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Abstract

We consider the problem of optimizing a linear rational function subject to totally unimodular (TU) constraints
over {0, 1} variables. Such formulations arise in many applications including assortment optimization. We show that a
natural extended LP relaxation of the problem is “tight”. In other words, any extreme point corresponds to an integral
solution. We also consider more general constraints that are not TU but obtained by adding an arbitrary constraint to
the set of TU constraints. Using structural insights about extreme points, we present a polynomial time approximation
scheme (PTAS) for the general problem.
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1. Introduction

We consider the following problem of optimizing a
linear rational function over {0, 1} variables subject to
totally unimodular (TU) constraints:

maximize
a0 +

∑n
i=1 aixi

c0 +
∑n

j=1 c jx j

subject to Ax ≤ b
x ∈ {0, 1}n,

(1)

where A is a TU matrix, b ∈ Zm, ci ≥ 0 for all
i. The above rational optimization problem arises in
many applications including combinatorial optimization
problems such as minimum mean cycle, minimum ratio
shortest path, and assortment optimization over a Multi-
nomial logit (MNL) choice model.

The above problem has been widely studied in the
literature. In a seminal paper, Megiddo (1979) consid-
ers the problem of optimizing a rational objective over
a combinatorial set, D and presents a strongly poly-
nomial algorithm if there is a combinatorial algorithm
(only involving addition, subtraction and comparison
operations) to optimize a linear objective over the set
D. Hashizume et al. (1987), Correa et al. (2010) extend
the work of Megiddo (1979) to provide approximation
algorithms for the rational optimization problem over
a combinatorial set assuming there is an approximation
algorithm for linear optimization over the combinatorial

set. Mittal and Schulz (2013) provides a fully polyno-
mial time approximation scheme (FPTAS) for optimiz-
ing a rational objective over a polytope and their tech-
nique can be extended to the case of a combinatorial set,
if there is an efficient separation algorithm over the con-
vex hull. Davis et al. (2014) consider a version of the
rational optimization problem (1) in the context of as-
sortment optimization over the MNL choice model and
give an efficient algorithm to compute the optimal so-
lution. Therefore, optimal algorithms for several close
variants of (1) are known in the literature.

Our goal in this paper is to study the properties of a
natural LP relaxation for the rational optimization prob-
lem (1). In particular, we study the tightness of the LP
relaxation for the case of totally unimodular (TU) con-
straints. One advantage of the LP based approach for (1)
is that it enables us to design approximation schemes for
more general constraints; for instance, those obtained
by adding an arbitrary constraint to the set of TU con-
straints.

1.1. Our Contributions.

Our main contributions are the following.

Tight LP Relaxation. We show that a natural LP relax-
ation of the rational optimization problem (1) under TU
constraints is tight. We would like to note that, Davis
et al. (2014) also use the LP relaxation to show that
the assortment optimization under TU constraints can
be solved optimally under the MNL choice model. In
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this paper, we show that an extreme point optimal so-
lution for the LP relaxation is “integral” and therefore,
gives an optimal solution for the rational optimization
problem (1) under TU constraints. This structural prop-
erty of the extreme points of the LP relaxation allows us
to obtain near-optimal solutions for more general set of
constraints that we discuss below.

Extensions to More General Constraints. We also
consider the rational optimization problem (1) under
more general constraints that are not necessarily TU.
In particular, we consider an arbitrary additional con-
straint to the set of TU constraints such that the resulting
set of constraints are not TU. We present a Polynomial
Time Approximation Scheme (PTAS) for the rational
optimization problem (1) under this more general set of
constraints where for any 0 < ε < 1, we obtain a solu-
tion with objective value at least (1−ε) times the optimal
in running time polynomial in the input size for a fixed
ε.

Our PTAS is based on the structure of the extreme
points of the LP relaxation of (1) under this more gen-
eral class of constraints. In particular, we show that any
extreme point of the LP relaxation of (1) has only a
small number of fractional components. After appro-
priate pruning, we can ignore the fractional components
and obtain a feasible solution with near-optimal objec-
tive value.

