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Ferrera, Vincent P. Task-dependent modulation of the sensorimotor
transformation for smooth pursuit eye movements.J Neurophysiol84:
2725–2738, 2000. Toinvestigate the transformation of retinal image
velocity into smooth pursuit eye velocity, eye movements were measured
in the presence of two moving targets. In the first experiment, the targets
were identical in all respects except for direction of motion, and the
monkey was not cued to attend to either target. In this experiment, smooth
pursuit eye velocity elicited by two targets was the vector average of the
response evoked by each target alone. In subsequent experiments, we
examined the effects of stimulus and task parameters on the selectivity of
pursuit. When the targets were made different colors and monkeys were
cued for the color of the rewarded target, their pursuit eye movements
were biased in the direction of the rewarded target, but still showed a
substantial influence of the nonrewarded target (distractor). It did not
matter whether the same target color was used for an entire session or
whether the color was randomized from trial to trial. Reducing uncer-
tainty about the axis of motion of the rewarded target also had little effect.
However, the pattern of image motion appeared to have a substantial
effect; radial image motion favored averaging, and winner-take-all pur-
suit was found only with nonradial image motion. We conclude that the
sensorimotor interface for pursuit uses a flexible decision rule that can
vary continuously from vector averaging to winner-take-all. We present
a simple recurrent network model that reflects this range of behavior. The
model has allowed us to identify three computational elements (selection
bias, competitive inhibition, and response normalization) that should be
taken into consideration in future models of smooth pursuit.

I N T R O D U C T I O N

To execute voluntary goal-directed movements in complex
environments, sensorimotor systems must be able to select
individual targets and to filter out distracting stimuli. How well
these systems are able to suppress irrelevant stimuli limits the
accuracy with which movements can be made. Several lines of
evidence have suggested that sensorimotor systems use either
a vector averaging or vector summation strategy to compute
movement trajectories given a topographically distributed pat-
tern of neuronal activity (Georgopoulos et al. 1993; Glimcher
and Sparks 1993; Groh et al. 1997; Lee et al. 1988; Lisberger
and Ferrera 1997; Robinson and Fuchs 1969). However, any
computation that averages or sums information over multiple
stimuli could impair the ability to make precise movements
directed toward a single stimulus. Presumably, one of the
functions of selective attention is to overcome averaging by
restricting the set of sensory signals that are used in program-

ming movements to those that arise from attended objects or
locations. Little is known about how effectively focused atten-
tion is able to suppress signals from nonselected stimuli, al-
though it is often assumed that attention is highly selective. In
the current study, we describe experiments on rhesus monkeys
in which we quantified the selectivity of voluntary smooth
pursuit eye movements made in the presence of two moving
stimuli. We show that the selectivity of these movements can
vary from completely nonselective (vector averaging) to highly
selective (winner-take-all), depending on stimulus and task-
specific factors. Surprisingly, prior knowledge of the correct
target does not always result in accurate pursuit, but only
biases the direction of the initial eye movement.

The results of this study indicate that the sensorimotor
transformation for smooth pursuit, i.e., the transformation of
image velocity into eye velocity, is not characterized by a
single fixed computation, but rather that it is flexible and
subject to attentional modulation. We show that the results can
be accounted for by a simple recurrent network model (Koch
and Ullman 1985) in which direction-selective neurons com-
pete with one another through mutual inhibition to drive the
motor response. In fact, the entire range of observed behavior,
including vector-averaging and winner-take-all, can be simu-
luated by varying parameters that determine the strength of
attentional bias and inhibitory interactions in the network. This
suggests that competitive inhibition may play a role in the
attentional control of eye movements and is consistent with
physiological observations in the frontal eye field (Burman and
Bruce 1997), but not visual areas MT or MST (Ferrera and
Lisberger 1997b; Groh et al. 1997; Recanzone et al. 1997). The
current study fills a gap between two previous reports that
demonstrated vector-averaging for pursuit in the absence of
attentional bias (Lisberger and Ferrera 1997), and winner-take-
all pursuit when attentional bias was present (Ferrera and
Lisberger 1997a). The current report extends these findings by
showing that there is a graded transition between these two
extremes of behavior, and by providing a mechanism to ac-
count for the transition.

M E T H O D S

Experiments were conducted on four juvenile male rhesus monkeys
(Macaca mulatta). Monkey Kwas trained and tested at University of
California at San Francisco, whilemonkeys A, C,andD were trained
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and tested at Columbia University. Our methods were approved by the
Institutional Animal Care and Use Committees at UCSF and Colum-
bia University. Monkeys were trained to move voluntarily from their
home cage to a primate chair. A method modified from Wurtz (1969)
was used to train each monkey to attend a stationary target. Surgery
was then performed under sterile conditions to implant a coil of wire
on one eye (Judge et al. 1980) and to secure a post to the skull for head
restraint (Miles and Eighmy 1980). For all subsequent training and
experiments, the monkey’s head was secured to the primate chair, and
a set of field coils was lowered over the chair so that a magnetic
search-coil could be used to monitor horizontal and vertical eye
position. The eye coil was calibrated by having the monkey fixate
targets at different positions, and the monkey was subsequently re-
quired to keep the direction of gaze within 2–3° of target position.
Correct performance of the task was rewarded with drops of fruit juice
or water.

Behavioral tasks

Monkeys were trained to track moving targets presented on a color
cathode ray tube (CRT) monitor. We used a step-ramp target motion
paradigm to minimize the occurrence of saccades during pursuit
initiation (Rashbass 1961). Trials were initiated by requiring the
monkey to look at a stationary central fixation light. After a short
interval, one or two perifoveal moving targets appeared. At the same
time, the central fixation light was turned off, and the monkey was
required to initiate a smooth pursuit eye movement. The target always
moved at 15°/s. The initial target position was set so that targets
moving toward the initial fixation position would cross it after 200 ms.
The monkey was given a liquid reward provided that he kept his gaze
directed toward the correct target for the duration of the trial. The
monkey’s performance was monitored by tracking his eye position
relative to a63° fixation window centered around the target. Several
steps were taken to ensure that the monkeys did not make anticipatory
eye movements. First, the initial position and direction of the target
were randomized trial-to-trial so that the monkey could not anticipate
correctly the direction of the required eye movement. Second, the
time, relative to the start of the trial, at which the target was presented
or started to move was randomized. Finally, trials were aborted if the
monkey initiated an eye movement before the fixation light went off.
Trials were randomized within blocks, and the monkey was required
to correctly complete exactly one trial of each type before proceeding
to the next block of trials.

