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Abstract

A lockup period for investment in a hedge fund is a time period after making the investment

during which the investor cannot freely redeem his investment. It is routine to have a one-year

lockup period, but recently the requested lockup periods have grown longer. Assuming that

the investor will rebalance his portfolio of hedge funds on a yearly basis, if permitted, we define

the annual lockup premium as the difference between the expected return per year from an

investment in a hedge fund with a nominal one-year lockup period and the expected return

per year from an investment in a hedge fund with an extended lockup period, as a function of

the length of that extended lockup period. We develop Markov chain models to estimate this

lockup premium function. By solving systems of equations, we fit the Markov chain transition

probabilities to three directly observable hedge fund performance measures: the persistence of

return, the variance of return and the hedge-fund death rate. The model quantifies the way the

lockup premium increases as a function of both the persistence of return and the variance of

return, but decreases as a function of the hedge-fund death rate. Increasing death rate lowers

the lockup premium because investors can redeem their investment when the hedge fund fails,

even when a lockup condition is in force.





1. Introduction

A lockup period for investment in a hedge fund is a time period after making the investment

during which the investor cannot freely redeem his investment. It is routine to have a one-year

lockup period, but recently the requested lockup periods have grown longer. It is reasonable for

an investor in a hedge fund to expect compensation for the restricted investment opportunities

imposed by an extended lockup condition, with the compensation increasing as the length of

the lockup period increases. We regard that compensation as a lockup premium, and we ask:

What should that lockup premium be as a function of the length of the lockup period?

We assume that the investor will rebalance his portfolio of hedge funds on a yearly basis,

as permitted. Thus, we define the (annual) lockup premium as the difference between the

expected return per year from an investment in a hedge fund with a nominal one-year lockup

period and the expected return per year from an investment in a hedge fund with an extended

lockup period, as a function of the length of that extended lockup period. Our definition

accounts for lost gains due to rebalancing the investment portfolio in hedge funds, but not

for other lost investment opportunities, so we provide a conservative estimate of the lockup

premium.

With that definition specified, we develop mathematical models to estimate the lockup

premium function as a function of key hedge-fund performance measures. Specifically, we

develop both discrete-time and continuous-time Markov chain models for that purpose. Our

main contribution is to take a modelling approach, but there also are significant challenges

in deciding what modelling approach to use. We want a good model, one which is easy

to understand, properly reflects the specific lockup conditions, has predictive power, can be

effectively analyzed and can be fit to available data.

These requirements lead us to propose relatively simple three-state Markov chain models.

By introducing models with relatively few parameters, we have fewer parameters to fit to data.

We do not directly fit the natural model parameters, which are the Markov chain transition

probabilities, but instead we indirectly fit the model to more directly observable hedge fund

performance measures, specifically, the persistence of return, the variance of return and the

hedge-fund death rate. This indirect approach requires that we solve systems of equations to

determine the required model parameters.

Hedge fund lockup is an instance of a classical liquidity problem. It is well known that

an illiquid investment, which limits the holder’s ability to redeem, usually offers higher return
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than a liquid investment, which can be redeemed freely. It is common to regard the spread

(the difference in yield rates) as the liquidity premium. A popular example is a certificate of

deposit (CD). Unlike a usual savings account, a CD restricts its owner from redeeming his

money until the CD matures. As a consequence, banks offer higher interest rates for CD’s

than for regular savings accounts. Experience shows that the liquidity premium increases as

the length of the time period increases, but increases more slowly as the time increases, so that

overall the premium function is concave.

In practice, the liquidity premium for CD’s is determined by market forces, and is usually

taken as given. Stock option prices are also determined by market forces, but because of the

complex dynamics, it has proven useful to have the Black-Scholes option pricing model and

other related models to estimate what the price should be. In the same spirit, in our hedge

fund context, we introduce models to help understand what the lockup premium should be.

