
IEOR 3106: First Midterm Exam, Chapters 1-4, October 3, 2013

SOLUTIONS

1. A Five-Room Maze for Markov Mouse (35 points, 5 points for each part)

Markov Mouse is placed in room 1 of the 5-room maze below and then moves randomly
from room to room through one of the doors (horizontally and vertically) that connect the
rooms. On each move, Markov Mouse chooses each of its eligible doors with equal probability,
independently of past decisions.
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Figure 1: A five-room maze for Markov Mouse.

(a) What is the probability that Markov Mouse is in room 3 after two moves?

——————————————————————————————-

P
(2)
1,3 = P1,2P2,3 = (1/2)(1/3) = (1/6)

——————————————————————————————-

(b) What is the probability that Markov Mouse is back in room 1 after two moves?

——————————————————————————————-

P
(2)
1,1 = P1,2P2,1 + P1,4P4,1 = (1/2)(1/3) + (1/2)(1/2) = (1/6) + (1/4) = 5/12

——————————————————————————————-

(c) Does the probability that Markov mouse is in room 1 after n moves converge to a limit
as n → ∞? Why or why not?

——————————————————————————————-
No, because the Markov chain is periodic. Starting in an odd numbered room, it can be

in an odd numbered rooms only after an even number of steps.

——————————————————————————————-

(d) What is the expected number of moves until Markov Mouse first returns to room 1?

——————————————————————————————-
Let Zi be the number of moves until first returning to room i, starting in room i. The

expected number of moves to return to room 1 is E[Z1] = 1/π1, where π1 is the long-run
proportion of moves ending in room 1. Since π1 = 1/5 by the next part,

E[Z1] = 5.

——————————————————————————————-



(e) What is the long-run proportion of moves that Markov Mouse spends in room 1?

——————————————————————————————-
This is a simple application of a random walk on a weighted graph, where all the weights

are 1. The long-run proportion of moves spent in room i, πi, is proportional to the number of
doors out of room i. Thus,

π1 =
2

2 + 3 + 1 + 2 + 2
=

2

10
=

1

5
.

——————————————————————————————-

(f) Give a formula that can be used to calculate the expected total number of visits to room
2 before visiting either room 3 or room 5. Carefully identify all quantities in the formula.

——————————————————————————————-
We use the theory for absorbing chains. We want N1,2, the (1, 2)th element of the funda-

mental matrix
N = (1 − Q)−1,

where 1 is the initial state and 2 is another transient states, while rooms 3 and 5 are absorbing
states. In particular, we can re-order the rooms to make the transition matrix be of the
block-matrix form

P =

(

I 0
R Q

)

, where I is a 2 × 2 identity matrix, R is 3 × 2 and Q is the 3 × 3 transition matrix for the 3
transient states. In particular, we write P as

P =

3
5
1
2
4













1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1/2 1/2
1/3 1/3 1/3 0.0 0.0
0.0 1/2 1/2 0.0 0.0













**Note that we are labeling the states with the columns labeled the same as the rows.
Hence,

Q =
1
2
4





0.0 1/2 1/2
1/3 0.0 0.0
1/2 0.0 0.0





and

I − Q =
1
2
4





1.0 −1/2 −1/2
−1/3 1.0 0.0
−1/2 0.0 1.0





Finally, N is the inverse, i.e., N = (I − Q)−1 = inv(I − Q).

——————————————————————————————-

(g) Give a formula that can be used to calculate the probability that Markov Mouse visits
room 3 before visiting room 5. Carefully identify all quantities in the formula.

——————————————————————————————-
Now we want B1,3, the (1, 3) element of the matrix B, where

B = NR,

with N = (1 − Q)−1 for Q given in the previous part and
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R =
1
2
4





0.0 0.0
1/3 1/3
0.0 1/2





with the columns labeled first 3 and then 5.