Visual stimulation

Visual stimuli were generated by a Univision Piranha or CRS
VSG2/3F video framebuffer with an on-board microprocessor (Texas
Instruments TMS 34020). The output from the video board was
displayed on a calibrated 20-in. (Barco) or 27-in. (Mitsubishi) color
monitor with a 60-Hz noninterlaced refresh rate. The monitors stood
at a viewing distance of 30 in. so that the display area subtended
roughly 30° horizontally by 20° vertically (Barco) or 403 30°
(Mitsubishi). The spatial resolution of both displays was 1,280 pixels
by 1,024 lines, and the depth was 8 bits/pixel. Pursuit targets were
small (1.0°) colored squares presented on a uniform gray background.
The target luminance was 15.0 cd/m2, while the background was 5.0
cd/m2. The framebuffer was programmed to send out digital pulses
(frame sync) for timing purposes at the beginning of each frame in
which a stimulus first appeared or started to move. These pulses were
sampled by the computer and stored along with the eye movement
data.

Eye movement recording

Eye position was monitored using a monocular scleral search coil
system (CNC Engineering). Separate horizontal and vertical eye po-

sition signals were fed through an analog differentiator (low-pass,23
dB at 25 Hz) to yield horizontal and vertical eye velocity. The eye
position and eye velocity signals were then digitally sampled by
computer with 12-bit resolution (0.025° for position, 0.092°/s for
velocity) at 1 kHz/channel and stored on disk for further analysis. Eye
acceleration was computed off-line by digital differentiation of eye
velocity.

To avoid contaminating estimates of smooth pursuit eye velocity
with the much higher eye velocities that accompany saccades, we used
an automatic algorithm to detect and remove saccades that occurred
during a 400-ms interval starting at the onset of target motion. The
algorithm used an acceleration criterion of 500°/s2 to detect the
beginning and end of each saccade. Eye velocity was linearly inter-
polated between the beginning and end of the saccade. Saccade
cutting was applied separately to both the horizontal and vertical eye
velocity records. We excluded trials when the monkey blinked, failed
to attend to the task, or otherwise failed to produce clean eye velocity
data. Out of a total of 43,456 trials, 571 (1.3%) were excluded for
these reasons.

To estimate smooth pursuit latency, we developed a method based
on signal detection theory (SDT) (Green and Swets 1966). For each
trial, the horizontal and vertical eye velocity traces H˙ (t) and V̇(t) were
first combined into a single radial eye velocity trace [R˙ (t)]. SDT was
used to determine the earliest time,T, such that the distribution of eye
velocity samples within a fixed time window followingT was signif-
icantly different from the distribution within a similar window pre-
cedingT. For a given time,T, relative to the onset of target motion, we
set windows of 100 ms duration before and afterT. We then made
frequency distributions of the eye velocity samples within the pre-T
and post-T time windows. We determined the degree of overlap
between the two distributions by constructing a “receiver operating
characteristic” (ROC) curve based on the two distributions. To make
the ROC curve, we chose a criterion velocity and then computed the
proportion of each distribution (relative to its total area) above the
criterion value. The number derived from the post-T distribution is
called the “hit-rate,” and that derived from the pre-T distribution is
called the “false-alarm-rate.” By plotting the hit-rate versus the false-
alarm-rate, we obtained a single point on the ROC curve. We gener-
ated the entire ROC curve by varying the velocity criterion in small
steps over the entire range of the two distributions. Next, we calcu-
lated the area under the ROC curve. If the two distributions over-
lapped completely, then the hit-rate and false-alarm-rate were equal
and the area under the ROC curve was 0.5. If the two distributions
were nonoverlapping, then as the velocity criterion was reduced, the
hit-rate approached 1.0 while the false-alarm rate remained zero, and
therefore the area under the ROC was 1.0. This entire procedure was
repeated for each point in time following the onset of target motion so
that the eye velocity trace, R˙ (t), was converted into a probability
function, p(t), which varied between 0.5 and 1.0. The onset of pursuit
was taken to be the time at which the probability function first reached
a criterion of 0.95 and remained at or above that level for at least 50
ms. Using these parameters, the algorithm performed in a manner that
agreed well with the experimenter’s determination of pursuit onset by
visual inspection. No other means were used to optimize the perfor-
mance of the algorithm.

It will be noted that this is a theoretically unorthodox application as
SDT is normally used to compare independent observations drawn
from stationary distributions, whereas eye velocity samples are seri-
ally correlated and the mean of the underlying distribution changes
continuously during pursuit initiation. Empirically, however, the
method satisfied our goal of providing accurate and reproducible
estimates of pursuit latency. The performance of the algorithm is
demonstrated in Fig. 1, which shows eye velocity traces for a single
trial with one upward-moving target (A) together with the derived
probability (area under the ROC curve) trace. The minimum latency
allowed was 40 ms, so the probability trace is initially flat. Figure 1C
shows all trials with one upward-moving target for one animal (K)
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aligned on pursuit onset (t 5 0). Ideally, the average eye velocity
should be indistinguishable from zero prior tot 5 0.

R E S U L T S

Experiment 1

We measured smooth pursuit eye movements evoked by two
small targets moving in different directions (Fig. 2,A andB).
In experiment 1,the two targets were identical in size (1.0°),
shape (square), color (yellow), luminance (15 cd/m2), and
speed (15°/s; Fig. 2,A andB). The targets could move in any
of eight directions spaced 45° apart (4 cardinal directions plus
4 obliques). There were 64 different trial types that exhausted
all possible combinations of two targets and eight directions. In
cases where the two target directions would have been identi-
cal, a single target (luminance 15 cd/m2) was presented instead.
The monkey was trained to initiate smooth pursuit as soon as
any target appeared, but was not trained to selectively track or
attend to a particular target. On two-target trials, both targets
were present only for the first 200 ms of target motion. There-
after, only one target was present, and the monkey was re-
quired to keep his eye position within 3° of this target to get his
reward. It was not possible for the monkey to predict in
advance which target would remain at the end of the trial.

Figure 2C shows the eye velocity response formonkey A
recorded during four trial types. For two of the trial types, two
moving targets were presented (Fig. 2,A andB), and for the
other two trial types each target was presented alone. The
horizontal component of target motion was the same for both

targets, and hence the horizontal eye velocities in each of the
four trial types were indistinguishable and are not shown.
Figure 2C shows vertical eye velocity. Each eye velocity trace
is the average of approximately 20 individual trials. The solid
traces correspond to single target trials, and the dashed traces
correspond to two-target trials. For the first 200 ms of pursuit,
the vertical eye velocity traces for the two-target trials are not
distinguishable from each other or from zero velocity, indicat-
ing that the monkey was tracking in a purely horizontal direc-
tion during this interval. This is borne out in Fig. 2D, in which
the horizontal and vertical eye velocities during the first 200 ms
of pursuit have been combined to show the direction of pursuit
at each point in time.

