A Concise Summary

Everything you need to know about exponential and Poisson

Exponential Distribution

Assume that $X \sim \exp (\lambda)$, by which we mean that X has an exponential distribution with rate λ. Then X has mean $1 / \lambda$; i.e., $E X=1 / \lambda$. Also the variance is $\operatorname{Var}(X)=(E X)^{2}=1 / \lambda^{2}$. In addition, assume that $Y \sim \exp (\mu)$ and $X_{i} \sim \exp \left(\lambda_{i}\right)$ for $i=1, \cdots, n$, where all these exponential random variables are independent.

1. Lack of memory: $P(X>s+t \mid X>s)=P(X>t)$ for all $s>0$ and $t>0$.
(check the computation)
2. Minimum: $\min \{X, Y\} \sim \exp (\lambda+\mu)$
(check the computation)
and hence
$\min \left\{X_{1}, \cdots, X_{n}\right\} \sim \exp \left(\lambda_{1}+\cdots+\lambda_{n}\right)$ without computation.
3. Maximum: $X+Y=\min \{X, Y\}+\max \{X, Y\}$ tells us an easy way to compute $E[\max \{X, Y\}]$.)
4. More on Minimum: $P(X=\min \{X, Y\})=P(X<Y)=\frac{\lambda}{\lambda+\mu}:$ (check the computation) and hence
$P\left(X_{k}=\min \left\{X_{1}, \cdots, X_{n}\right\}\right)=\frac{\lambda_{k}}{\lambda_{1}+\cdots+\lambda_{n}}$ without computation.
5. Even more on Minimum:The events $\{X=\min \{X, Y\}\}$ and $\{\min \{X, Y\}>t\}$ are independent for all t.
and hence
the events $\left\{X_{k}=\min \left\{X_{1}, \cdots, X_{n}\right\}\right\}$ and $\left\{\min \left\{X_{1}, \cdots, X_{n}\right\}>t\right\}$ are independent for all t.

Poisson Processes

Consider a Poisson process $\{N(t): t \geq 0\}$ with rate λ, referred to by $N(t)(\lambda)$. In addition, consider Poisson processes $N_{j}(t)\left(\lambda_{j}\right), 1 \leq j \leq m$.

1. Interarrival Times: The interarrival times of $N(t)(\lambda)$ are IID $\exp (\lambda)$.
2. Thinning (Type classification) : When arrivals occur in the Poisson process $N(t)$, they are classified randomly and independently (the successive classifications are done independently according to the same probabilities) into classes (indexed by j) with probability p_{1}, \cdots, p_{m}. Let $N_{j}(t)$ be the input (arrival) process for class j (obtained with probability p_{j}). These newly created counting processes $N_{j}(t)$ are independent Poisson processes with rates λp_{j}.
3. Superposition (Type aggregation) : When independent Poisson arrivals $N_{j}(t)$ occur with rates λ_{j}, the total number of arrivals is a $\operatorname{Poisson}\left(\lambda_{1}+\cdots+\lambda_{m}\right)$.
4. Conditioning : When we know $N(t)=n$, the occurrence time of n arrivals are distributed as independent random variables, each uniform on the interval $[0, t]$.
