m∑

k=mε

(√
m

k

)
·
(
m−

√
m√

m− k

)
.

By over counting, the above sum can be upper-bounded by(√
m

mε

)
·
(
m−mε

√
m−mε

)
.

Therefore, (√
m

mε

)
·
(
m−mε

√
m−mε

)
≥ |F̃| ≥ 1

Q(m)

(
m√
m

)
Then, (√

m
mε

)
·
(
m−mε√
m−mε

)(
m√
m

) ≥ 1

Q(m)
. (5.3)

which is a contradiction (see Appendix F). ut

6 Computational study

In this section, we present a computational study to compare the performance
of our policy with affine policies both in terms of objective value and compu-
tation times.

Experimental setup. We consider three different uncertainty sets for our
computational experiments, namely, i) hypersphere uncertainty set (1.2), ii)
p-norm ball with p = 3, and iii) p-norm ball with p = 3/2 defined in Propo-
sition 2. The test instances of the adjustable robust problem (1.1) are con-
structed as follows. We choose n = m, c = d = e and A = B where B is
randomly generated as

B = Im +G,

where Im is the identity matrix and G is a random normalized gaussian. In
particular, for the hypersphere uncertainty set,Gij = |Yij |/

√
m, for the 3-norm

ball, Gij = |Yij |/m
1
3 and for the 3

2 -norm ball uncertainty set, Gij = |Yij |/m
2
3 ,
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m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)
10 0.955 1.021 0.835 1.004 0.997 0.978 0.965 0.108 0.517
20 1.115 1.156 1.054 1.145 1.142 1.134 1.118 0.139 1.162
30 1.218 1.259 1.174 1.248 1.240 1.233 1.220 0.183 2.709
40 1.289 1.345 1.242 1.317 1.314 1.303 1.290 0.212 9.300
50 1.347 1.378 1.312 1.375 1.372 1.358 1.348 0.247 21.178
60 1.400 1.443 1.368 1.423 1.419 1.410 1.400 0.323 47.485
70 1.446 1.476 1.416 1.466 1.461 1.455 1.449 0.330 112.863
80 1.486 1.517 1.463 1.502 1.498 1.492 1.485 0.404 211.143
90 1.524 1.553 1.503 1.541 1.537 1.531 1.523 0.485 434.059
100 1.555 1.579 1.538 1.572 1.569 1.564 1.555 0.591 965.120

Table 2 Comparison on the performance and computation time of affine policy and our
piecewise affine policy for the hypersphere uncertainty set. For 100 instances, we compute
zAff (U)
zp−aff (U)

and present the average, min, max ratios and the percentiles 5%, 10%, 25%, 50%.

Here, Tp−aff(s) denotes the running time for our piecewise affine policy and Taff(s) denotes
the running time for affine policy in seconds.

m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)
10 0.975 1.051 0.895 1.040 1.026 0.993 0.972 0.157 1.729
20 1.085 1.162 1.018 1.123 1.114 1.101 1.086 0.184 4.063
30 1.161 1.203 1.111 1.197 1.187 1.177 1.160 0.192 9.597
40 1.220 1.253 1.168 1.247 1.241 1.230 1.221 0.218 21.053
50 1.267 1.298 1.224 1.291 1.285 1.277 1.267 0.266 53.371
60 1.310 1.336 1.284 1.330 1.327 1.320 1.312 0.304 130.348
70 1.346 1.371 1.322 1.367 1.362 1.355 1.346 0.356 287.014
80 1.378 1.400 1.349 1.395 1.393 1.386 1.379 0.444 616.678
90 1.408 1.428 1.384 1.423 1.420 1.414 1.408 0.535 1144.954
100 1.436 1.451 1.419 1.445 1.444 1.440 1.436 0.637 2214.153

Table 3 Comparison on the performance and computation time of affine policy and our
piecewise affine policy for the 3-norm ball uncertainty set.