——————————————————————————————-

2. Markov Mouse with Memory (40 points, 5 points for each part)

We again consider Markov mouse moving from room to room in the 5-room maze of problem
1. Markov Mouse is placed in room 1 of the 5-room maze and then moves randomly from
room to room through one of the doors (horizontally and vertically) that connect the rooms.
However, now we assume that Markov Mouse has memory and recognizes where it has been
before. (Maybe because of its keen sense of smell.) So now we assume that Markov Mouse
never returns to a room that it occupied before. On each move, Markov mouse chooses
each of its eligible doors with equal probability. (Now a door is eligible if it leads to a room
that has not been occupied before.) When there are no eligible moves, Markov Mouse stops
moving. Hence, Markov Mouse makes at most 4 moves.
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Figure 2: A five-room maze for Markov Mouse.

(a) What is the probability that Markov Mouse visits all 5 rooms (including the initial
room 1)?

——————————————————————————————-
It is good to start with an insightful figure. Here we draw a probability tree, just as in

the lecture notes for the first class. The nodes are labeled by the rooms visited so far, in order.
There are only two possible random choices. There is a random choice on the first move

and then another random choice in the second move, if the first move is to room 2. There are
just 3 possible sequences of moves. The probability that Markov Mouse with Memory (M3)
visits all 5 rooms is thus 1/2. This happens if and only if the initial move is to room 4.

——————————————————————————————-

(b) What is the conditional probability that Markov mouse visits all 5 rooms given that
the last room visited is room 3?

——————————————————————————————-
Let A be the event that M3 visits all 5 rooms, corresponding to the sequences of rooms

(1, 4, 5, 2, 3). Let B be the event that the last room visited is room 3, which corresponds to
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(1)

(1,2)

(1,4)

(1,2,3)

(1,4,5)

(1,2,5) (1,2,5,4)

(1,4,5,2) (1,4,5,2,3)

1/2

1/2

1/2

[1/2]

[1/4]

[1/4]

1/2

Number of rooms visited:   3 4 5

the two sequences (1, 2, 3) and (1, 4, 5, 2, 3), which has probability 3/4. Then

P (A|B) ≡ P (AB)

P (B)
=

P (A)

P (B)
=

1/2

3/4
= 2/3.

——————————————————————————————-

(c) Let Xn be the room occupied by Markov Mouse after n moves. If Markov Mouse stops
in room j after k moves, let Xn = j for all j ≥ k. Is the stochastic process {Xn : n ≥ 0} a
Markov chain? Explain.

——————————————————————————————-
No. The stochastic process {Xn : n ≥ 0} is not a Markov chain. It fails to have the Markov

property. The Markov property states that the transition probability given the entire history is
the same as the transition probability given only the current state occupied. Here the current
state is the current room (by definition above). For example, the transition probability from
room 5 depends on the history of previous rooms visited.

——————————————————————————————-

(d) If possible, define an absorbing Markov chain representing the movement of Markov
Mouse (with the condition that Markov Mouse never returns to a room that it occupied before)
and identify the absorbing states.

——————————————————————————————-
Just as in Example 4.4 of the textbook and homework exercise 4.2, we can obtain a Markov

process if we include some of the history into our definition of the states. The key is to define
new states. In this case, we should include the rooms visited previously and the order they are
visited. The appropriate states are the shown in the nodes of the probability tree drawn for
part (a). There are 9 states: (1), (1, 2), (1, 4), (1, 2, 3), (1, 2, 5), (1, 4, 5), (1, 2, 5, 4), (1, 4, 5, 2)
and (1, 4, 5, 2, 3). The transition probabilities are as specified in the probability tree of part
(a). In particular,
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P =

(1)
(1, 2)
(1, 4)

(1, 2, 3)
(1, 2, 5)
(1, 4, 5)

(1, 2, 5, 4)
(1, 4, 5, 2)

(1, 4, 5, 2, 3)





























0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0





























**Note that we are labeling the states with the columns labeled the same as the rows.
The three absorbing states are: (1, 2, 3), (1, 2, 5, 4) and (1, 4, 5, 2, 3). The transition proba-

bilities from these states to these states above are 1.