We performed a two-dimensional vector analysis of the eye
movements evoked by two moving targets. In previous work
(Lisberger and Ferrera 1997), this analysis had been based on
eye acceleration during an interval 156–206 ms after the onset
of target motion. This analysis was prone to the following
drawbacks.1) Eye acceleration is noisier than eye velocity due
to an additional numerical differentiation.2) The constant time
interval relative to target motion onset ignores variations in the
latency of pursuit, which can introduce additional variability
into the acceleration measurements.3) The use of a single time
interval does not give a sense of the dynamics of the response.
To address these issues, we chose to analyze average eye

FIG. 2. A and B: the stimuli for 2 trials conditions ofexperiment 1. The
monkey first fixates a small target (1) in the center of the cathode ray tube
(CRT) display. Two identical targets appear simultaneously 3° away and move
back toward the fixation point at 15°/s.C: vertical eye velocity records
averaged over 201 trials. Solid lines are single target trials; dashed lines are
paired target trials.D: eye velocity samples formonkey Aduring the interval
150–300 ms after target motion onset are plotted to show the direction and
speed of eye movement. There are 4 conditions: T1 alone, T2 alone, and 2
conditions with T11 T2 as shown inA and B. Each of the 4 trajectories
represents horizontal and vertical eye velocity parameterized as a function of
time. Each trajectory was constructed by 1st averaging over 201 trials the
separate horizontal [H9(t)] and vertical [V9(t)] eye velocity traces. Then, for
each point in time V9(t) is plotted against H9(t).

FIG. 1. Method of determining smooth pursuit latency.A: horizontal
(dashed) and vertical (solid) eye velocity traces for one trial with a single
upward-moving target.B: probability [area under receiver operating charac-
teristic (ROC) curve] trace derived from the data inA. A “spike” was inserted
in the probability trace to indicate the derived latency. This corresponds to the
dotted line inA. C: eye velocity data aligned on pursuit onset and averaged
over 36 trials.
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velocity measured during six 25-ms time intervals starting
from the onset of pursuit. One theoretical objection to the
choice of eye velocity (and the reason previous studies have
favored the use of eye acceleration) is that eye velocity is not
constant during the initiation of pursuit. The lack of stationarity
is ameliorated by the use of relatively short time intervals and
by the fact that the mean velocity over a given interval is a
good approximation of the eye velocity sampled at the interval
midpoint provided that acceleration is constant.

The first step in the vector analysis was to compute eight
basis vectors that represent the average eye velocity evoked by
single targets moving in any of eight directions. It was then
possible to express the eye velocity (R, Fig. 3) for each two-
target trial as a weighted sum of the component basis vectors
(T1, T2)

RW5 w1T1
W 1 w2T2

W (1)

Cases where the target directions were 180° apart were ex-
cluded from this analysis because the basis vectors tended to be
co-linear and this made it difficult to recover the orthogonal
dimension. For example, if both basis vectors were close to
horizontal, then extremely large weights might be required to
represent responses that had a small vertical component, and
these large weights would distort the results. We also excluded
trials where the eye movement latency was outside the range
50–300 ms or where either weight was outside the range21.0
to 2.0. This resulted in the loss of a further 3.7% of the data in
addition to the 1.3% lost to blinks, etc. We did not exclude any
data based on whether we judged the animal’s response to be
correct or incorrect, as there was no objective basis for doing
so in the first experiment, and we wanted to treat the data in the
same manner for all experiments. Vector decomposition al-
lowed us to identify several interesting outcomes according to
the values of the weightsw1 and w2. Pure vector averaging
(VA) corresponds to the case wherew1 5 w2 5 0.5. Vector

summation (VS) corresponds tow1 5 w2 5 1.0. If the response
to two targets is identical to the response to a single target
(w1 5 1.0 andw2 5 0.0, orw1 5 0.0 andw2 5 1.0), then the
outcome is said to be “winner-take-all” (WTA) for the target
with the nonzero weight. Winner-take-all tracking implies that
the pursuit system is operating in a highly selective mode,
whereas anything short of WTA implies that the output of the
system reflects influences from both target motions.

An example of data for one condition (monkey K, interval 6:
125–150 ms after pursuit onset,T1 5 0°, T2 5 90°) are shown
in Fig. 4A. The results of the vector analysis for this condition
are shown in Fig. 4B. The weights computed for the entire
experiment are shown in Fig. 5. Each small dot in Fig. 5A
represents the weights calculated for a single two-target trial
for monkey K.Despite the variability in the data, the centroid
of the weight distribution (Fig. 5A, open circle) is very close to
pure vector averaging. The individual trial weights formonkeys
A, C, andD are not shown, but the centroids of their weight
distributions are indicated by the square, plus sign, and x,
respectively, in Fig. 5A.

Figure 5,B andC, shows the individual weight distributions

FIG. 4. Raw eye velocity data for selected conditions (A, C, and E) and
derived weighs (B, D, andF). A: experiment 1, monkey K, interval 6.Small
circles and squares are eye velocity measured on individual trials with single
targets. Solid and dashed arrows are the mean single target velocity vectors.
Open circles are the eye velocity response to the 2 targets presented simulta-
neously.B: solid circles are the target vs. distractor weight for each 2 target
trial in A. C andD: experiment 2, monkey A, interval 6.Same conventions as
A andB. EandF: experiment 2, monkey C, interval 6.Same conventions asA
andB.

FIG. 3. Vector analysis of eye velocity. The response to 2 targets presented
together (R) is decomposed into a weighted sum of the responses obtained with
each target individually (T1 and T2). VA is the 2-target response expected
under vector averaging of T1 and T2. VS is the vector sum of T1 and T2.
Winner-take-all would correspond toR 5 T1 or R 5 T2.
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(30 bins spanning the range21 to 2) and their best-fitting
Gaussians. Gaussian parameters were optimized using the
Nelder-Mead algorithm in Matlab 5.3. The optimization was
successful in 288/288 conditions (4 monkeys3 6 experi-
ments3 6 time intervals3 2 wt distributions), indicating that
all of the weight distributions were well approximated by
Gaussians. This is supported by Fig. 6, showing the correlation
between the fitted functions and the data for the complete set of
experiments in this study. The distributions (h) and fitted
functions (y) were normalized to max (h, y) before performing
the correlation. The clustering of points along the linesx 5 1
andy 5 1 is an expected consequence of this normalization.

To test for bimodality in the weight distributions, we did the
following. First, we fit each weight distribution with a sum of
two Gaussians, where the mean, standard deviation, and height
of each Gaussian component was independently varied to
provide the optimal fit using the Nelder-Mead algorithm. We
then identified all local minima and maxima of the fitted double
Gaussian. We considered the fitted function to be bimodal if
there were two peaks and the smaller peak was at least 3% the
size of the larger peak. Seven of 288 weight distributions were
bimodal according to this criterion. There was no single con-
dition (i.e., experiment, monkey, and time interval) for which
both weight distributions were bimodal. To quantify the degree
of bimodality, we calculated the average height of the two
peaks (P1, P2) relative to the valley (V) separating them in
proportion to the average height of the peaks overall according
to the following formula BMI5 (P11 P2 – V)/(P11 P2). The
bimodality index (BMI) can range from 0.0 [no valley, V5
(P11 P2)/2] to 1.0 (full valley, V5 0). The mean bimodality
index was 0.086 0.02 (mean6 SE; range 0.03–0.17).

