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Abstract

We consider the problem of minimizing a class of quasi-concave functions over a convex set. Quasi-
concave functions are a generalization of concave functions and thus, NP-hard to minimize in general.
We present a simple fully polynomial time approximation scheme (FPTAS) for minimizing a fairly gen-
eral class of low-rank quasi-concave functions. Our algorithm is based on solving a polynomial number
of linear minimization problems with appropriate objectives and computes a near-optimal solution that is
an extreme point of the convex set. Therefore, it applies directly to combinatorial 0-1 problems for which
the convex hull of feasible solutions is known, such as shortest paths, spanning trees and matchings in
undirected graphs.

Key words: Quasi-concave programming; non-linear programming; non-convex programming; poly-
nomial approximation schemes.

1 Introduction
In this paper, we consider the problem of minimizing a class of low-rank quasi-concave functions over a
convex set. Quasi-concave functions are a generalization of concave functions that arise in many important
applications such as modeling economies of scale in inventory management and supply chain management
problems through concave or quasi-concave procurement costs. Moreover, several important optimization
problems can be formulated as concave minimization problems including 0-1 integer programming [25],
quadratic assignment [17], and [3], bilinear programming [13] and linear complementary problem [18].
Therefore, concave or quasi-concave minimization forms an important class of non-convex optimization
problems that are computationally intractable in general.

In this paper, we consider the problem of minimizing a low-rank quasi-concave function over a compact
convex set. Let us first introduce a few definitions.

Definition 1.1 A function f : P → R over a convex set P is quasi-concave if and only if the upper level set

Uλ = {x ∈ P | f(x) ≥ λ},

is convex for all λ ∈ R.

Note that any function that is concave is also quasi-concave; however, the converse is not true. For example,
f(x1, x2) = x1x2 is a quasi-concave function in R2

+ but is not concave [1]. Therefore, quasi-concave
functions are a generalization of concave functions.
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Concave minimization is NP-hard even for the special case of minimizing a concave quadratic function
over a hypercube [8]. Since the general concave minimization problem is hard, special cases of the problem
have been of interest. To discuss the special cases, we first introduce the notion of a rank of a function
following [15], and [24].

Definition 1.2 The rank of a function f : Rn → R is the smallest integer k such that,

f(x) = g(aT1 x,a
T
2 x, . . . ,a

T
k x),∀x ∈ Rn,

for some function g : Rk → R and linearly independent vectors a1,a2, . . . ,ak ∈ Rn.

Below are some examples to illustrate the notion of the rank of a function.

1. If f(x) = (aT1 x)(aT2 x) where a1 and a2 are linearly independent, then f has rank two.

2. If f(x) = Πk
i=1(a

T
i x) where k ≥ 1 and a1, . . . ,ak are linearly independent, then f has rank k.

3. If f(x) =
aT
1 x

aT
2 x

where a1 and a2 are linearly independent and aT2 x 6= 0, then f has rank two.

The problem of minimizing low-rank concave functions has been extensively studied in the literature. While
one might think that the special case of constant-rank functions are easy to optimize, Pardalos and Vava-
sis [23] show that even minimizing a quadratic function of rank two over a polytope is NP-hard. Matsui [19]
proves an even stronger version where he shows that minimizing the product of two strictly positive linear
functions over a polytope is NP-hard. Therefore, it is natural to study algorithms that compute near-optimal
solutions. This has received considerable interest in the literature both from a point of view of designing
computationally efficient heuristics as well as designing polynomial time algorithms with provable perfor-
mance bounds.

Konno et al. [14] consider the low-rank concave quadratic minimization problem and propose a tabu-
search heuristic to solve the problem. Porembski [24] considers a generalization of the low-rank concave
quadratic functions where the objective function is non-linear for a small number of variables and propose
a cutting plane solution approach. Several other solution approaches including enumeration (see for in-
stance [2] and [5]) and cutting plane methods [28] have been studied in the literature. We refer the reader to
surveys by Horst and Pardalos [10] and Pardalos and Rosen [22] for an extensive discussion. The above so-
lution approaches are efficient heuristics but do not provide any bounds on the running time or performance.