——————————————————————————————-

(e) What is the mean number of rooms that Markov Mouse visits (including the initial
room)?

——————————————————————————————-
Let N be the number of rooms visited by M3. From the probability tree in part (a), we

see that
P (N = 3) = 1/4, P (N = 4) = 1/4 and P (N = 5) = 1/2,

so that

E[N ] = (3 × 1

4
) + (4 × 1

4
) + (5 × 1

2
) =

17

4
= 4.25

——————————————————————————————-

(f) What is the variance of the number of rooms that Markov Mouse visits (including the
initial room)?

——————————————————————————————-
Using the same notation, V ar(N) = E[N2] − (E[N ])2, where

E[N2] = (9 × 1

4
) + (16 × 1

4
) + (25 × 1

2
) =

75

4
=

300

16
.

Hence,

V ar(N) =
300

16
−
(

17

4

)2

=
11

16
.

——————————————————————————————-

(g) If the experiment is repeated 100 times under independent conditions (with 100 different
mice of the same type), then what is the approximate probability that the total number of
rooms visited by all mice in the 100 experiments exceeds 455? (Make a reasonable rough
estimate, to within 0.050)

——————————————————————————————-
Let Nn be the number of rooms visited in experiment n, 1 ≤ n ≤ 100. Let Sn ≡ N1+· · ·Nn.

Thus we want the approximate probability P (S100 > 455). We use a normal approximation.
We need the mean and variance of Sn:

E[Sn] = nE[N1] = 4.25n and V ar(Sn) = nV ar(N1) = (11/16)n,
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so that

E[S100] = 100E[N1] = 425 and V ar(S100) = 11V ar(N1) = 1100/16 = 68.75

We will need only a rough estimate of the variance. Hence, we use a normal approximation.
Let N(0, 1) denote a random variable with the standard normal distribution (mean 0 and
variance 1). Then, adding and dividing on both sides as usual:

P (S100 > 455) = P

(

S100 − E[S100]
√

V ar(S100)
>

455 − E[S100]
√

V ar(S100)

)

≈ P

(

N(0, 1) >
455 − E[S100]
√

V ar(S100)

)

= P

(

N(0, 1) >
455 − 425]√

68.75

)

= P

(

N(0, 1) >
30

8.29

)

≈ P (N(0, 1) > 3.61) ≈ 0.0001 ≈ 0,

where we apply the table of the normal distribution.
It is important to recognize that it is not necessary to compute

√
68.75 exactly! A rough

estimate would be based on the elementary observation that 8 =
√

64 <
√

68.75 <
√

81 = 9 <
10, so that the probability satisfies

P (S100 > 455) ≤ P (N(0, 1) > 3) = 0.0013 < 0.050.

So a rough estimate is P (S100 > 455) ≈ P (N(0, 1) > 3) ≈ 0.0013 ≈ 0.

——————————————————————————————-

(h) Explain why your answer in part (g) above is justified.

——————————————————————————————-
The normal approximation is justified by the central limit theorem.

——————————————————————————————-

3. Two Independent Exponential Random Variables (28 points, 4 points for
each part)

Consider two independent exponentially distributed random variables Xi with means mi ≡
E[Xi] ≡ (1/λi) for i = 1, 2 with m1 = 1 and m2 = 2. For i = 1, 2, these random variables have
probability density functions (pdf’s) and cumulative distribution functions (cdf’s)

fXi
(x) ≡ λie

−λix, x ≥ 0, and FXi
(x) ≡ P (Xi ≤ x) = 1 − e−λix

Let min {X1,X2} and max {X1,X2} be the minimum and maximum of these two random
variables, respectively.

——————————————————————————————-
First, we chose this problem because it leads into our next topic, Chapter 5. In particular,

see §5.2 in the book. You should be able to answer these questions using basic probability, as
in Chapters 1-3 of the textbook. see (2.7) and §2.3.2 in the book.