While hedge fund lockup is a liquidity problem like a CD and many other liquidity problems,

it has its own special character. There is a complication with hedge funds, because investors

may actually have an early opportunity to redeem their investment. If the hedge fund performs

very poorly, so that it ceases operating, then a significant portion of the investment is returned

to investors, even if the lockup period has not expired. Thus, it might appear that there should

be no liquidity problem at all, but the two extreme alternatives are not the only possibilities:

Hedge fund performance may be weak, so that returns are low and future prospects are dim,

even though the fund does not cease operating. The lockup prevents the investor from moving

his investment away from such “sick” funds. This special way hedge fund lockup is treated

makes the liquidity premium more complicated, providing motivation for more careful analysis.

Our proposed model directly responds to this special feature of hedge fund investments:

We consider three possible states for a hedge fund: good, sick and dead, and we assume that

transitions among these states occur randomly according to a Markov chain. In a dead state,

the investor suffers a low return, but at the next yearly reinvestment opportunity the state

changes to a good state, because the investor gets his money back and can invest in a new fund,

which we take to be in the good state. There is no extra penalty from the lockup associated

with a dead fund, but there is from a sick fund. With only nominal one-year hedge fund

lockup, we assume that investors will reinvest in a good fund at the next yearly reinvestment

opportunity whenever any fund they have invested in becomes sick. In contrast, with the

extended lockup period, no reinvestment is possible until the end of the lockup period. In

the meantime, the sick fund may perform poorly, and produce low returns, but there also
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is a chance that it may rebound and become a good fund. Clearly, some care is needed to

properly account for the various good and bad possibilities, which inevitably must be regarded

as random events. The Markov chain models can capture the behavior described above, so

should provide insight.

Of course, it remains to specify the three Markov chain states. We propose classifying

the funds according to their returns. We say that a fund is in a: good state when its relative

return is higher than U percent, sick state when its relative return is between L and U percent,

and dead state when its relative return is less than L percent. We leave U and L as model

parameters in general. Figure 1 illustrates how states might be defined.

Figure 1: A hypothetical distribution of hedge fund annual returns with levels L and U dividing
the funds into the three states G, S and D.

A fundamental principal guides our analysis: the persistence hypothesis. We postulate

that there is a persistence in hedge fund performance within a particular hedge fund strategy

category: We assume that above-average funds will tend to continue doing well, while below-

average funds will tend to continue faltering. A persistence of γ means that for every 1% you

earn above the average in the current year, you expect to earn γ% above the average in the next

year. We estimate the persistence by doing a regression analysis on the hedge-fund-return data

from the Tremont Advisory Shareholders Services (TASS) data, and find evidence to support

the persistence hypothesis for some strategy categories of hedge funds.

As we will explain in §3, there is a consensus among researchers that there is persistence,

but there is controversy about its extent. There are questions about the quality of the data

and the proper way to analyze it. We describe our data-analysis procedure in Appendix.There

are eleven strategy categories of hedge funds in the TASS data. We found positive persistence

for all of them, using data from 2000 to 2005, but some estimated persistence factors were very
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low. We found five strategy categories of funds with significant persistence: (i) convertible, (ii)

dedicated short bias, (iii) fixed income, (iv) fund of fund, and (v) others. Figure 2 is the scatter

plot of two consecutive relative returns and the associated least-squares-fit with zero intercept

for four of these fund categories. For these fund categories, the least-squares-fit slope, γ, ranges

from 0.33 to 0.49, but there evidently is considerable randomness in the data. The persistence

plays a big role in determining our Markov chain transition probabilities and, thus, our estimate

of the lockup premium. We work hard to show how the lockup premium should depend on the

persistence, and not on determining precisely what the persistence is. It is important to note,

though, that the fund category is not the only element affecting persistence. Persistence can

be measured for fund manager’s tenure, asset size, fee structure, and so on, depending on the

investor’s judgement. As long as persistence is found or anticipated, our Markov chain models

can be applied.

Figure 2: Scatter plots and associated least-squares lines for relative hedge fund returns in
successive years from 2000 to 2005.