There has been extensive work from the perspective of designing efficient algorithms with provable per-
formance bounds as well. Vavasis [29] gives an approximation scheme for low-rank quadratic optimization
problems. However, the notion of approximation algorithm is different from the one we use in this paper.
In [29], a solution x̂ is an ε-approximate solution for the problem of minimizing a function f if

f(x̂) ≤ (1− ε)f(x∗) + εM,

where M = maxx f(x). Therefore, any solution is 1-approximation according to this definition. On the
other hand, we consider the standard notion of relative approximation ratio where a solution x̂ is a (1 + ε)-
approximation if

f(x̂) ≤ (1 + ε)f(x∗).

Kern and Woeginger [12] consider the problem of minimizing a product of two linear functions and give an
FPTAS for the problem. Recall that product of two linear functions is a quasi-concave function of rank 2.

Kelner and Nikolova [11] and Mittal and Schulz [20] are two recent papers that are most closely related
to our work. Kelner and Nikolova [11] propose an approximation scheme with polynomial smoothed com-
plexity for the low-rank quasi-concave minimization problem if the objective function satisfies a Lipschitz
condition with respect to the L1-norm with a polynomially bounded coefficient, i.e.,

|f(x)− f(y) ≤ φ(n) · |x− y|1, ∀ x,y,



where φ(·) is a fixed polynomial and n is the dimension of the decision space. They also show that it is
NP-hard to approximate the general quasi-concave minimization problem by a ratio better than O(log n)
unless P =NP. In our results, we do not require a Lipschitz condition on the objective but we do assume
that the objective function satisfies certain scalability properties described later. The two assumptions are
similar in spirit but are independent. It is possible that a function satisfies our assumption of scalability but
not the Lipschitz condition of [11] and vice-versa. Moreover, our algorithm is a deterministic polynomial
time algorithm and is based on solving several linear minimization problems with appropriate objectives
that are based on the gradient of the original function. This approach provides geometric insights for the
concave and quasi-concave minimization that are of independent interest and can be useful in designing
practical algorithms for more general concave minimization problems.

In another recent paper, Mittal and Schulz [20] independently propose an FPTAS for optimizing a class
of low-rank functions (not necessarily quasi-concave). Their algorithm is based on considering the projec-
tion in the low-rank subspace and solve feasibility problems at the set of appropriately chosen grid points.
While such an algorithm works for minimizing more general functions than just quasi-concave, the al-
gorithm does not give an extreme point solution if the function is quasi-concave. To obtain an extreme
point solution for quasi-concave functions, the authors refer to results of Diakonikolas and Yannakakis [6]
who construct an approximate pareto optimal curves efficiently in the context of multi-objective optimiza-
tion. The problem of constructing an approximate pareto optimal set for multi-objective optimization is
also closely related and has been studied extensively (see Safer and Orlin [27], Papadimitriou and Yan-
nakakis [21]). Moreover, the FPTAS presented in our paper is more efficient for quasi-concave functions
and we compare the running time in Section 2. Also, as mentioned earlier, our algorithm is based on solving
a polynomial number of appropriately chosen linear optimization problems and this technique could be of
independent interest.

1.1 Model and Assumptions
We consider the problem of minimizing a quasi-concave function f : Rn+ → R+ of rank k over a compact
convex set P ⊂ Rn+. Since f has rank k, there exists g : Rk → R+ and a1, . . . ,ak ∈ Rn such that

f(x) = g(aT1 x, . . . ,a
T
k x), ∀x ∈ Rn+. (1.1)

We assume that a1, . . . ,ak ≥ 0. We further assume that g satisfies the following conditions.

(P1) The gradient∇g ≥ 0 for all y ∈ Rk+, i.e. partial derivative

gyi =
∂g

∂yi
≥ 0,∀i = 1, . . . , k, ∀y ∈ Rk+

(P2) g(αy) ≤ αcg(y) for all α ≥ 1 and some constant c.

(P3) aTi x > 0 for all i = 1, . . . , k, x ∈ P .