Vector analysis was performed to derive the target weights

for each two-target trial. The means of these weight distribu-
tions for all four monkeys are plotted as a function of time
interval relative to pursuit onset in Fig. 7A. The dotted line is
the expected value for vector averaging, and the dashed lines
are the values expected for WTA. A pairedt-test was per-
formed for each monkey and time interval to test whether the
mean weights were significantly different. The small open
symbols plotted slightly to the left of each interval show the
resultingP values (2-tailed).

Figure 7,B andC, shows the direction and amplitude of the
weight vectors. Again, the dotted and dashed lines are the VA
and WTA predictions, respectively. Note that the expected
amplitude for vector summation (=2) is off scale. Two-way
analyses of variance (independent variables: monkey, interval;
dependent variables: weight vector direction and amplitude)
showed that monkey and interval were significant factors for
both the amplitude (pmonk 5 0.000;pint 5 0.000) and direction
(pmonk 5 0.000;pint 5 0.011) of the weight vector.

Experiments 2 and 3

The results ofexperiment 1show the monkey’s behavior
when he does not know in advance which target will lead to a
reward. These results provide a baseline for evaluating the
selectivity of smooth pursuit when the animal is given prior
information that might bias his response toward one target or
the other. In the next two experiments, we provided this infor-
mation by making the targets different colors (red or green, 15
cd/m2 luminance) and making the reward contingent on track-
ing a particular color. The nonrewarded target is referred to as
the distractor. During one recording session the monkey was
rewarded only when he tracked green targets and during an-

FIG. 6. Correlation between weight distributions and Gaussian fits. Each
point is the fitted vs. observed value for a single histogram bin. The data were
grouped according to target vs. distractor (w1 or w2) and subject to linear
regression;mi, bi,and ri (i 5 1,2) are the slopes, intercepts, and correlation
coefficients for the regressions.

FIG. 5. Weight vectors forexperiment 1. A: the dots represent weight
vectors calculated for each 2-target trial formonkey K.The open circle, cross,
square, and plus sign are the centroids of the weight distributions formonkeys
K, A, C,andD, respectively.B andC: frequency distributions of the 2 target
weights formonkey K.Solid circles and lines are the best-fitting Gaussians.
WTA, winner-take-all.
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other, he was rewarded only for tracking red targets. The order
was not the same for all monkeys, but for expository purposes
we refer to the experiment with green targets asexperiment 2
and the one with red targets asexperiment 3.Either target or
distractor could move in any of eight directions. Sessions were
spaced 2 or 3 days apart, and the monkey had one day of
practice with each version of the task before data were re-
corded. For this and all following experiments, both targets
were present and moving from the time they appeared until the
end of the trial.

Figure 8 shows responses elicited by four trial types: two in
which there was only a single green target (G1 or G2 in Fig. 8,
A andB), and two in which there was a green target with a red
distractor (G11 R2 or G21 R1 in Fig. 8,A andB). Figure 8C
shows vertical eye velocity averaged over roughly 20 trials of
each type. The two solid lines correspond to G1 or G2 alone,
while the dashed lines correspond to G11 R2 and G21 R1.
There appears to be some averaging during the initial 20 ms of
pursuit, which is why the onset of pursuit occurs later for the
two target trials. Thereafter, the distractor appears to have very
little effect on the direction of pursuit. [The oscillations in eye
velocity that occur roughly 300 ms after target motion onset

were not a consistent feature of the data. Such oscillations are
not uncommon during pursuit initiation and have been de-
scribed and modeled by Goldreich et al. (1992).] This is
corroborated by Fig. 8D, where the trajectories for single and
paired targets are nearly parallel. Comparing Fig. 8,C andD,
to Fig. 2,C andD, shows that prior knowledge of the target
color has a striking effect on the initial direction of pursuit.

The data ofexperiments 2and 3 were subjected to vector
decomposition according toEq. 1 on a trial-by-trial basis.
Figure 4,C–F, shows examples of the raw data and derived
weights for two conditions (Fig. 4,C andD: monkey A, interval
6, Target5 180°, Distractor5 270°; Fig. 4,E andF: monkey
C, interval 6, T5 0°, D 5 90°). The means of the target and
distractor weight distributions for all conditions are shown in
Fig. 7D. The weight vector directions and amplitudes are
shown in Fig. 7,E andF. A three-way ANOVA (independent
factors: experiment, monkey, interval; dependent variables:
weight vector amplitude and direction) showed that there was
no difference between experiments for weight vector direction
(P 5 0.11) and that the effect on amplitude, while significant
(P 5 0.009), was small (experiment 2mean5 0.87 vs. 0.90 for
experiment 3). There was no significant effect of monkey
(amplitude:P 5 0.745; direction:P 5 0.562), but the effect of
time interval was highly significant (P 5 0.000 and 0.002 for
amplitude and direction, respectively). Because the results for
the two experiments were similar, they were combined. The
data shown in Fig. 4,C–F, and Fig. 7,D–F, are for the
combined experiments.

The difference between animals probably is not related to
their individual training histories or the behavioral require-
ments of the task, which were similar if not identical for all
animals. There was a grace period of 300 ms starting at the
onset of target motion during which there was no fixation
requirement. Only after 300 ms was the monkey required to
have his eye position within 3.0° of the rewarded target. The
reason for this was to avoid artificially biasing the animal’s
behavior in favor of any particular outcome. The same grace
period and fixation window were used inexperiment 1,thus
showing that vector averaging was not ruled out by the behav-
ioral requirements. Although winner-take-all tracking of the
rewarded target might have been a somewhat better strategy,
the monkeys were free to track in any direction for the first 300
ms and then switch to the rewarded target without substantially
affecting their reward rate. Using a smaller grace period and
fixation window might have altered the animal’s behavior and
would certainly have caused a larger proportion of trials to be
aborted. This would have the effect of artificially screening the
data in a way that favored winner-take-all pursuit.

Experiment 4

In experiment 4,the color of the rewarded target was ran-
domized from trial to trial, and the monkeys were trained to use
an instructional cue that indicated the color of the rewarded
target on each trial. The cue was presented centrally by chang-

FIG. 7. Weight distribution means for all experiments.A: experiment 1: w1 (filled symbols, thick solid line) andw2 (open
symbols, thick dashed line) plotted as a function of time interval for 4 monkeys (monkey A,circle; monkey C,square;monkey D,
triangle;monkey K,diamond). Error bars are61 SE but are generally smaller than plotting symbols. Thick lines are the mean
weights averaged over monkeys. Small symbols are pairedt-test probabilities that the mean weights for each monkey are different.
B: weight vector directions calculated fromw1 and w2. C: weight vector amplitudes. In all plots, dashed lines are the WTA
expectations, dotted lines are the VA expectation.D–O: results ofexperiments 2–6in same format asA–C.