Having decided to use a Markov chain model, we must specify how the transitions take

place over time. Given that hedge funds operate continually, it is natural to use continuous-

time Markov chains (CTMC’s), which allow transitions from one state to another in continuous

time, even though we assume that reinvestment opportunities are restricted to being yearly.

And that is what we do. However, discrete-time Markov chains (DTMC’s) tend to be easier

to work with, so we start with DTMC’s with yearly transitions. With yearly transitions, we
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let state changes occur at the potential reinvestment times.

After we carry out the analysis for DTMC’s, we show that it is also possible to carry out

the corresponding analysis with CTMC’s, but the analysis is more involved. We use nonlinear

programming to efficiently solve the equations for model fitting. With a CTMC, state changes

occur in continuous times, but reinvestment opportunities still occur yearly in discrete time.

We thus use the transient one-year transition probabilities of the CTMC in an associated

DTMC to describe what happens at the yearly reinvestment times. In addition to being more

realistic, the CTMC model has the advantage that it can be fit to a wider range of hedge-fund

performance measures.

We show that the Markov chain models can be used to estimate how the lockup premium

depends on the hedge-fund performance measures. Consistent with intuition, we show that

the lockup premium is increasing in both the persistence of the return and the variance of the

return. What is less obvious, but consistent with intuition upon reflection, is that the lockup

premium is decreasing in the hedge fund death rate. Of course the models do more: The

models quantify the effect of these observable hedge fund performance measures on the lockup

premium.

In §4 we present a simple analysis of the lockup premium based on persistence alone,

without any Markov chains, which is appropriate when no hedge funds die. The more elaborate

analysis in this paper is thus primarily intended to determine the effect of the death rate,

denoted by δ. Just as for the persistence, there is controversy about what is the actual death

rate of hedge funds, with estimates ranging from 3 − 12%. Higher estimates follow from

estimates of the median life of a hedge fund, as we explain in §4.1. That leads us to conclude

that the death rate might be as high as δ = 0.09. Just as with the persistence, we work hard

to show how the lockup premium should depend on the death rate, and not on determining

precisely what the death rate is.

From our CTMC model, we conclude that a death rate of δ = 0.09 per year makes the

lockup premium about half of what it would be for δ = 0. Figure 3 shows the lockup premium

function for four values of δ. We conclude that the death rate is potentially a significant factor.

Organization of the paper. We start in §2 by reviewing the related literature on liquidity,

including premiums for hedge fund lockup. In §3 we discuss persistence of hedge fund returns,

reviewing the literature and analyzing data from the TASS data. In §4 we present the simple
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Figure 3: The lockup premium as a function of the extended lockup period, n, based on the
CTMC model for four values of δ: 0.00, 0.03, 0.06 and 0.09. The parameter values are in Table
2.

analysis of lockup premium based on persistence alone, without any Markov chains, which is

based on no dying funds. This simple analysis provides a useful reference case, because it yields

a simple formula. In §4.1 we discuss hedge-fund persistence and death rate in more detail. In §5
we introduce and analyze our three-state DTMC model. In §7 we consider the corresponding

CTMC model. In section 6 we show how the model parameters and the lockup premium

depend on basic hedge fund performance measures. Finally, in §8 we draw conclusions. We

present additional material in an appendix.

2. Liquidity Literature Review

There is a substantial literature on liquidity, including hedge fund lockup, but it mostly has a

different character.

Liquidity premiums in asset pricing. The liquidity premium is well recognized as an

important factor in asset pricing, but it is commonly measured by transaction cost; e.g, see

Amihud and Mendelson (1986), Pastor and Stambaugh (2003), Chordia et al. (2001), and

Eleswarapu and Reinganum (1993). For example, in the stock market, bid-ask spread is one

measure of the liquidity premium. Amihud and Mendelson (1986) showed that there exists an

increasing and concave relationship between the asset return and the bid-ask spread. Darar

et al. (1998) confirmed this result, using the reciprocal of the stock turnover rate to measure

the liquidity premium. More recently, Vayanos (2004) considered liquidity in an equilibrium
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model. He considered the liquidity premium in asset pricing with different transaction costs.