We present applications of our PTAS approach to a
class of constrained assortment optimization problem,
namely, joint assortment and display optimization with
capacity constraint. In this assortment optimization
problem, we model the effect of display slot on the at-
traction parameter for any product and the goal is to se-
lect a subset of items and their display slots such that the
capacity constrained is satisfied and the expected rev-
enue is maximized. For the Multinomial logit (MNL)
choice model, this can be modeled as a rational opti-
mization problem (1) over a set of TU constraints and an
additional capacity constraint. This problem is known
to be NP-hard Desir and Goyal (2014). To the best of
our knowledge, this is the first near-optimal approxima-
tion algorithm for the capacity constrained joint assort-
ment and display problem. Desir and Goyal (2014)
give an FPTAS for the assortment optimization under
a capacity constraint for the MNL choice model. How-
ever, that approach does not extend to handle display
constraints.

Outline. The rest of the paper is organized as follows.
In Section 2, we prove tightness of the LP relaxation. In
Section 3, we present applications of the rational opti-

mization problem (1) including cardinality constrained
assortment optimization and joint assortment and dis-
play optimization with cardinality constraints. In Sec-
tion 4, we present extensions to more general constraint
sets and applications thereof.

Notation. We use the following notations in this paper.
We use bold font to denote all vectors and matrices. For
any matrix Y ∈ Rm×n and index set T ⊂ {1, 2, . . . ,m},
Y(T ) denotes the sub-matrix corresponding to rows T .
The identity matrix is denoted as I and e denotes the
vector of all ones of appropriate dimension. All vectors
are column vectors. For any n ∈ N , [n] denotes the set
{1, 2, . . . , n}.

2. Rational Optimization: LP relaxation

In this section, we present a LP relaxation for (1) and
show that the formulation is tight. Let

p0 =
1

c0 +
∑n

j=1 c jx j
, pi = xi p0, ∀i = 1, . . . , n.

We can reformulate (1) as follows.

maximize
(p,p0)

n∑
i=0

ai pi

subject to Ap ≤ p0b
n∑

i=0

ci pi = 1

pi ∈ {0, p0} ∀ i ∈ {1, 2, · · · , n}
p0 ≥ 0.

(2)

Note that (2) is an exact reformulation of (1). It can be
easily reformulated as a mixed integer program using
binary variables as follows.

0 ≤ pi ≤ xi p0 ∀ i ∈ {1, 2, · · · , n}
pi + (1 − xi) ≥ p0 ∀ i ∈ {1, 2, · · · , n}
xi ∈ {0, 1} ∀ i ∈ {1, 2, · · · , n}.

(3)

2.1. Tightness of the LP relaxation
We consider the following LP relaxation for (2).

zLP = max
(p,p0)

n∑
i=1

ai pi

Ap ≤ p0b
n∑

j=0

c j p j = 1

0 ≤ pi ≤ p0, ∀i = 1, . . . , n,
p0 ≥ 0.

(4)
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where we relax the constraints pi ∈ {0, p0} to 0 ≤ pi ≤

p0 for all i = 1, . . . , n. Let P be the polytope defined by
the constraints in (4), i.e.,

P =

{
(p, p0) ∈ Rn

+ × R+ | Ap ≤ p0b, c′p + c0 p0 = 1,

0 ≤ pi ≤ p0,∀i
}
.

(5)

We show that all extreme points of P are “integral”, i.e.,
for any extreme point (p, p0) ∈ P,

pi ∈ {0, p0}, for all i = 1, . . . , n.

In particular, we have the following theorem.

Theorem 1. For any extreme point (p, p0) ∈ P, pi ∈

{0, p0} for all i = 1, . . . , n.

We will prove Theorem 1 by establishing a corre-
spondence between extreme points of P and Q, where

Q = {x | Ax ≤ b, 0 ≤ xi ≤ 1 for all i = 1, 2, . . . , n } ,

is the polytope corresponding to relaxed constraints of
the rational optimization problem (1).

Lemma 1. If (p, p0) is an extreme point of P, then
x =

p
p0

is an extreme point of Q. Conversely, if x is
an extreme point of Q, then (p, p0) where

p0 =
1

(c0 + c′x)
, p = p0x

is an extreme point of P.

Proof. Consider any extreme point, (p, p0) of P. Note
that there must be n + 1 linearly independent and active
constraints. Let

S 0 = {i | pi = 0}, S 1 = {i | pi = p0},

T = {i |
n∑

j=1

ai j p j = bi p0}

k = |S 0| + |S 1| + |T |.

(6)

We claim that k ≥ n. This follows as we have |S 0| + |S 1|

linearly independent and active constraints from the
constraint set S 0 ∪ S 1, |T | active constraints from the
constraint set T and one active constraint from the con-
straint

∑n
i=0 ci pi = 1. Hence the total number of linearly

independent and active constraints at (p, p0) is at most
k + 1.