FIG. 8. A and B: the stimuli for 2 trials conditions ofexperiment 2.Two
targets of different colors appear simultaneously 3° away and move toward the
fixation point at 15°/s.C: vertical eye velocity records averaged over 201
trials. Solid lines are single target trials; dashed lines are paired target trials.D:
eye velocity samples formonkey Aduring the interval 150–300 ms after target
motion onset are plotted to show the direction and speed of eye movement.
There are 4 conditions: G1 alone, G2 alone, G11 R2, and G21 R1 as shown
in A and B. Each of the 4 trajectories represents horizontal and vertical eye
velocity parameterized as a function of time.
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ing the color of the white fixation target to red or green for 300
ms before the tracking targets appeared. This experiment com-
prised 128 trial conditions: all combinations of eight directions
for two targets (64 conditions, as in the previous experi-
ment)3 two instructions (track red or track green). The mean
weights for this experiment are plotted in Fig. 7G. The small
symbols show the outcomes (P values, 2-tailed) of paired
t-tests on the mean weights for each monkey and time interval.
Weight vector directions and amplitudes are plotted in Fig. 7,
H and I. Two-way ANOVAs (independent factors: monkey
and interval; dependent variables: weight vector direction and
amplitude) showed highly significant effects of monkey and
interval on weight vector direction and amplitude (allP val-
ues, 0.000). A three-way ANOVA was used to determine
whether there were significant differences betweenexperiment
4 and experiments 2/3(grouped together) when monkey and
time interval were factored in as independent variables. The
results were mildly significant (direction:P 5 0.039; ampli-
tude P 5 0.011). It seems reasonable to conclude that the
results for blocked colors (experiment 2/3) are very similar to
those for randomly interleaved colors (experiment 4).

Experiment 5

In experiments 1–4,either target could move in any of eight
directions, and the monkey could not predict these directions
before the trial started. Inexperiment 5,we reduced directional
uncertainty by restricting the motion of the rewarded target to
the horizontal axis. In this experiment, the rewarded target
moved along the horizontal meridian, either to the left or right,
while the nonrewarded target moved in any of the eight direc-
tions. As in the previous experiment, the color of the rewarded
target was randomized from trial to trial.

The mean weight vectors for both monkeys are plotted in
Fig. 7J, with the vector directions and amplitudes in Figs. 7,K
andL. The data for both cue colors were combined. Note that
for this experiment, a full set of basis vectors could not be
computed because monkeys made only horizontal eye move-
ments. We therefore used the basis vectors fromexperiments 2
and3. Two-way ANOVAs (independent factors: monkey and
interval; dependent variables: weight vector direction and am-
plitude) showed highly significant effects of monkey and in-
terval on weight vector direction and amplitude (allP values,
0.01). Although the results ofexperiments 2–5appear qualita-
tively similar, three-way ANOVAs (independent factors; ex-
periment, monkey, and interval) showed significant effects of
experiment on both weight vector amplitude (P 5 0.000) and
direction (P 5 0.001). Interestingly, there was no significant
effect of monkey (P 5 0.592 and 0.095 for amplitude and
direction, respectively) even though the effect of monkey was
significant within experiments 4and 5. The effect of time
interval was highly significant across experiments and mon-
keys (P 5 0.000 for both direction and amplitude).

Experiment 6

In the five prior experiments, target motion was along a
straight line path that went through the location of the initial
fixation target, which was also the center of the display. We
refer to this pattern of target movement as radial image motion.
We suspected that radial image motion might favor a vector

averaging outcome. We therefore repeatedexperiment 5but
changed the trajectory of the rewarded target so that instead of
being exactly on the horizontal meridian, its path was 3° above
or below the horizontal meridian (HM) and parallel to it. The
sign of the vertical offset (above or below the HM) was
randomized from trial to trial. The nonrewarded target started
from a position that was symmetric about the HM with respect
to the rewarded target. The initial horizontal position was 1.5°
from the vertical meridian and both targets started from the
same hemifield. We refer to this pattern of movement as
parallel image motion, meaning that the path of the rewarded
target was parallel to the HM. The nonrewarded target moved
in one of eight directions as in the previous experiment, so the
paths of the two targets were not necessarily parallel.

The results ofexperiment 6appeared qualitatively different
from experiments 2–5in that the weight vectors for all mon-
keys more closely approximated the expected pattern for a
WTA outcome. The mean weight vectors are plotted in Fig. 7M
(note: we again used the basis vectors fromexperiments 2and
3). The weight vector direction (Fig. 7N) and amplitude (7O)
appear to show a stronger tendency toward the WTA expecta-
tion (dashed lines) thanexperiments 2–5.However, when the
data for experiments 2–5were grouped together and tested
againstexperiment 6in three-way ANOVAs, the effects of
experiment were not significant (P 5 0.052 for amplitude;P 5
0.154 for direction). However, when three-way ANOVAs (in-
dependent factors:experiment 2–5,monkey, and interval) were
run to look for variability amongexperiments 2–5,the effect of
experiment was highly significant on the weight vector ampli-
tude (P 5 0.000) and direction (P 5 0.001). This suggests that
variability betweenexperiments 2and5 might have washed out
the difference between those experiments andexperiment 6. To
look at this using a different statistical measure, we performed
unpairedt-tests to compare directly the mean weight vectors in
experiments 2–5(grouped) with those inexperiment 6.For
these tests, data were also averaged across monkeys, but not
time intervals. We found a significant effect (2-tailedP 5
0.00000) for the differences in direction and amplitude for each
time interval exceptinterval 2 (25–50 ms), where only the
difference in amplitudes was significant.

To look at the effect of radial versus nonradial image mo-
tion, we comparedexperiments 5and 6. We again used an
unpairedt-test to compare the mean weight vectors, and com-
bined data across monkeys but not time intervals. We found
that for each time interval, the weight vector direction and
amplitude differed significantly (2-tailedP 5 0.0000) between
the two experiments.

Summary of experiments 1–6 and weight vector dynamics

To summarize the results for all six experiments, weight
vectors are plotted in Fig. 9 for the latter four time intervals.
Each data point represents the results from one experiment
from one monkey. The earliest two time intervals were left out
because the results were less reliable due to the fact that eye
velocities were low. (The early intervals clearly showed a
tendency toward vector summation that can be seen in Fig. 10.)
The data in Fig. 9 show variability between experiments and
monkeys. However, the variability is not random, but appears
to be constrained along a line that includes both vector aver-
aging and WTA outcomes. Linear regression analysis supports
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the impression that there is a strong negative correlation be-
tween the two elements of each weight vector. The slope of the
regression line becomes progressively shallower at later time
intervals.

The same data can be plotted as a function of time-interval
relative to pursuit onset to give a sense of the dynamics of the
response. Such plots are shown in Fig. 10. Early time intervals
actually favor vector summation. Forexperiment 1,the weight
vectors shift over time from vector summation to averaging.
For experiments 2–5,there is first a shift toward vector-aver-
aging and then a later shift toward WTA. Forexperiment 6,the
transition goes from vector summation to WTA without pass-
ing through vector averaging. For many experiments, the
weight vectors follow curved trajectories. In theDISCUSSION, we
will consider how these trajectories might be accounted for by
a simple recurrent network model.