He showed that as assets become more volatile, the required excess return from a riskless asset

is increasing in the transaction costs.

Studies of liquidity have also been performed for the bond market; e.g., Amihud and

Mendelson (1991), Warga (1992), Krishnamurthy (2002) and Longstaff (2004). For bonds,

it is argued that there should exist a clear premium for liquidity, separate from the credit

risk premium. Most-recently-issued U.S. Treasury bonds are considered the most liquid bonds

available, among all bonds with similar conditions. Since US Treasury bonds are assumed to

be riskless, they provide a natural way to measure the liquidity premium, without having to

consider credit risk. The papers above study the liquidity premium by comparing the price of

most-recently-issued US Treasury bonds (on the run) to the price of the bonds issued three

months previously (off the run).

There are a few papers that are more closely related to what we do here, namely, Longstaff

(1995, 2001) and Brown et al. (2003). These papers also view the liquidity premium as arising

from the investor’s inability to rebalance his portfolio in a timely way. Specifically, they define

the liquidity premium as the additional required fixed return to compensate for the loss of

the investor’s utility from the inability to rebalance the investor’s portfolio. They calculate

the required liquidity premium as a function of the degree of risk averseness in the utility

function, the market growth rate, and the liquidity restriction period. They rely heavily on

mathematical models and mathematical analysis for this purpose. Unlike these references, we

do not use utility functions. Our use of expected value corresponds to a linear utility function,

which may be roughly appropriate for a fund of funds, which is a typical investor in hedge

funds.

Empirical studies on hedge fund lockup. There is a growing literature on hedge funds,

e.g., see Agarwal and Naik (2005), but only a few researchers have focused on hedge fund

lockup. Liang (1999) found that the average hedge fund returns are related positively to the

lockup periods from the analysis of Hedge Fund Research, Inc. (HFR) database. Aragon

(2007) quantified the lockup premium for hedge funds empirically. He compared the hedge

fund performance with and without extended lockup conditions. He estimated that the average

difference in the annual returns is around 4− 7%.

There also are empirical studies on the liquidity premium for funds other than hedge funds.

For example, Ippolito (1989) conducted a similar study for mutual funds. There is a load-type
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mutual fund, which assesses sales charges. Ippolito (1989) found that the load-type mutual

funds make approximately 3.5% higher return than no-load mutual funds.

In summary, from our investigation of the literature, we find that only a few papers -

Longstaff (1995, 2001) and Brown et al. (2003) - have interpreted liquidity premium as quan-

tification of the cost of a restricted rebalance opportunity. We found no previous papers

employing models calibrated to data in order to estimate the liquidity premium. And none

of the papers have used Markov chains, with the exception of Derman (2006), which is a

preliminary account of the research reported here.

3. Persistence of Hedge Fund Returns

We specify how hedge funds perform by looking at the relative return of a fund, which is the

difference between the annual return of the fund and the average annual return of all hedge

funds in that hedge fund strategy category, where return is measured as a percentage. We do

that to factor out the performance of the market as a whole. We evaluate hedge funds the

way we might evaluate hedge fund managers, trying to identify whether or not their funds

perform better than average. We estimate the persistence by doing a regression analysis on

the hedge-fund-return data over several years from the TASS data.

The persistence literature. Before discussing our own analysis of data, we discuss the

literature on performance persistence. Researchers have tried to take advantage of the two

main hedge fund databases - TASS and HFR. In doing so, researchers have discovered that

it is difficult to make unbiased estimates because reporting is voluntary, and some funds stop

reporting, especially those performing poorly; e.g., see Jagannathan et al. (2006).

Despite the difficulty with biases in the hedge fund data, researchers have conducted studies.

Although some researchers did not find evidence of performance persistence, others did. Brown

et al. (1999) used a simple two-state categorization - win or lose - to measure performance

persistence, recording a win if the fund beats the median return, but they did not find evidence

of persistence. Boyson and Cooper (2004) carried out a similar analysis and still did not find

evidence of persistence.