m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)
10 0.910 0.963 0.857 0.950 0.943 0.927 0.910 0.146 1.516
20 1.031 1.071 0.990 1.057 1.050 1.041 1.033 0.179 3.665
30 1.111 1.136 1.088 1.128 1.126 1.118 1.110 0.200 8.593
40 1.175 1.192 1.156 1.189 1.188 1.181 1.175 0.222 20.355
50 1.225 1.245 1.211 1.236 1.233 1.230 1.226 0.315 57.618
60 1.267 1.280 1.255 1.277 1.274 1.271 1.268 0.294 109.963
70 1.304 1.318 1.293 1.310 1.309 1.306 1.304 0.352 224.721
80 1.335 1.346 1.323 1.341 1.339 1.337 1.335 0.448 419.427
90 1.363 1.373 1.355 1.369 1.369 1.365 1.363 0.568 824.759
100 1.387 1.394 1.378 1.393 1.392 1.390 1.387 0.680 1595.490

Table 4 Comparison on the performance and computation time of affine policy and our
piecewise affine policy for the 3/2-norm ball uncertainty set.
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Fig. 3 The ratio r =
zAff (U)
zp−aff (U)

for different values of m and different uncertainty sets:

hypersphere, 3-norm ball and 3/2-norm ball.

where Yij is i.i.d. standard gaussian. We consider values of m from m = 10 to
m = 100 in increments of 10 and consider 100 instances for each value of m.

We construct the piecewise affine policy based on the dominating sim-
plex Û as described in Proposition 1 and Proposition 2 . Let zp−aff(U) denote
the worst-case objective value of our piecewise affine police. Note that the
piecewise affine policy over U is computed by solving the adjustable robust

problem over Û and zp−aff(U) = zAR(Û). We report the ratio r = zAff(U)
zp−aff(U)

in Tables 2, 3 and 4 for the hypersphere, 3-norm ball and 3/2-norm ball un-
certainty sets respectively. In particular, for each value of m, we report the
average ratio Avg, the maximum ratio Max, the minimum ratio Min. the quan-
tiles 5%, 10%, 25%, 50% for the ratio r, and the running time of our policy
Tp−aff(s) and the running time of affine policy Taff(s).

Results. We observe in the computational experiments that the piecewise
affine policy performs significantly better than affine policy for our family of
test instances. The gap between our piecewise affine policy and affine policy

increases as m increases. In Figure 3, we observe that the ratio r = zAff(U)
zp−aff(U)

increases significantly with m which implies that our policy has a significant
improvement over affine policy for large values of m. We also observe that the
gap for the hypersphere uncertainty set is larger than the one for the norm-
balls. This matches the theoretical bounds presented in Table 1. We would like
to note that for small values of m (in particular, m = 10), the performance
of affine policy is better than our policy. This is because our policy is not an
optimal piecewise affine policy and there are instances where an affine policy
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Fig. 4 Running time of affine policy in seconds for different values of m and different
uncertainty sets: hypersphere, 3-norm ball and 3/2-norm ball.

performs significantly better. However, for large values of m, the performance
of our policy is significantly better for all three classes of uncertainty sets.

Furthermore, our policy scales very well and the average running time is
less than one second even for large values of m. On the other hand, computing
the optimal affine policy over U becomes computationally challenging as m
increases. For instance, the average running time for computing an optimal
affine policy for m = 100 is around 16 minutes for the hypersphere uncertainty
set, around 36 minutes for the 3-norm ball and around 26 minutes for the 3/2-
norm ball. Whereas, our policy can be computed in less than 1 second for
all instances on average. Figure 4 gives the running time of affine policy for
different values of m and as we can observe this running time becomes very
high for large values of m.

7 Conclusions

In this paper, we present a new tractable framework for designing good piece-
wise affine policies for two-stage adjustable robust optimization problem. Our
framework is based on approximating the uncertainty set by a simplex and
constructing a piecewise affine policy based on the map from the uncertainty
set to the simplex. We show that our piecewise affine policy performs sig-
nificantly better than affine policy for many important uncertainty sets both
theoretically and numerically. To the best of our knowledge, this is the first
tractable framework for designing piecewise affine policies with significantly
better theoretical guarantees than affine policies in many cases. While our
policy improves over affine policy in many cases, we show that the worst case
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performance bound for our policy is Θ(
√
m) for the case of budget of uncer-

tainty set with budget equal to
√
m. Therefore, it is an interesting open ques-

tion to design piecewise affine policies that significantly improve over affine in
the worst-case.
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A Proof of Theorem 1