Smooth pursuit latency

We have previously reported that the latency of smooth
pursuit depended on the relative direction between the target
and distractor (Ferrera and Lisberger 1997a). The current set of
experiments allowed us to test whether this effect depends on
whether the outcome of the experiment was vector-averaging
or winner-take-all. Figure 11 shows smooth pursuit latency as
a function of relative direction for all six experiments sorted by
monkey. Relative latency was calculated by subtracting the
average latency for single target trials with the same target
direction as the two-target trial. We considered only the abso-
lute value of relative direction, hence the data are symmetric
about zero. It should be noted that, in contrast to the other
experiments,experiment 6included a condition where the

target and distractor moved in the same direction, along par-
allel trajectories. This accounts for the single data point at
x 5 0.

The data show effects similar to those reported previously; a
slight decrease in latency when the target and distractor move
in similar directions and an increase in latency when their
directions of motion are.90° apart. At first glance the effect
appears to vary little between experiments, particularly if one
excludes the 12 obvious outliers (e.g.,monkey C, experiment 1,
angle 5 2180) that account for only 6.1% of the data. To
confirm this impression, we performed a three-way ANOVA
(independent variables: monkey, experiment, and relative an-
gle; dependent variable: latency) and found a significant vari-
ation between animals (P 5 0.027) but not between experi-
ments (P 5 0.169). The effect of relative direction was highly
significant (P , 0.0001).

Relationship between latency and accuracy

It is well established in the saccade system that short laten-
cies favor averaging saccades while long latencies favor accu-
rate (i.e., winner-take-all) saccades (Ottes et al. 1985). We
found a similar trend in our smooth pursuit data. For example,

FIG. 9. Summary of results forexperiments 1–6.Each subpanel is a dif-
ferent time interval (indicated attop of subpanel). Monkeys are represented
by same symbols as in Fig. 7.m, linear regression slope;r, correlation
coefficient.

FIG. 10. Weight vector dynamics. Each subplot shows data for 1 experi-
ment, as indicated. The order of the data points in each curve is the same as the
order of the time intervals they represent. Filled symbols are the weight vectors
for the final time interval (125–150 ms).
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Fig. 12A shows target and distractor weights on individual
trials from monkey A, experiment 4, time interval 5(125–150
ms). For short latencies, the target and distractor weight dis-
tributions overlap with both means close to 0.5. For longer
latencies, the distributions diverge as the target weight ap-
proaches a mean near 1.0, and the distractor weight goes to
zero.

To explore this effect quantitatively, we grouped the target
and distractor weights into 10-ms latency bins and plotted the
results for each experiment in Fig. 12,B–F. Data were aver-
aged over monkeys and time intervals. Within each experi-
ment, the mean target and distractor weights were compared

using a pairedt-test. An asterisk indicates that the correspond-
ing weights were significantly different (P , 0.001, 2-tailed).
Across experiments, the point at which the weights diverged
shifts to progressively shorter latencies. This shift parallels the
shift from VA to WTA pursuit. One might question how it is
possible for the weights to diverge for latencies shorter than
200 ms inexperiment 1,given that there was no information
about which target would be rewarded during the first 200 ms
of image motion. The answer is that, because the data were

FIG. 12. Target and distractor weights as a function of smooth pursuit
latency. A: target (solid circles) and distractor (open circles) weights for
monkey A, experiment 4, interval 5.Each point is an individual trial.B–F:
target and distractor weights averaged over monkeys and time intervals for
experiments 1–6.Latency binwidth is 10 ms. Asterisks indicate significant
differences (pairedt-test,P , 0.001). Dashes and dotted lines represent the
WTA and VA expectations, respectively.

FIG. 11. Smooth pursuit latency as a function of relative direction of
motion for target and distractor. Each subpanel shows results for a different
monkey (indicated attop of subpanel). Error bars are61 SE.
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averaged over different time intervals, each latency bin reflects
information that was available to the monkey up to 150 ms
later. For example, the bin labeled “150 ms” reflects data
sampled up to 300 ms after the onset of target motion. A delay
of 300 ms is long enough for changes in the visual display to
affect pursuit, given feedback delays in the range of 80–120
ms. It is reasonable to conclude that the divergence seen in
experiment 1reflects changes in pursuit subsequent to the
disappearance of the distractor. Supporting this interpretation
is the finding that one-way ANOVAs (independent factor:
latency; dependent variable: weight difference,w1 2 w2) run
on each time interval forexperiment 1showed significant
effects (P, 0.05) of latency only inintervals 4, 5,and6 (i.e.,
those starting 75 ms or later after pursuit onset). A similar
interpretation is not possible for the other experiments first
because the distractor was always present, and second because
significant divergence occurred for latencies much shorter than
150 ms. One-way ANOVAs (independent factor: latency; de-
pendent variable:w1 2 w2) for experiments 2/3, 4, 5,and 6
showed highly significant effects of latency for each time
interval (averageP value 5 0.0054, 24 conditions: 4 experi-
ments3 6 time intervals) except forexperiment 5, interval 1
(P 5 0.072).

D I S C U S S I O N

In agreement with an earlier report (Lisberger and Ferrera
1997), we found that in the presence of two identical targets,
smooth eye velocity during the initial 150 ms of the eye
movement was very close to a pure vector average of the eye
velocity evoked by either target presented alone. The direction
and speed of smooth pursuit were not generally consistent with
vector summation, nor did the monkey arbitrarily choose one
target or the other on any given trial. This result implies that,
on average, smooth pursuit eye movements are driven by an
equally weighted combination of the signals provided by the
different neuronal pools responding to each target. In addition,
the fact that the data show averaging rather than summation
implies that there is normalization of the response to target
motion somewhere along the sensorimotor pathway. It should
be noted that there was a tendency toward vector summation
during the first 50 ms of pursuit, which suggests that the onset
of normalization is not simultaneous with the onset of pursuit.
These observations are consistent with a model developed
below which qualitatively accounts for the transitions from
vector summation to vector averaging and from vector aver-
aging to WTA.

In subsequent experiments, we asked what happens when
the task is structured so that the monkey is able to1) distin-
guish between the targets and2) form an a priori notion of
which would be the rewarded target. We investigated this by
training the monkeys to select a target based on its color
(Ferrera and Lisberger 1995, 1997a). We found one condition
(experiment 6) where the initial eye movement showed WTA
behavior for the direction of the correct target, which agrees
with earlier results using a similar task (Ferrera and Lisberger
1997a). In four other experiments, the behavior was interme-
diate between vector-averaging and WTA.

The observation that monkeys did not perform winner-take-
all pursuit inexperiments 2–5suggests that the vector-averag-
ing obtained inexperiment 1is not simply an optimal cognitive

strategy that monkeys use when they do not know in advance
which target will be rewarded. If monkeys always used an
optimal strategy, then one would expect pursuit to be WTA in
all cases where monkeys know in advance the identity of the
correct target, because WTA is the optimal strategy in these
cases. The observation that pursuit is often intermediate be-
tween vector averaging and WTA suggests that monkeys can-
not easily switch from one strategy to the other, but rather that
some effort is required to overcome an inherent tendency
toward vector averaging. This supports the idea that vector
averaging is a default computation that is performed automat-
ically at a stage of visual motion processing that contributes to
pursuit initiation.