However, several papers found performance persistence for shorter periods ranging from

a quarter to three years. Koh et al. (2003) used the method of Brown et al. (1999) for

Asian hedge funds and found strong persistence in short horizons from monthly to quarterly.

Agarwal and Naik (2000) and Jagannathan et al. (2006) used linear regression, like we do,
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as well as the previous two-way classifications. Agarwal and Naik (2000) did not provide

regression slope explicitly but showed that depending on the strategy category of hedge fund,

the percentage of funds which have statistically significant positive slope in regression ranges

from 5 to 34 percent, where most of the strategy categories have around 20 percent. Using

the same parametric linear regression and non-parametric two-way classifications, Agarwal

and Naik (2000) claimed that the evidence of persistence is strongest for the shorter quarterly

time periods. On the other hand, Edwards and Caglayan (2001) found strong persistence

in over 1-2 years from the Managed Account Reports (MAR/Hedge) data. Furthermore,

Jagannathan et al. (2006) found a significantly high performance persistence for a three-year

period in his empirical study with HFR data. Jagannathan et al. (2006) carefully took account

bias from voluntary reports and did regression of relative return for three consecutive years.

Using generalized method of moment (GMM) estimation, they found a statistically significant

persistence factor of 0.56 for three-year period.

There also exists indirect evidence of performance persistence from the study of hedge-

fund liquidation or survival. Brown et al. (2001) indirectly supported performance persistence

when they found that a negative aggregated return over the previous two years increases

the probability that a fund will liquidate. Furthermore, ter Horst et al. (2001) concluded

that hedge-fund survival is strongly related to historical performance. Baquero et al. (2005)

conducted probit regression analysis of hedge-fund liquidation. They found that funds with

high returns are much less likely to liquidate than funds with low returns from quarterly return

data, which again indirectly supports persistence. We lastly remark that from the study of

bid-ask spread in the stock market, Roll (1984) claimed that bid-ask spread increases as the

price change is more serially correlated. As mentioned in §2, bid-ask spread is one of the

representative measures of liquidity. Thus, we expect that the extended lockup period, which

makes the hedge fund less liquid, would increase the serial correlation of performance, which

increases performance persistence.

Our regression analysis. We conduct linear autoregression analysis with the TASS hedge

fund performance data to find the best linear regression line between two consecutive year’s

relative returns. Specifically, letting the current year’s relative return be denoted by Rc and

the next year’s relative return be denoted by Rn, we find the slope γ for the line Rn = γ ·Rc,

which produces the minimum sum of squared errors.

The actual data analysis procedure is somewhat complicated; the key features are described
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in Appendix.There are eleven strategy categories of hedge funds in the TASS data. We found

positive persistence for all of these, but some estimated persistence factors were very low. (We

think that better data should show higher persistence.)

We found five strategy categories of funds with significant persistence: (i) convertible, (ii)

dedicated short bias, (iii) fixed income, (iv) fund of fund, and (v) others. Figure 2 is the scatter

plot of two consecutive relative returns and the associated least-squares-fit with zero intercept

for four of these fund categories. For these fund categories, the least-squares-fit slope, γ, ranges

from 0.328 to 0.488.

A different way to estimate the persistence factor is to look at the ratio of the next-year

average returns to the current-year average return, restricting attention to the returns that are

positive in the current year. You get the same estimate when you repeat that procedure, but

instead restrict attention to the returns that are negative in the current year. See Appendix

for the details.

4. Estimating the Lockup Premium from Persistence Alone

In this section we show how persistence alone, without any Markov chains, can be used to

generate an estimate of the lockup premium. This simple analysis depends on four assumptions:

1. There is a single persistence factor γ.

2. We can ignore the phenomenon of hedge funds dying.

3. The returns each year are normally distributed with a fixed variance σ2.

4. The performance of a fund is considered good if its annual return exceeds the average

annual return.

