A Concise Summary

Everything you need to know about exponential and Poisson

Exponential Distribution

Assume that $X \sim \exp(\lambda)$, by which we mean that X has an exponential distribution with rate λ . Then X has mean $1/\lambda$; i.e., $EX = 1/\lambda$. Also the variance is $Var(X) = (EX)^2 = 1/\lambda^2$. In addition, assume that $Y \sim \exp(\mu)$ and $X_i \sim \exp(\lambda_i)$ for $i = 1, \dots, n$, where all these exponential random variables are independent.

- 1. Lack of memory: P(X > s + t | X > s) = P(X > t) for all s > 0 and t > 0. (check the computation)
- 2. Minimum: $\min\{X, Y\} \sim \exp(\lambda + \mu)$ (check the computation) and hence $\min\{X_1, \dots, X_n\} \sim \exp(\lambda_1 + \dots + \lambda_n)$ without computation.
- 3. Maximum: $X+Y = \min\{X, Y\} + \max\{X, Y\}$ tells us an easy way to compute $E[\max\{X, Y\}]$.)
- 4. More on Minimum: $P(X = \min\{X, Y\}) = P(X < Y) = \frac{\lambda}{\lambda + \mu}$: (check the computation) and hence $P(X_k = \min\{X_1, \dots, X_n\}) = \frac{\lambda_k}{\lambda_1 + \dots + \lambda_n}$ without computation.
- 5. Even more on Minimum: The events {X = min{X,Y}} and {min{X,Y} > t} are independent for all t.
 and hence
 the events {X_k = min{X₁, ..., X_n}} and {min{X₁, ..., X_n} > t} are independent for all t.

Poisson Processes

Consider a Poisson process $\{N(t) : t \ge 0\}$ with rate λ , referred to by $N(t)(\lambda)$. In addition, consider Poisson processes $N_j(t)(\lambda_j), 1 \le j \le m$.

- 1. Interarrival Times: The interarrival times of $N(t)(\lambda)$ are IID $exp(\lambda)$.
- 2. Thinning (Type classification) : When arrivals occur in the Poisson process N(t), they are classified randomly and *independently* (the successive classifications are done independently according to the same probabilities) into classes (indexed by j) with probability p_1, \dots, p_m . Let $N_j(t)$ be the input (arrival) process for class j (obtained with probability p_j). These newly created counting processes $N_j(t)$ are independent Poisson processes with rates λp_j .
- 3. Superposition (Type aggregation): When independent Poisson arrivals $N_j(t)$ occur with rates λ_j , the total number of arrivals is a Poisson($\lambda_1 + \cdots + \lambda_m$).
- 4. Conditioning: When we know N(t) = n, the occurrence time of n arrivals are distributed as independent random variables, each uniform on the interval [0, t].