The second assumption is similar in spirit to the Lipschitz condition assumed in [11]. The above conditions
are satisfied by a large class of quasi-concave functions that include linear multiplicative functions [16] and
utility functions from microeconomics theory such as Leontief utilities and Cobb-Douglas utilities [7]. We
can now state our minimization problem, Π, as follows.

min
x∈P

f(x) = min
x∈P

g(aT1 x, . . . ,a
T
k x). (1.2)

The following result about the minimum of quasi-concave functions is well known (for instance, see Bert-
sekas et al. [4]).



Proposition 1.3 (Bertsekas et al. [4]) The minimum of a quasi-concave function over a compact convex set
is attained at an extreme point of the set.

In this paper, we present an FPTAS for the above problem where k is a constant and g satisfies (P1), (P2)
and (P3) and relies on the above proposition. The basic idea of the algorithm is as follows. For a polynomial
number of values of λ ∈ R, we consider level curves, Uλ of g, where

Uλ = {y | g(y) = λ}.

For each level curve, we solve a polynomial number of linear optimization problems with appropriate ob-
jective functions that depend on the gradient of the function on the level curve. Using the properties of
quasi-concavity and the fact that g satisfies (P1), (P2), and (P3), we prove that considering a polynomial
number of different values of λ is sufficient to find a near-optimal solution to Π that is also an extreme point
of P . Our results can also be extended to the problem of maximizing low-rank quasi-convex functions under
similar assumptions.
Outline. In Section 2, we describe our FPTAS for minimizing constant rank quasi-concave functions. We
discuss applications of our algorithm to combinatorial problems in Section 3.

2 (1 + ε)-Approximation Algorithm
We present a fully polynomial time approximation scheme (FPTAS) for the problem Π (1.2) in this section.
Since f has rank k and can be expressed using g : Rk → R using an affine transformation through vectors
a1, . . . ,ak, we can reformulate Π as follows. Let

A = [a1 a2 · · · ak],

and
Pk = {ATx | x ∈ P}. (2.1)

Now, Π can be equivalently expressed as,

min g(y)

s.t. y ∈ Pk.
(2.2)

Note that Pk ⊂ Rk+ since P ⊂ Rn+ and a1, . . . ,ak ∈ Rn+. From any solution, y ∈ Pk, we can construct a
solution x ∈ P by solving a linear feasibility problem. We first show that g is also a quasi-concave function.

Lemma 2.1 Let the function g be as defined in (1.1). If the function f is quasi-concave, then g is also
quasi-concave.

Proof: Consider any λ ∈ R and consider the upper level set,

Ugλ = {y ∈ Pk | g(y) ≥ λ}.

Consider any y1,y2 ∈ Uλ and 0 ≤ α ≤ 1 and let ŷ = αy1 + (1 − α)y2. We need to prove that ŷ ∈ Pk.
There exist x1,x2 ∈ P such that g(yj) = f(xj) ≥ λ and yj = ATxj , j = 1, 2. Let

Ufλ = {x ∈ P | f(x) ≥ λ}.

Since f is quasi-concave, Ufλ is convex. Therefore, x̂ = αx1 + (1 − α)x2 ∈ P which implies f(x̂) ≥ λ.
Now,

ŷ = αy1 + (1− α)y2 = αATx1 + (1− α)ATx2 = AT x̂.



Therefore, ŷ ∈ Pk which implies that g is quasi-concave.

Let us introduce a few notations. For all i = 1, . . . , k,

`i = min
y∈Pk

yi

ui = max
y∈Pk

yi

yi` ← argmin{yi | y ∈ Pk}
yiu ← argmax{yi | y ∈ Pk}.

(2.3)

Note that Assumption (P3) implies that `i > 0 for all i = 1, . . . , k. Let

Hk = [`1, u1]× [`2, u2]× · · · × [`k, uk].

and
Hk−1 = [`1, u1]× [`2, u2]× · · · × [`k−1, uk−1].

Clearly, Pk ⊆ Hk. Note that | log `i| and | log ui| are both polynomial in the input size for all i = 1, . . . , k.
Therefore, we can construct a polynomial size grid to discretize the set Hk−1. In particular, for a given
ε > 0, let

ni =

⌈
log(1+ε)

(
ui
`i

)⌉
,

and
Γεi = {`i · (1 + ε)j | j = 0, 1, . . . , ni}. (2.4)

Consider the following set Γε ⊂ Hk−1.