——————————————————————————————-

(a) What is P (X1 > 3|X1 > 1)?

——————————————————————————————-
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Use the definition of conditional probability:

P (X1 > 3|X1 > 1) =
P (X1 > 3 and X1 > 1)

P (X1 > 1)

=
P (X1 > 3)

P (X1 > 1)
=

e−3

e−1

= e−(3−1) = e−2 = P (X1 > 2).

This is an example of the lack-of-memory property of the exponential distribution. We
can rewrite it as

P (X1 > x + y|X1 > y) = P (X1 > x) for all x, y > 0.

See (5.2) in the book.

——————————————————————————————-

(b) What is P (X1 > 3|X2 > 1)?

——————————————————————————————-
Since X1 and X2 are independent, the conditioning has no impact:

P (X1 > 3|X2 > 1) = P (X1 > 3) = e−3

——————————————————————————————-

(c) What is V ar(X1 + X2), the variance of the sum?

——————————————————————————————-
Since the random variables are independent,

V ar(X1 + X2) = V ar(X1) + V ar(X2).

Since Xi is exponentially distributed, V ar(Xi) = m2
i . Hence,

V ar(X1 + X2) = m2
1 + m2

2 = 12 + 22 = 5.

We remark that in general

V ar(X1 + X2) = V ar(X1) + V ar(X2) + 2Cov(X1,X2),

where Cov(X1,X2) ≡ E[X1X2] − (E[X1]E[X2]) is the covariance between X1 and X2. Inde-
pendence implies that Cov(X1,X2) = 0. (See §2.5.2.)

——————————————————————————————-

(d) What is E[X1 + X2|X2 = 3]?

——————————————————————————————-
The expectation of a sum is always the sum of the expectations, even for conditional

expectations. Hence,

E[X1 + X2|X2 = 3] = E[X1|X2 = 3] + E[X2|X2 = 3] = E[X1] + 3 = 1 + 3 = 4.

——————————————————————————————-
(e) What is P (min {X1,X2} > x)?

——————————————————————————————-
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Observe that the minimum is greater than x if and only if both random variables are greater
than x. Hence,

P (min {X1,X2} > x) = P (X1 > x,X2 > x) = P (X1 > x)P (X2 > x) = e−λ1xe−λ2x

= e−(λ1x+λ2x) = e−(λ1+λ2)x = e−(1+(1/2))x = e−1.5x

——————————————————————————————-

(f) Find the pdf of the sum fX1+X2
(x).

——————————————————————————————-
The density of the sum of two independent random variables is the convolution of the

component densities, so that

fX1+X2
(x) =

∫ x

0
fX1

(u)fX2
(x − u) du

=

∫ x

0
λ1e

−λ1uλ2e
−λ2(x−u) du

= λ1λ2e
−λ2x

∫ x

0
e−λ1ue+λ2u du

= λ1λ2e
−λ2x

∫ x

0
e−(λ1−λ2)u du

=
λ1λ2e

−λ2x(1 − e−(λ1−λ2)x)

λ1 − λ2

=
1(1/2)e−0.5x(1 − e−0.5x)

1 − (0.5)

= e−0.5x − e−x.

See §5.2.4 in the book.

——————————————————————————————-

(g) Find E[max {X1,X2}].
——————————————————————————————-
From part (e), we see that min {X1,X2} has an exponential distribution with a rate equal

to the sum of the rates. Hence,

E[min {X1,X2}] =
1

λ1 + λ2
=

1

1 + (1/2)
=

2

3
.

Next, observe that

max {X1,X2} + min {X1,X2} = X1 + X2,

so that
max {X1,X2} = X1 + X2 − min {X1,X2}

and

E[max {X1,X2}] = E[X1] + E[X2] − E[min {X1,X2}] = 1 + 2 − 2

3
=

7

3
.

——————————————————————————————-
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