Proof Let (x̂, ŷ(ĥ), ĥ ∈ Û) be an optimal solution for zAR(Û). For each h ∈ U , let ỹ(h) =

ŷ(ĥ) where ĥ ∈ Û dominates h. Therefore, for any h ∈ U ,

Ax̂ + Bỹ(h) = Ax̂ + Bŷ(ĥ) ≥ ĥ ≥ h,

i.e., (x̂, ỹ(h),h ∈ U) is a feasible solution for zAR(U). Therefore,

zAR(U) ≤ cT x̂ + max
h∈U

dT ỹ(h) ≤ cT x̂ + max
ĥ∈Û

dT ŷ(ĥ) = zAR(Û).

Conversely, let (x∗,y∗(h),h ∈ U) be an optimal solution of zAR(U). Then, for any ĥ ∈ Û ,

since ĥ
β
∈ U , we have,

Ax∗ + By∗

(
ĥ

β

)
≥

ĥ

β
,

Therefore, (βx∗, βy∗
(

ĥ
β

)
, ĥ ∈ U) is feasible for ΠAR(Û). Therefore,

zAR(Û) ≤ cT βx∗ + max
ĥ∈Û

dT βy∗

(
ĥ

β

)
≤ β ·

(
cTx∗ + max

h∈U
dTy∗(h)

)
= β · zAR(U).

ut

B Proof of Lemma 3

Proof Suppose k ∈ [m]. Let us consider

h ∈ argmax
h∈U

k∑
i=1

hi.

Without loss of generality, we can suppose that hi = 0 for i = k + 1, . . . ,m. Denote, Sk
the set of permutations of {1, 2, . . . , k}. We define hσ ∈ Rm+ such that hσi = hσ(i) for
i = 1, . . . , k and hσi = 0 otherwise. Since U is a permutation invariant set, we have hσ ∈ U
for any σ ∈ Sk. The convexity of U implies that

1

k!

∑
σ∈Sk

hσ ∈ U .

We have, ∑
σ∈Sk

hσi =

{
(k − 1)! ·

∑k
j=1 hj if i = 1, . . . , k

0 otherwise,

and
∑k
j=1 hj = k · γ(k) by definition. Therefore,

1

k!

∑
σ∈Sk

hσ = γ(k) ·
k∑
i=1

ei ∈ U .

ut
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C Proof of Lemma 4

Proof Consider, h̃ ∈ U an optimal solution for the maximization problem in (3.3) for fixed
β. We will construct h∗ ∈ U another optimal solution of (3.3) that verifies the properties in
the lemma. First, denote I = {i | h̃i > βγ} and |I| = k. Since, U is permutation invariant,
we can suppose without loss of generality that I = {1, 2, . . . , k}. We define,

h∗i =

{
γ(k) if i = 1, . . . , k
0 otherwise.

From Lemma 3, we have h∗ ∈ U . Moreover,

m∑
i=1

(h̃i − βγ)+ =

k∑
i=1

h̃i − βγk ≤ k · γ(k)− βγk

=
k∑
i=1

(γ(k)− βγ) =
k∑
i=1

(h∗i − βγ)

≤
k∑
i=1

(h∗i − βγ)+ =

m∑
i=1

(h∗i − βγ)+

where the first inequality follows from the definition of the coefficients γ(.). Therefore, h∗

and h̃ have the same objective value in (3.3) and consequently h∗ is also optimal for the
maximization problem (3.3). Moreover, from the first inequality, we have γ(k)−βγ > 0, i.e.,∣∣{i | h∗i > βγ}

∣∣ = k. Therefore, h∗ verifies the properties of the lemma. ut

D Proof of Proposition 4

Proof To prove that Û dominates U , it is sufficient to take h in the boundaries of U , i.e.,

a

m∑
i=1

hi

m∑
j=1

hj + (1− a)

m∑
i=1

h2i = 1, (D.1)

and find α1, α2, . . . , αm+1 nonnegative reals with
∑m+1
i=1 αi = 1 such that for all i ∈ [m],

hi ≤ β (αi + γαm+1) .