One of the goals of these experiments was to determine how
stimulus and task-related factors affect the selectivity of
smooth pursuit. The results ofexperiments 2–5suggest that
attention to color biases the direction of pursuit toward the
attended target. It appeared to make little difference if the
monkey tracked one color for an entire session or if the color
of the rewarded target varied randomly from trial to trial
(experiment 2/3vs.4). Uncertainty about the direction of target
motion also appears to play only a small role (experiments 2–4
vs. 5).

The pattern of image motion appears to be an important
factor; winner-take-all pursuit was found only when the re-
warded target moved parallel to the horizontal meridian (ex-
periment 6). Radial image motion favored vector-averaging,
perhaps by evoking a larger contribution from cells in MST
that respond to radial flow patterns (Graziano et al. 1994; Saito
et al. 1986). It should be noted, however, that MST cells tend
to prefer flow patterns with elements moving away from one
another (expansion) rather than the contracting patterns formed
by the stimuli used in the current experiments. Large field
expanding optic flow patterns have also been shown to induce
short-latency vergence eye movements (Busettini et al. 1997).
The contribution of vergence to the eye movements measured
here is unknown as all eye movements were measured monoc-
ularly. Busettini et al. recorded peak vergence velocities
around 2°/s, an order of magnitude smaller than the pursuit
velocities measured here, and other considerations make it
unlikely that the small amount of vergence that may have been
evoked by our impoverished stimuli would have contaminated
our results significantly.

The differences between monkeys suggest that factors such
as motivation and individual preference also affect the selec-
tivity of pursuit. It is difficult to control for these factors
without designing the experiment in a way that predetermines
the outcome. Our main conclusions therefore are simply that
the selectivity of smooth pursuit can vary from pure vector
averaging to winner-take-all, that the selectivity is influenced
by prior knowledge of the color of the rewarded target, which
may be construed as feature-selective attention, and that there
is an influence of the pattern of image motion (radial vs.
parallel). One of the more surprising conclusions is that atten-
tion appears not to act as an all-or-none gate, but rather exhibits
a graded, modulatory influence on the sensorimotor transfor-
mation. The modulation of pursuit selectivity is not uniformly
distributed over the entire two-dimensional weight space, but
appears to be constrained along a one-dimensional subspace
(see Fig. 9). Intermediate outcomes along this dimension ap-
pear to be stable, as are the extremes of VA and WTA. This
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suggest the possibility that the behavior of the pursuit system
might be constrained by a “line-attractor” in weight-space, i.e.,
a one-dimensional locus of asymptotically stable fixed points.
The concept of a line-attractor has been used to model eye
position memory in the oculomotor “neural integrator” (Seung
1996).

The transition from vector-averaging to WTA pursuit de-
pended not only on task and stimulus conditions, but also on
the latency of pursuit, as shown in Fig. 12. When prior infor-
mation was available (experiments 2–6), pursuit that was ini-
tiated after long latencies tended to be more WTA-like for all
time intervals following pursuit initiation. This result suggests
that target selection and pursuit initiation are governed by
independent processes, each with its own time course. Hence,
pursuit can be initiated at a relatively early stage of target
selection, resulting in VA pursuit, or at a later stage, which
results in WTA pursuit. Similar latency-accuracy trade-offs
have been observed in the saccade and limb movement systems
(Hening et al. 1988; Ottes et al. 1985).

These experiments raise the issue of how attention affects
the way that motor outputs are coded based on the pattern of
distributed activity in a neural map. The issue of distributed
coding of movement has arisen previously with regard to the
control of saccades by the superior colliculus (reviewed by
McIlwain 1991). Vector averaging or summation and winner-
take-all computations have been suggested as alternative
means of decoding neuronal population activity (Georgopoulos
et al. 1993; Groh et al. 1997). Our results indicate that smooth
pursuit eye movements in monkeys exhibit a continuous range
of behavior from pure vector averaging to winner-take-all for
target direction. We were interested to determine whether this
range of behavior could be reproduced in a simple recurrent
neural network (Ferrera and Lisberger 1997a; Koch and Ull-
man 1985; Williams et al. 1986; Wilson and Cowan 1972;
Yuille and Grzywacz 1989). We tested a network model sim-
ilar to that used in our previous work (Ferrera and Lisberger
1997a), the only difference being the number of neurons and
the distribution of recurrent inhibition across neurons. In the
previous model, we used directionally tuned inhibition,
whereas the current model used uniform inhibition. However,
we have found that tuned inhibition was not needed to model
our results and the untuned model is preferable in that it
requires fewer parameters. The network comprised 16 “neu-
rons,” each of which signaled a different direction of motion.
The output of the network was coded as a population vector
(Georgopoulos et al. 1993). Further details are provided in the
APPENDIX.

We tested the behavior of the model by running simulations
with either a single input (target) or two inputs (target plus
distractor). The direction of the distractor varied across runs (8
directions, 22.5–180°). The target direction was always 0°
(horizontal). For each set of runs, two-dimensional weights
were computed by vector decomposition of the population
vectors. Two parameters were varied over different sets of
runs: the strength of the recurrent inhibition (wi) and a selection
bias that was added to the input of the neuron tuned to the
target direction. The dynamics of the network response are
illustrated in Fig. 13A, which shows the weight vectors com-
puted from every 25th iteration. The squares correspond to a
set of runs wherewi 5 20.2 and bias5 0. Initially, the
response is close to vector summation, but it quickly evolves to

a pure vector average. This behavior is comparable to the
weight vector dynamics shown in Fig. 10A. The filled circles
correspond to a set of runs withwi 5 20.2 and bias5 0.5. In
this case the network follows a curved trajectory that ends up
near WTA. The curved trajectory shows some similarity to the

FIG. 13. Behavior of a competitive network model of target selection.A:
population vector dynamics for 2 sets of runs with the same strength of
inhibition (wi 5 20.2) but different levels of bias (open squares, bias5 0;
closed circles, bias5 0.5, or 5% as strong as the sensory input).B: steady-state
behavior. Open circles are runs with no bias, only increasing inhibition (range
0 to 20.2). Closed symbols are runs with nonzero, positive bias and the same
range of inhibition. Lines connect sets of runs with equal bias. The large
arrows labeled “inh” and “bias” indicate the general direction of the shift in the
steady-state equilibrium caused by increasing recurrent inhibition and selection
bias, respectively.C: response latency based on population vector amplitude.
Error bars are61 SE.
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trajectories of the data in Fig. 10,B–E. With stronger biases,
the trajectory shifts to the right and flattens out, i.e., it makes
more of a beeline between VS and WTA, reminiscent of the
data in Fig. 10E. It should be noted that the shape of the
trajectory does not reflect the dynamics of either the selection
bias or recurrent inhibition as these are fixed at the beginning
of the simulation. The trajectory shape is simply a consequence
of the internal dynamics of the network. Similarly, it would be
unwise to conclude that a shift in the data from VA to WTA
reflects the dynamics of attentional or decision processes that
are accumulating information over time (see Leon and Shadlen
1998). Such shifts may simply reflect the response dynamics of
cortical networks.