Without loss of generality we can assume that k =

n; since k > n implies that |S 0| + |S 1| + |T | + 1 > n + 1,
making some constraints in T redundant. Let

Bp =


A(T ) −b(T )
I(S 0) 0
I(S 1) −e

c′ c0

 , Bx =

A(T )
I(S 0)
I(S 1)

 , bx =

b(T )
0
e

 ,
(7)

Note that Bp is the basis matrix corresponding to the
extreme point (p, p0). Hence, Bp is full rank. For the
sake of contradiction, assume that Bx is not full rank.
There there exists λλλ ∈ Rn, λλλ , 0 such that λλλ′Bx = 0,
then we have[

λλλ′ 0
]

Bp =
[
λλλ′Bx −λλλ′bx

]
=

[
0 −λλλ′bx

]
,

which implies[
λλλ′ 0

]
Bp

[
p
p0

]
= −p0λλλ

′bx,

Since Bp is a full rank, we have λλλ′bx , 0 and p0 , 0,
contradicting that,

Bp

[
p
p0

]
=

[
0
1

]
.

Hence, Bx is a full rank and x = p/p0 is a basic feasible
solution in Q corresponding to the basis matrix Bx.

Conversely, consider x, any extreme point of Q. Let

p0 =
1

c0 + c′x
, p = p0x.

Clearly (p, p0) ∈ P. We define the quantities S 0, S 1,T, k
as in (6) and Bp,Bx,bx as in (7). Using similar argu-
ments, we can assume k = n without loss of generality.
Since x is a basic feasible solution corresponding to the
basis Bx, Bx is full rank.

For the sake of contradiction, suppose Bp is not full
rank. Then there exists λλλ ∈ Rn+1, λλλ , 0 such that λλλ′Bp =

0. Therefore,

λλλ′Bp

[
p
p0

]
= 0

which implies

(λλλ([n]))′(Bxp + p0bx) + λn+1(c′p + c0 p0) = 0.

Since Bxx = bx, we have Bxp + p0bx = 0 and λn+1 = 0.
Note that, λλλ′Bp = 0 and

λλλ′Bp =
[
λλλ([n])′Bx + λn+1c′ λλλ([n])′bx + λn+1c0

]
Therefore λλλ([n])′Bx = 0, contradicting the fact that Bx

is full rank. Hence, Bp is a full rank matrix and (p, p0)
is the basic feasible solution corresponding to the basis
matrix Bp. This completes the proof.
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Theorem 1 follows from Lemma 1 and the fact that
any extreme point x of Q is integral, i.e. xi ∈ {0, 1}. We
would like to emphasize that Davis et al. (2014) take
a similar approach of reformulating the rational opti-
mization problem (1) as LP relaxation (4). However,
they do not explicitly analyze the structure of extreme
points of (4). Theorem 1 proves that any extreme point
optimal solution of LP relaxation (4) is the same as the
MIP reformulation (2) and hence it suffices to solve the
relaxation.

3. Applications: Assortment Optimization

Assortment optimization problems arise in many ap-
plications including retailing where a seller needs to se-
lect a subset of substitutable products to offer to con-
sumers exhibiting substitution behavior such that the ex-
pected revenue is maximized. If the substitution behav-
ior is given by a Multinomial logit (MNL) choice model,
the assortment optimization problem can be formulated
as a special case of (1). Davis et al. (2014) consider the
assortment optimization problem over the MNL choice
model under totally-unimodular constraints and present
several applications. In order to illustrate the useful-
ness of our LP approach for more general constraints
than TU, we describe two special cases below: cardi-
nality constrained assortment optimization and joint as-
sortment and display optimization for the MNL choice
model.

Cardinality Constrained Assortment Optimization:
In a cardinality constrained assortment optimization
problem, there is an upper bound on the total number of
products offered in the assortment. For the MNL choice
model, this problem can be formulated as a rational ob-
jective over TU constraints. Let n be the total number of
products and K be the bound on total number of prod-
ucts that can be offered. For any i ∈ [n], let xi be a
binary variable that denotes whether product i is offered
or not. Also, let vi denote the attraction parameter (or
mean utility) and ri is the revenue of product i. Then
the problem of maximizing the expected revenue can be
formulated as:

maximize
x∈{0,1}n

R(x) =

∑n
i=1 rivixi

v0 +
∑n

i=1 vixi

subject to
n∑

i=1

xi ≤ K

xi ∈ {0, 1} ∀ i.