The first two assumptions imply that the expected relative returns over time evolve linearly,

enabling us to derive a simple no-death lockup premium as a function of the expected excess

return of a good fund. The last two assumptions enable us to determine the expected excess

return of a good fund. The third assumption can be weakened, but some sort of ceteris paribus

assumption is needed. The fourth assumption is just one possible case; it can easily be varied

without altering the rest of the analysis.

The no-death lockup premium. We assume that the hedge fund starts off in a good state

having just earned a relative return YG > 0, to be specified below. Let Rn be the expected
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relative return in the nth year. The assumed γ persistence implies that the expected relative

return at the end of the first year is R1 = γYG. The notion of γ persistence, with no funds

dying, implies that we can recursively determine the expected relative return in successive

years by

Rn = γ ·Rn−1 = γn · YG, n ≥ 1 . (4.1)

As a consequence of (4.1), the total expected relative return up to the nth year is
n∑

i=1

Ri =
γYG(1− γn)

1− γ
. (4.2)

Based on this simple analysis, we can compare the expected relative return from an n-year

lockup with the expected relative return from a 1-year lockup in order to calculate the lockup

premium. Under 1-year lockup, investors have a chance to replace all sick funds with good

funds at the end of each year. If they do, the expected return each year is the same as in

the first year: R1 = γYG. Thus, at the end of the nth year, the total expected relative return

is simply nγYG. On the other hand, under an n-year lockup, the fund just evolves without

replacement up to the nth year, as in (4.2). We assume that after the nth year, the funds with

1-year and n-year lockups are both replaced by funds with the same 1-year lockup, so that

there necessarily will be no difference in a fund’s return after the nth year.

Letting Cn be the total cumulative difference in expected return up through year n, we

thus have

Cn =
n∑

i=1

(R1 −Ri) = nR1 −
n∑

i=1

Ri = γYG

(
n− 1− γn

1− γ

)
. (4.3)

The lockup premium, denoted by An ≡ An(γ), is the average annual difference. By (4.3), the

no-death lockup premium formula is

An ≡ Cn

n
= γYG

(
1− 1− γn

n · (1− γ)

)
, n ≥ 1 , (4.4)

which is a concave increasing function in n for each γ, 0 < γ < 1, and a concave function of

γ for each n ≥ 1. The lockup premium An(γ) is not an increasing function of γ overall; e.g.,

for n = 2, An(γ) = YGγ(1 − γ)/2, which is increasing for 0 < γ < 1/2, but decreasing for

1/2 < γ < 1. However, the lockup premium function An(γ) is increasing in γ for all sufficiently

small γ, for each n ≥ 1.

From (4.4), we see that A1 = 0, An → γYG as n →∞, and we have the bounds

γYG

(
1− 1

n(1− γ)

)
≤ An ≤ γYG

(
1− 1

n

)
, n ≥ 1 , (4.5)

which yield convenient approximations. For large n or small γ, the lower bound is an accurate

approximation.
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The excess return from a good fund. The no-death lockup premium function An(γ)

clearly shows how the lockup premium depends on the three quantities: the length n of the

extended lockup period, the persistence factor γ and the expected excess return of a good fund,

YG. Clearly, n is directly observable, and we have seen how we can estimate γ, but it remains

to specify YG.

However, if we define YG as the expected excess return of a good fund and apply the last

two assumptions, then we can calculate YG. Letting N(m,σ2) denote a normally distributed

random variable with mean m and variance σ2, we have

YG = E[N(0, σ2)|N(0, σ2) > 0] = E[|N(0, σ2)|] = σE[|N(0, 1)|] =
√

2/πσ ≈ 0.8σ . (4.6)

We can combine (4.4) and (4.6) to obtain the following general no-death lockup premium

function

An(γ, σ) = 0.8σγ

(
1− 1− γn

n · (1− γ)

)
, n ≥ 1 . (4.7)

With assumptions 3 and 4, we see that the no-death lockup premium should be directly

proportional to the standard deviation σ. Assumption 4 plays a key role in getting the simple

formula (4.6), but we can generalize for arbitrary boundary point U , using the following formula

for the conditional expectation of a normal random variable:

E[N(m,σ2)|a ≤ N(m,σ2) ≤ b] = m + σ
[φ ((a−m)/σ)− φ ((b−m)/σ)]
[Φ ((b−m)/σ)− Φ((a−m)/σ)]

(4.8)

for −∞ ≤ a < b ≤ +∞; e.g., see Proposition 18.3 of Browne and Whitt (1995). From formula

(4.8), we see that YG will not be proportional to σ if we change the upper boundary point U .