By taking all hi equal in (D.1), we get

γ =
1√

(am2 + (1− a)m)
.

We choose for i ∈ [m],

αi =
1

2

(1− a)h2i + ahi

m∑
j=1

hj
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and αm+1 = 1
2
. First, we have

∑m+1
i=1 αi = 1 and for all i ∈ [m],

β (αi + γαm+1) =
β

2

(1− a)h2i + ahi

m∑
j=1

hj +
1√

am2 + (1− a)m


≥
β

2

(
(1− a)h2i +

1√
am2 + (1− a)m

+ ahi

)

≥
β

2

2

(
(1− a)√

am2 + (1− a)m

) 1
2

hi + ahi

 = hi

where the first inequality holds because
∑m
j=1 hj ≥ 1 which is a direct consequence of

hTΣh = 1 and a ≤ 1. The second one follows from AM-GM inequality. Finally, we can
verify by case analysis on the values of a that(

a

2
+

(1− a)
1
2

(am2 + (1− a)m)
1
4

)−1

= O
(
m

2
5

)
.

ut

E Proof of Proposition 5

Proof To prove that Û dominates U , it is sufficient to take h in the boundaries of U , i.e.,∑m
i=1 hi = k and find α1, α2, . . . , αm+1 non-negative reals with

∑m+1
i=1 αi = 1 such that for

all i ∈ [m],

hi ≤ β
(
αi +

k

m
αm+1

)
.

First case: If β = k, we choose αi = hi
k

for i ∈ [m] and αm+1 = 0. We have
∑m+1
i=1 αi = 1

and for all i ∈ [m],

β

(
αi +

k

m
αm+1

)
= k

hi

k
≥ hi.

Second case: If β = m
k

, we choose αi = 0 for i ∈ [m] and αm+1 = 1. We have
∑m+1
i=1 αi = 1

and for all i ∈ [m],

β

(
αi +

k

m
αm+1

)
= 1 ≥ hi.

ut

F Proof of Theorem 6

Proof Let us find the order of the left hand side ratio in inequality (5.3). We have,(√m
mε

)
·
( m−mε√

m−mε
)( m√

m

) =
(
√
m)!× (m−mε)!× (m−

√
m)!× (

√
m)!

(
√
m−mε)!× (mε)!×m!× (

√
m−mε)!× (m−

√
m)!

=

(
(
√
m)!

(
√
m−mε)!

)2

·
(m−mε)!
(mε)!×m!

.
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By Stirling’s approximation, we have

(√
m
)
! = Θ

(
m

1
4

(√
m

e

)√m)
.

(√
m−mε

)
! = Θ

(
(
√
m−mε)

1
2

(√
m−mε

e

)√m−mε)
.

(m−mε)! = Θ

(
(m−mε)

1
2

(
m−mε

e

)m−mε)
.

(m)! = Θ
(
m

1
2

(m
e

)m)
.

(mε)! = Θ

(
m

1
2
ε

(
mε

e

)mε)
.

All together,(√m
mε

)
·
( m−mε√

m−mε
)( m√

m

) = Θ

 (√
m
)2√m · (m−mε)(m−mε)

m
1
2
ε ·
(√
m−mε

)2(√m−mε) ·mm ·mεmε
 .

We have

(m−mε)(m−m
ε) = Θ

(
m(m−mε) · e−m

ε+m2ε

m

)
,

and (√
m−mε

)2(√m−mε) = Θ

((√
m
)2(√m−mε) · e−2mε+2m

2ε
√
m

)
,

WLOG, we can suppose that ε < 1
4

, therefore

(√m
mε

)
·
( m−mε√

m−mε
)( m√

m

) = Θ

 e
mε−2m

2ε
√
m

+m2ε

m

mεm
ε+ 1

2
ε


= Θ

(
em

ε

mεm
ε+ 1

2
ε

)
.

We have,

Θ

(
Q(m)em

ε

mεm
ε+ 1

2
ε

)
≥ 1,

but the later inequality contradicts

lim
m→∞

Q(m)em
ε

mεm
ε+ 1

2
ε

= 0.

ut