(8)

Joint Assortment and Display Optimization: In a
joint assortment and display optimization problem, the

retailer needs to select the subset of products to offer
and also decide on the display segment. This problem
arises in retailing and online advertising where the dis-
play slot of the product/ad affects the choice probabil-
ity. In particular, we consider a model with m display
segments and each segment has an upper bound on the
number of products that can be displayed. The cus-
tomers choose according to an MNL model, where the
purchasing probability of each offered product also de-
pends on its display segment. The objective is to com-
pute an optimal assortment together with the optimal
display segment for each offered product such that the
cardinality constraints for each segment are satisfied and
the expected revenue is maximized.

Let n be the total number of products and m be the
number of display segments. There is a bound K j on the
number of products in display segment j for all j ∈ [m].
We assume that every product can only be displayed in
at most one display segments. Let xi j ∈ {0, 1} denote
whether we offer product i in display segment j. For
any product i, let ri denote the revenue and vi j denote
the attraction parameter in display segment j. Now, the
expected revenue optimization problem can be formu-
lated as:

maximize
X∈{0,1}n×m

R(X) =

∑n
i=1

∑m
j=1 rivi jxi j

v0 +
∑n

i=1
∑m

j=1 v̂i jxi j

subject to Ci :
m∑

j=1

xi j ≤ 1, i = 1, . . . , n

Cj :
n∑

i=1

xi j ≤ K j, j = 1, . . . ,m

xi j ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . ,m.
(9)

Constraints {Ci} enforce that every product can be dis-
played only in one of the display segments, while con-
straints {Cj} enforce the cardinality constraints in each
segment. The constraints in problem (9) are identical
to the constraints in a transportation problem and hence
are TU, making problem (9) a special case of the ratio-
nal optimization problem (1).

4. Extension to More General Constraints

In this section, we consider a more general variant
of the rational optimization problem (1), where con-
straints are not necessarily TU. In particular, we con-
sider the following problem where we have a set of TU
constraints and one additional constraint such that the
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overall constraints are not TU:

maximize
a0 +

∑n
i=1 aixi

c0 +
∑n

j=1 c jx j

subject to Ax ≤ b

αααT x ≤ γ
x ∈ {0, 1}n,

(10)

where A is a {0, 1}m×n TU matrix, b ∈ Zm, ci ≥

0 and αi ≥ 0 for all i. Let

Q = {x | Ax ≤ b, 0 ≤ xi ≤ 1 for all i = 1, 2, . . . , n }

Q̂ =
{
x ∈ Q

∣∣∣ αααT x ≤ γ
}
,

be the polytopes corresponding to the relaxations of (1)
and (10) respectively.

Similar to our approach in Section 2, we consider the
following LP relaxation for (10),

maximize
(p,p0)

n∑
i=0

ai pi

subject to (p, p0) ∈ P

αααT p ≤ p0γ.

(11)

where P is the polytope corresponding to the LP relax-
ation of the rational optimization problem (1) as defined
in (5). Let

P̂ =
{
(p, p0) ∈ P

∣∣∣ αααT p ≤ p0γ
}
,

be the polytope corresponding to the LP relaxation
of (10). Since constraints in (10) are not TU, the
LP relaxation (11) may not be tight. In this section,
we present a polynomial time approximation scheme
(PTAS) for (10) under certain assumptions on Q. In
other words, for a fixed ε, we compute a (1 − ε)-
approximation for (10) in running time polynomial in
the input but exponential in 1/ε. Our PTAS is based on
the following structure of extreme points of (11).

Observe that the polytope Q̂ (respectively P̂) is the in-
tersection of the polytopeQ (respectivelyP) and the hy-
perplaneαααT x ≤ γ (respectivelyαααT p ≤ p0γ). Hence, any
extreme point of Q̂ (respectively P̂) is either an extreme
point of Q (respectively P) or a convex combination
of two adjacent extreme points of Q (respectively P).
Therefore, if any two adjacent extreme points of Q
“differ” only in a small number of components, then
the number of “fractional components” in any extreme
point of Q̂ and P̂ is small. Therefore, we can obtain
an approximate solution for (10) by ignoring the small
number of “fractional components” from the optimal
solution of (11) after appropriate pruning.

More specifically, for any two extreme points x1, x2
of Q, let

d(x1, x2) = |{i | x1i , x2i}|

d(Q) = max
{
d(x1, x2) | x1, x2 are adjacent extr pts of Q

}
.