The steady-state behavior of the network is shown in Fig.
13B. Each point represents the weight vector calculated from
one set of runs, and the selection bias and recurrent inhibition
were varied over different sets of runs. When there was no
selection bias, increasing inhibition (wi 5 0.0 to20.3) resulted
in a transition from vector summation to vector averaging (Fig.
13B, open circles). Increasing the selection bias (range: 0.0–
2.0) resulted in a shift toward WTA. The maximum bias was
20% as strong as the direct sensory input (I). The lines in Fig.
13B connect sets of runs with the same inhibition level, but
increasing bias. If the inhibition is strong enough for vector
averaging with bias5 0, then varying the bias results in
outcomes that are constrained along a line that runs from VA
to WTA. This suggests that there is a direct relationship be-
tween the strength of attentional bias and the locus of the
weight vector along the VA-WTA dimension, and therefore
that a single parameter can account for the variability in the
summary data shown in Fig. 9.

It was possible to assign a latency to the response of the
network model by looking at the evolution of the amplitude of
the population vector. Figure 13C shows the “relative latency,”
or number of iterations before the population vector amplitude
reached a fixed arbitrary threshold, as a function of the relative
direction of target and distractor. Runs were grouped according
to whether the steady-state weight vector was within a radius of
0.05 around the VS, VA, or WTA outcomes. (Each data point
in Fig. 13C is the mean latency over several runs; the SEs are
also plotted but are generally smaller than the plotting sym-
bols.) For VS and VA outcomes, the population vector never
reached criterion when the target and distractor moved in
opposite directions, so there is no data forx 5 2180,180. For
all three outcomes, the latency depends on relative direction in
a manner similar to that shown in Fig. 11. This result suggests
that the directional tuning of the behavioral latency functions
does not depend on directionally tuned recurrent inhibition.
Indeed, there is directional tuning even when the outcome is
VS, which only happens when there is negligibly weak inhi-
bition. More significantly, there are only small differences in
the latency effects for different classes of outcome, which is in
general agreement with the data in Fig. 11. Our interpretation
of this is that the latency effect reflects fixed properties of the
underlying neural architecture, i.e., the pattern of input and
recurrent connections, while the VA to WTA transition reflects
the action of cognitive signals.

It is possible to speculate on how three features of the
network discussed above, namely competitve inhibition, selec-
tion bias, and response normalization, might correspond to
various stages of the neural pathway for smooth pursuit. There

is evidence that response normalization is performed by neu-
rons in visual areas MT and MST, and this might underly the
computation of a vector average (Groh et al. 1997; Qian and
Andersen 1994; Recanzone et al. 1997; Simoncelli and Heeger
1998; Snowden et al. 1991). However, it is not clear that the
spatial scale of interactions in MT/MST can account for inter-
actions between widely spaced pursuit targets that have been
observed (Ferrera and Lisberger 1997a). There is some evi-
dence against the idea that competitive inhibition, as imple-
mented in the network, is present in MT or MST (Ferrera and
Lisberger 1997b). However, it has been found that electrical
stimulation of the frontal eye field (FEF) with currents that are
subthreshold for eliciting saccades is effective in inhibiting the
production of voluntary saccades to locations outside the
movement field of the stimulation site (Burman and Bruce
1997). This result suggests that competitive interactions that
could mediate target selection are a feature of FEF circuitry,
which may include the part of the FEF that is specialized for
smooth pursuit (frontal pursuit area) (Gottlieb et al. 1994;
MacAvoy et al. 1991). The selection bias used in the network
might correspond to attentional modulation of sensory re-
sponses seen in visual areas MT and V4 (Ferrera and Lisberger
1997b; Moran and Desimone 1985; Motter 1993; Treue and
Maunsell 1996). A bias of 2.0 (i.e., 20% of the sensory input)
is commensurate with the strength of attentional effects in
those areas. Alternatively, the attentional signals observed in
extrastriate cortex may reflect top-down feedback from FEF
(Schall et al. 1995b), which has been shown to play a role in
color-based target selection for saccadic eye movements (Fer-
rera et al. 1999; Schall and Hanes 1993; Schall et al. 1995a).

In summary, this study supports the notion that target selec-
tion for smooth pursuit eye movements is mediated by an
attentional bias amplified by a competitive network. One pos-
sible scenario is that the attentional bias is introduced in
prefrontal and/or extrastriate cortex and that competitive inter-
actions in prefrontal cortex then amplify the selection bias,
transforming it into a motor command. The degree to which the
motor command represents a vector average or winner-take-all
response to the visual input depends on the strength of the
selection bias. The selection bias and competitive inhibition, as
well as response normalization, are three computational ele-
ments that should be considered in future models of the smooth
pursuit system.

A P P E N D I X

This appendix provides details of a recurrent network model of
smooth pursuit target selection consisting of an array of 16 direction
selective units with Gaussian tuning (s 5 15.0°). The activity of each
unit (E) was a nonlinear function (g) of the input to that unit (I) plus
the weighted activity of all other units

dEi

dt
5 2Ei 1 gSk O

j

n

WijEj 1 I iD (A1)

A weak bias was added to the target signal so thatItarget 5 10.0 1
bias, andIdistractor5 10.0. The weights were specified by a 16-by-16
matrix where each elementWij 5 we (the strength of the excitatory
weight) if i 5 j, and wi (the strength of the inhibitory weight)
otherwise. This means that each unit excited itself and no others and
uniformly inhibited and was inhibited by all other units. This model
differs from those we have used previously (Ferrera and Lisberger
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1997a) in that the inhibition was uniform rather than directionally
tuned. In all simulated runs of the model,we was fixed at 0.0, while
wi varied between runs. The constantk determined the relative
strength of recurrent versus feed-forward connections in the network.
This was set to a value of 50.0. Smaller values of this constant did not
substantially affect the qualitative behavior of the network, but mainly
slowed the time course with which the network reached its steady-
state output.

The sigmoidal activation function,g, used was the logistic function

g~x! 5 $1 1 exp@2h~x 2 d!#%21 2 @1 1 exp~2hd!#21 (A2)

with h 5 0.5, andd 5 9.0.
The output of the network was coded as a population vector (PW)

PW5 O
i

n

EiVWi (A3)

whereVWi is the unit vector oriented toward the preferred direction of
each unit. It should be noted that, although the population vector was
coded as a vector sum of the weighted unit activations, this does not
imply that the network always performed vector summation. The
population vector is simply a characterization of the pattern of activity
during a single run. One must compare population vectors from
different runs with single and paired targets to ascertain what com-
putation the network is performing.

This network was simulated in Matlab v. 5.2 on a DEC workstation
with an Alpha 21164 microprocessor (500 MHz) running Digital Unix
4.0C. The number of iterations per simulation was 3,000 to allow the
network to reach steady state.
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