We emphasize that, even under assumption 4 above, having An be directly proportional

to σ depends critically on the third ceteris-paribus assumption made above. Since we are

free to choose the monetary units, we can choose to define all returns relative to the standard

deviation σ, which must be in the same units as the returns. In that sense, the lockup premium

is automatically proportional to σ. The proportionality conclusion becomes more meaningful

when we assume that the distribution of returns depends on σ as a simple scale factor, as

provided by assumption 3 above. We need to impose a strong condition on the way the return

distribution changes with σ in order to deduce the desired proportionality conclusion. The

normality is only used to compute the precise value of the mean.

Relating to the calibration by Markov chains. We remark that the Markov chain model

calibration will also produce its own estimates of the excess return YG, but we will find that
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analysis yields similar conclusions. Indeed, our main numerical example has YG = 0.67σ. We

remark that we can obtain exactly that value if we take YG to be the median of the positive

relative returns, because the median of the random variable |N(0, 1)| is 0.67.

Anticipating our future numerical examples with Markov chains, we plot our estimate for

the lockup premium in Figure 4 for the case γ = 0.5, σ = 0.1 and YG = 0.067. Our estimate

without death appears as the upper curve in Figure 4. We see that the lockup premium

increases toward the limit YG/2 = 0.0335 as n increases.
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Figure 4: The lockup premium function for the DTMC model for three values of the hedge-
fund death rate δ. The remaining model parameters are YG = 0.067, YS = −0.15, YS = −0.20
and γG = γS = γ = 0.5.

We also plot two curves for positive death rates δ, obtained using the DTMC model in §5.

The plotted cases for δ = 0.03 and δ = 0.06 show the importance of going beyond the no-death

model. Consistent with Figure 4, we will see that the lockup premium is decreasing in the

hedge fund death rate with our Markov chain model. Consequently, formulas (4.4) and (4.7)

in this section, derived under the assumption of zero death rate, provide upper bounds on our

estimated lockup premium with positive δ.

4.1. Important Hedge-Fund Performance Measures

Our Markov chain model will depend critically on the persistence of returns and the hedge-fund

death rate. So we discuss these performance measures further now.

Two persistence factors: γG and γS. In equations (5.5) and (5.6) below we will introduce

two state-dependent persistent factors γG and γS , instead of just the single γ, as we had in
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§4. Clearly, this generalization is important if the persistence factors for the two states do in

fact differ significantly. To illustrate what actually may happen, Figure 5 shows the results of

an regression analysis applied two consecutive-year relative returns for positive and negative

parts of the current relative-return data separately. Figure 5 shows a significant difference in

the slope of regression line for several fund categories, suggesting that it may be important to

use separate state-dependent persistence factors.

The stationary death rate δ. We calibrate our models by specifying the overall annual

death rate, denoted by δ. Unfortunately, estimating the death rate from the TASS data is

difficult, in part because poorly performing funds often stop reporting, but funds also stop re-

porting for other reasons, e.g., because they have completed a successful merger-and-acquisition

closure with another fund.

After checking the reasons for funds being terminated in the HFR data, Rouah (2006)

concluded that, after removing these biases, 3−5% of the hedge funds leave the database each

year because of failure. As noted in §3, Park (2006) estimated that the fund death rate is

only 3.1 %, even though the total attrition rate from the TASS data was 8.7 % , based on her

analysis from 1995 to 2004.

The death rate is closely related to the survival probability and median life of the fund.