Γε = Γε1 × Γε2 × . . .× Γεk−1. (2.5)

Note that for any point (y1, . . . , yk−1) ∈ Hk−1, there exists (ỹ1, . . . , ỹk−1) ∈ Γε such that yj ≤ (1 + ε)ỹj
for all j = 1, . . . , k − 1. Therefore, Hk−1 can be approximated by the discrete set Γε.

Now, we can describe the basic algorithm as follows. Let z∗ denote the optimal objective value of (2.2).
We maintain an upper bound, zU and a lower bound, zL on z∗ and let

z =
zU + zL

2
.

In each iteration of the algorithm, we solve a polynomial number of linear optimization problems over Pk
and either update the upper bound to less than or equal to z or update the lower bound to z/(1 + O(ε)). In
particular, we show that one of the following holds in each iteration of the algorithm.

1. Either the algorithm finds a feasible solution to Π with objective value less than or equal to z, or

2. z∗ ≥ z
1+O(ε) .

Therefore, in each iteration we are able to reduce the ratio between the upper and lower bound by a constant
factor and the algorithm terminates when zU and zL are close. So the number of iterations in the algorithm
is O

(
log zU

zL

)
. We give a formal description of the algorithm below. For any λ ∈ R, let

T ελ = {(v1, . . . , vk) | (v1, . . . , vk−1) ∈ Γε, g(v1, . . . , vk) = λ}. (2.6)

In the following lemmas, we prove the correctness of the algorithm. We first show that zU and zL are
initialized correctly. Next, we show that the algorithm updates zL and zU correctly in each iteration. Finally,
we show that in each iteration, the algorithm either updates zU or zL, and, therefore, reduces the ratio of zU
and zL by a constant factor.



Input: A rank k quasi-concave function f , a compact convex set P ⊆ Rn+, and ε > 0.

1. Let ε̂ = ε/(c+ 1). Consider
Γε̂ = Γε̂1 × Γε̂2 × . . .× Γε̂k−1.

2. Initialize

zL ← g(`1, `2, . . . , `k), zU ←
k

min
i=1
{g(yi`), g(yiu)}.

3. while (zU > (1 + ε)zL)

(a) Let

λ← zU + zL
2

.

(b) For each v ∈ T ε̂λ ,

i. Solve the following linear minimization problem LP(v):

z∗v = min (∇g(v))Ty

y ∈ Pk,

and let y∗v ∈ Pk be an extreme point optimal solution for LP(v).
ii. If zU > g(y∗v),

zU ← g(y∗v), yA ← y∗v.

(c) If for all v ∈ T ε̂λ , z∗v ≥ (∇g(v))Tv, then

zL ←
λ

(1 + ε̂)c
.

4. Return yA.

Figure 1: Algorithm A for Minimizing a low-rank Quasi-concave Function

Lemma 2.2 In Step 2 of Algorithm A, the upper and lower bounds are initialized correctly, i.e.,

g(`1, `2, . . . , `k) ≤ z∗ ≤
k

min
i=1
{g(yi`), g(yiu)}.

Proof: Note that yi`,yu ∈ Pk for all i = 1, . . . , k. Therefore, z∗ ≤ min{g(yi`), g(yiu)} for all i which
implies

z∗ ≤
k

min
i=1
{g(yi`), g(yiu)}.

From (2.3), we know that for any y ∈ Pk, yi ≥ `i for all i = 1, . . . , k. Also, ∇g ≥ 0 for all y ∈ Rk+.
Therefore,

g(`1, . . . , `k) ≤ g(y), ∀y ∈ Pk,
which implies g(`1, . . . , `k) ≤ z∗

Next, we show that zU and zL are correctly updated by the algorithm.



Lemma 2.3 Algorithm A correctly updates zU in Step 3(b)ii.

Proof: Note that zU is updated in Step 3(b)ii only if we find a feasible solution y ∈ Pk such that zU > g(y).
Therefore, the algorithm updates zU correctly

Lemma 2.4 Algorithm A correctly updates zL in Step 3c.