Here d(Q) denotes the maximum number of compo-
nents by which the two adjacent extreme points ofQ can
differ. If d(Q) ≤ `, then the number of fractional com-
ponents for any extreme point of Q̂ is at most `. From
Lemma 1, we know that there is a correspondence be-
tween extreme points of P and Q. A similar correspon-
dence also holds for extreme points of P̂ and Q̂. Hence,
the number of “fractional components” in any extreme
point of P̂ is also bounded by `. In particular, for any
extreme point (p, p0) of P̂, let

F ((p, p0)) = {i ≥ 1 | 0 < pi < p0} ,

denote the set of fractional components in (p, p0). We
have the following result,

Corollary 1. If d(Q) ≤ `, then the number of frac-
tional components for any extreme point (p, p0) of P̂ is
bounded by `, i.e. |F ((p, p0))| ≤ `.

4.1. PTAS when d(Q) is constant
In this section, we present a PTAS for the case when

d(Q) is a constant (say `). From Lemma 1, we know that
optimality (feasibility) of (p, p0) is equivalent to opti-
mality (feasibility) of x = p/p0 for (10). From Corol-
lary 1, we know that any extreme point to (11) has at
most ` fractional variables as d(Q) = `. A simple idea
to construct a feasible solution for (10) from an optimal
solution of (11) is to ignore the “fractional variables”. In
particular, let (p, p0) ∈ P̂ be an optimal extreme point
of (11). Define (p̂, p̂0) as

p̂i =

{
0 if pi < p0
p̂0 otherwise

where
p̂0 =

1
c0 +

∑
i:p̂i,0

ci
.

Observe that we ignore at most ` variables of (p, p0).
If the contribution of these variables to the objective
value is small, then the total decrease in objective value
is also bounded. Let R∗ denote the optimal objective
value. If

ai pi ≤
ε

`
R∗ ∀ i : pi < p0, (12)

then ∑
i∈F (p,p0)

ai pi ≤ εR∗,
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which implies

(1 − ε)R∗ ≤
∑

i<F (p,p0)

ai pi =
∑

i

ai p̂i,

and (p̂, p̂0) is a (1 − ε)-approximate solution for (10).

Note that in (p, p0) there can be at most
⌊
`

ε

⌋
variables

such that ai pi >
ε

`
R∗. Therefore, to ensure (12) we

guess the top
⌊
`

ε

⌋
variables contributing to the objective

in (10), set those variables pi = p0 and solve the result-
ing linear program. The running time is exponential in⌊
`

ε

⌋
. Hence, we have the following result.

Theorem 2. If d(Q) ≤ `, then there exists an Algorithm
that obtains an (1 − ε) approximate solution to (10) in
running time that is polynomial in the input size for a
fixed ε.

We present the PTAS and the proof of correctness of
the algorithm in Appendix A.

4.2. Examples of Q with small d(Q)
So far, we have assumed that d(Q) ≤ ` and restricted our
attention to specific instances of the rational optimiza-
tion problem (1) that satisfy this criteria. There are large
classes of problems that can be formulated in the frame-
work of the rational optimization problem (1) and also
satisfy the assumption that d(Q) is small. In this section,
we revisit applications discussed in Section 3 and estab-
lish that d(Q) is indeed small, enabling our PTAS ap-
proach to solve the more generic version of these prob-
lems.
Assortment Optimization with Cardinality Con-
straint: The polytope Q corresponding to the feasible
region of cardinality constrained assortment optimiza-
tion problem (8) is

Q =

x

∣∣∣∣∣∣∣
n∑

i=1

xi ≤ K, 0 ≤ xi ≤ 1 , i = 1, 2, . . . , n

 .
Note that the polytope Q is the intersection of the n di-
mensional hypercube and the hyperplane

∑n
i=1 xi ≤ K.

We know that every extreme point x of Q is such that
x ∈ {0, 1}n and every pair of adjacent extreme points in
the n dimensional hypercube only differ in two compo-
nents. Hence, we have the following result

Lemma 2. For Q corresponding to the cardinality con-
strained assortment optimization problem (8), we have
d(Q) = 2.