Proof: In any iteration with parameter λ, zL is updated only if for all v ∈ T ε̂λ , z∗v ≥ (∇g(v))Tv. We show
that in this case

λ ≤ z∗(1 + ε̂)c,

where z∗ is the optimal value of (2.2). Suppose y∗ ∈ Pk is an optimal solution of (2.2). By construction of
Γε̂, there exists (v1, . . . , vk−1) ∈ Γε̂ such that

vi
1 + ε̂

≤ y∗i < vi, ∀i = 1, . . . , k − 1.

Let vk be such that g(v1, . . . , vk) = λ. Note that v = (v1, . . . , vk) ∈ T ε̂λ . Since z∗v ≥ (∇g(v))Tv,

k∑
i=1

gyi(v)vi ≤ z∗v (2.7)

≤
k∑
i=1

gyi(v)y∗i (2.8)

≤
k−1∑
i=1

gyi(v)vi + gyk(v)y∗k, (2.9)

where (2.8) follows from the optimality of z∗v for LP(v) and (2.9) follows from the fact the gyi(v) ≥ 0, y∗i ≤
vi, ∀i = 1, . . . , k − 1. Therefore, vk ≤ y∗k which implies v ≤ (1 + ε̂)y∗. Now,

λ = g(v) ≤ g((1 + ε̂)y∗) ≤ (1 + ε̂)cg(y∗).

Here, the last inequality follows from the fact that g(αy) ≤ αcg(y), ∀α ≥ 1 and some constant c
Figure 2 illustrates the updates of lower and upper bounds in each iteration. Now, to complete the proof of
the correctness, we show that in each iteration, we either update the upper bound or the lower bound.

Lemma 2.5 At the end of each iteration with λ = (zU + zL)/2 in the algorithm, one of the following holds.

1. Either zU is updated to less than or equal to λ, or,

2. zL is updated to λ · (1 + ε̂)−c in step (3c).

Proof: If z∗v ≥ (∇g(v))Tv for all v ∈ T ε̂λ , then from Lemma 2.4, we know that zL is updated to λ·(1+ε̂)−c.
Suppose this is not the case. Then,

∃ v ∈ T ε̂λ s.t. z∗v < (∇g(v))Tv.

We show that we can update the upper bound zU in this case. Consider the upper level set

Uλ = {y ∈ Rk+ | g(y) ≥ λ}.

Note that v ∈ Uλ. Since g is quasi-concave, Uλ is convex. Therefore,

(∇g(v))Ty ≥ (∇g(v))Tv,



f(x) = λ

∇f(v1)Tx = ∇f(v1)Tv1

D

f(x) = λ

v1

∇f(v)Tx = ∇f(v)Tv

D

x∗v

v

v2 ∇f(v2)Tx = ∇f(v2)Tv2

(a) (b)

Figure 2: (a) g(x∗v) < λ ≤ zU ; (b) z∗v ≥ ∇g(v)Tv for all v ∈ Tλ

is a valid supporting hyperplane for Uλ [26]. In fact, it is a tangential hyperplane to the level curve {y ∈
Rk+ | g(y) = λ} at v. Since

z∗v = (∇g(v))Ty∗v < (∇g(v))Tv,

y∗v /∈ Uλ and g(y∗v) < λ. Therefore, the upper bound zU is updated to g(y∗v) which is less than λ
The following lemma bounds the running time of the algorithm.

Lemma 2.6 The running time of the algorithm A is polynomial in input size of the problem and 1
ε .

Proof: The algorithm does binary search for the objective value between the initial upper and lower bounds
(zU and zL) until zU ≤ zL(1+ ε). In each iteration of the algorithm, the ratio of the upper and lower bounds
reduces by at least (1 − ε̂/2). If z0U (z0L) denote the initial upper (lower) bound on the objective value, then
the number of iterations is

O

(
1

ε̂
log

z0U
z0L

)
= O

(
c

ε
log

z0U
z0L

)
.

For each iteration with λ = (zL + zU )/2, we solve O(|T ε̂λ |) linear minimization problems over the convex
set P . Let

R =
k

max
i=1

ui
`i
.

Note that logR is polynomial in the input size of the problem since both | log ui| and | log `i| are polynomial
in input size for all i = 1, . . . , k. Now,

|T ε̂λ | ≤ |Γε̂| = Πk−1
i=1 |Γε̂i | =

(
log1+ε̂R

)k−1
= O

(
logR

ε̂

)k−1
= O

(
c logR

ε

)k−1
.

This shows that Algorithm A solves

O

(
log

z0U
z0L
· c

k · (logR)k−1

εk

)
linear optimization problems which is polynomial in the input size and 1

ε for a constant k.
In contrast, the running time of the algorithm in [20] depends on (logR)k. Note that Algorithm A returns
yA ∈ Pk that is a (1 + ε)-approximation for minimizing g over Pk for any ε > 0. Furthermore, yA is



an extreme point of Pk since in each iteration of the algorithm, we can compute an extreme point optimal
solution for the corresponding linear minimization problem. To obtain a solution x ∈ P that is an extreme
point near-optimal minimizer of f in P , we can solve the following linear problem.

min 0

ATx = yA
x ∈ P.

Thus, we have the following theorem.

Theorem 2.7 There is a fully polynomial time approximation scheme (FPTAS) for minimizing a quasi-
concave function f of constant rank k over a convex set if f satisfies (P1), (P2) and (P3). Furthermore, the
algorithm returns a solution that is an extreme point of the convex set. The running time is polynomial in
the input size and 1/ε.

3 Applications to 0-1 Combinatorial Problems
In this section, we consider the following combinatorial problem.

min{f(x) | x ∈ S}, (3.1)

where S ⊆ {0, 1}n and f : Rn+ → R+ is a quasi-concave function of rank k that satisfies assumptions
(P1), (P2), and (P3). We further assume that we know the description of the convex hull of S and we can
solve linear optimization problems over conv(S) in polynomial time. Our algorithm A directly applies to
obtaining a fully polynomial time approximation scheme for (3.1) since A computes a solution that is an
extreme point of the conv(S) which belongs to S.

Therefore, our result applies when S is the set of s-t paths, spanning trees, perfect matchings or s-t
cuts in an undirected graph. Consider an undirected graph G = (V,E), with costs c1 : E → R+, and
c2 : E → R+. As an example, we obtain an FPTAS for the following problems.

1. Spanning Trees. Let S ⊂ E be the set of spanning trees of G. Algorithm A can be adapted to obtain
an FPTAS for

min
T∈S

c1(T ) · c2(T ).

2. Minimum Product Cut. Let S ⊂ E be the set of s-t cuts inG. AlgorithmA can be adapted to obtain
an FPTAS for

min
X∈S

c1(X) · c2(X).

3. Minimum Product Path. Let S ⊂ E be the set of s-t paths in G. Algorithm A can be adapted to
obtain an FPTAS for

min
X∈S

c1(X) · c2(X).

The above problems can be generalized to minimizing a product of a constant number of linear costs instead
of just two. This generalizes the result of Kern and Woeginger [12] and Goyal et al. [9] who consider
minimizing the product of two linear functions over a polytope and give an FPTAS for the same. Note
that the general algorithm in [20] for low-rank minimization is not applicable for the above combinatorial
problems as the solution is not necessarily an extreme point.



4 Conclusions
In this paper, we consider minimizing a low-rank quasi-concave function f that satisfies certain properties
and obtain an FPTAS for the problem. Since f is minimized at an extreme point of the convex set, there
exists a linear objective function that is minimized at the same extreme point as f . Our algorithm can be
interpreted as an efficient search of such a linear objective function where we search over the gradient of f
at a polynomial number of points. This search procedure is very general and it would be interesting to see if
the idea can be extended to other non-convex optimization problems.

In comparison to [20], it gives better running times (O(logRk−1) versus O(logRk) of [20]). Further-
more, it is also applicable to providing integer solutions of good quality to combinatorial problems with
linear descriptions of their convex hulls as outlined in Section 3, whereas the general algorithm in [20] do
not apply to this setting as their solution is not necessarily an extreme point.
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