Joint Assortment and Display Optimization: The
polytope Q corresponding to the feasible region of car-
dinality constrained joint assortment and display opti-
mization problem (9) is

Q =

X

∣∣∣∣∣∣∣∣
m∑

j=1

xi j ≤ 1 ∀i,
n∑

i=1

xi j ≤ K j ∀ j, 0 ≤ X ≤ 1

 .
The constraints in problem (9) are the same as the trans-
portation problem, the number of variables that are dif-
ferent in two adjacent extreme points of the LP relax-
ation of problem (9) is bounded by the maximum cy-
cle length in the corresponding transportation network.
Since the transportation network is a bipartite graph, the
maximum cycle length cannot exceed twice the number
of nodes in either of the partitions. Hence, we have the
following result,

Lemma 3. For Q corresponding to feasible region of
cardinality constrained joint assortment and display op-
timization problem (9), we have d(Q) ≤ 2m, where m is
the number of display segments.

Theorem 3 and the Lemmas 2,3 establishes that there
exists a PTAS for the above applications in the presence
of an additional constraint.
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Algorithm 1 PTAS for (10)

1: Set S =

{
S t ⊂ [n]

∣∣∣∣∣∣ |S t | ≤

⌊
`

ε

⌋ }
.

2: for S t ∈ S do

3: if |S t | <

⌊
`

ε

⌋
then

p̂t0 =
1

c0 +
∑

i∈S t
ci

p̂ti =

{
p̂t0 if i ∈ S t

0 otherwise

4: end if
5: if (p̂t, pt0) feasible for (10) then

Set Rt =

n∑
i=0

ai p̂ti

6: else

Qt =
{
i
∣∣∣ i < S t and ∃ j ∈ S t s.t. a j ≤ ai

}
Consider modified (11), zLP(t) with additional con-
straints

pi = p0, ∀i ∈ S t

pi = 0, ∀i ∈ Qt

7: if zLP(t) is feasible then
8: Set (p∗t , p∗t0): optimal extr pt of zLP(t)
9: Set Ŝ t =

{
i

∣∣∣ p∗ti = p∗t0
}

10: Obtain (p̂t, p̂t0) as follows:

p̂t0 =
1

c0 +
∑

i∈S t
ci

p̂ti =

{
p̂t0 if i ∈ Ŝ t

0 otherwise

11: Set Rt =
∑n

i=0 ai p̂ti

12: end if
13: end if
14: end for
15: Set t∗ = argmax

t
Rt;

16: Output (p̂, p̂0) = (p̂t∗ , p̂t∗0)

Theorem 3. Let d(Q) ≤ ` and (p̂, p̂0) be the solution

obtained by Algorithm 1. Then
n∑

i=0

ai p̂i > (1 − ε)R∗,

where R∗ is the optimal value of (10).

Proof. Let (p∗, p∗0) be an optimal solution to (10). Let
S = {i ≥ 1

∣∣∣ p∗i > 0
}
. In Steps 3-6 of the algorithm we

consider all the solutions that have strictly less than
⌊
`
ε

⌋
.

Hence, without loss of generality assume that |S | ≥
⌊
`

ε

⌋
and S = {1, 2, . . . , k} for some kgeq

⌊
`
ε

⌋
and ak ≤ ak−1 ≤

· · · ≤ a1. Also, let S 1 = {1, 2, . . . , k∗} where k∗ =
⌊
`
ε

⌋
.

Note that p∗1 = p∗2 = · · · = p∗k = p∗0. Therefore,

ak p∗k ≤ ak−1 p∗k−1 ≤ · · · ≤ a1 p∗1,

which implies

ak∗+1 p∗k∗+1 <
ε

`
R∗.

Now consider a feasible point of (10), (p1, p10) defined
as

p10 =
1

c0 +
∑

i∈S 1
ci
, p1i =

{
p10 if i ∈ S 1
0 otherwise.

implying p∗1i < p1i for all i ∈ S 1. and since (p1, p10) is a
feasible point to (10), it follows that∑
i∈S 1

ai p1i =

n∑
i=1

ai p1i < R∗ which implies
∑
i∈S 1

ai p∗1i ≤ R∗

By construction of zLP(1), we must also have p∗1i = 0 for
every i > k∗ and ak∗ ≤ ai, implying

ai p∗1i < ak∗ p∗k∗ <
ε

`
R∗ for all i > k∗.

Observe that zLP(1) ≥ R∗ and the variables i in the ex-
treme point (p∗1, p∗10) that can be fractional are i > k∗.
Therefore,

ai p∗1i <
ε

`
R∗ ∀ i ∈ F (p∗1, p∗10).

Thus by Lemma 1, it follows that∑
i∈F (p∗)

ai p∗i (1) < εR∗

which implies

(1 − ε)R∗ ≤ zLP(1) − εR∗ <
n∑

i=0

ai p̂i(1).
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