Clearly, as the death rate increases, the survival probability and the median life decrease. Since

median life is more easily observable, it is convenient to verify the death rate of our model

through the median life in the hedge fund data.

One way to check the validity of the model is to calculate the survival probability curve

produced by the model. In terms of the transition matrix P to be introduced in (5.1). the

probability of surviving n years is Sn = Pn
G,G + Pn

G,S for n ≥ 1.

Figure 6 shows the survival probability curve for the DTMC model when δ = 0.03 and

0.06. When δ = 0.03, about 90% survive for 5 years, whereas the survival probability goes

down to around 80% when δ = 0.06. If we increase δ above 0.07, then r goes below 0 and we

are unable to fit a DTMC model. Thus, under fixed YG = 0.067, YS = −0.15, YD = −0.20,

δ = 0.07 is the maximum range.

Studies estimating the median survival time of hedge funds were discussed in §3. In ad-

dition, Gregoriou (2002) estimated that median survival time of all hedge funds is 5.5 years,

depending on factors such as millions managed, performance fee, leverage, minimum purchase

and also on redemption period. More recently, Rouah (2006) reported estimates of median
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Figure 5: Scatter plots and least-squares lines for positive current relative returns and negative
current relative returns of hedge funds from 2000 to 2005 in four categories: (i) convertible
bond, (ii) fund of fund, (iii) others, and (iv) dedicated short bias.

survival time due before liquidation as ranging from 5.8 to 7.4 years based on the HFR data

and from 7.2 to 17.4 years based on the TASS data. This last observation by Rouah (2006)

suggests that our model with δ = 0.06 may reasonably approximate the fund’s performance.
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Figure 6: The survival probability for the DTMC model when δ = 0.03 and 0.06, for parameter
values of p, q, r, Yg, YS , and YD values given in the Table 1.

5. The Discrete-Time-Markov-Chain Model

We start in §5.1 by defining the basic three-state DTMC model, which has six parameters. Next

in §5.2 we introduce four equations that the six parameters must satisfy, based on standard

hedge fund performance measures. In §5.3 we develop explicit formulas for the three parameters

appearing in the DTMC transition probabilities. In §5.4 we show how to calculate all the

parameters after specifying two of the relative returns. We present numerical examples in §5.5.

Finally, we show how to calculate the lockup premium in §5.6. Paralleling our treatment in

the Appendix. we introduce a related two-state DTMC based on the assumption of zero death

rate. That simplification is appealing because the formulas are more elementary.

5.1. The Basic DTMC Model

As indicated in the introduction, we let our Markov chain models have three states: good,

sick and dead. We model the changing fund state over time as a DTMC, as in Chapter 4 of

Ross (2003). We let time be discrete, with the unit of time representing one year. The initial

DTMC is an absorbing Markov chain, with the D state being the sole absorbing state; once

a fund becomes dead, it remains dead forever. We consider a transition matrix depending on

three parameters: p, q and r:

P =
G
S
D




p 1− p 0
q r 1− q − r
0 0 1


 . (5.1)
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In the displayed transition matrix P , we have only labelled the rows. The columns are assumed

to be labelled in the same order. We have assumed that it is impossible to transition from

good to dead in a single year, thus eliminating one parameter. The parameters p, q and r

represent good events in alphabetic order: p = G → G, q = S → G, r = S → S.

We now move on to consider an associated ergodic Markov chain, having a non-degenerate

limiting steady-state distribution, by assuming that a new hedge fund appears in the good state

to replace a dead hedge fund right after it dies. This can be done with the new three-state

DTMC transition matrix

P =
G
S
D




p 1− p 0
q r 1− q − r
p 1− p 0


 . (5.2)

In (5.2), the transition probabilities from a dead state are the same as from a good state,

because a dead fund is immediately replaced by a good fund.

From the basic theory of DTMC’s, as in Theorem 4.1 of Ross (2003), we obtain the steady-

state probability vector π ≡ (πG, πS , πD) by solving π = πP under the condition that πG +

πS + πD = 1. The stationary probability vector π for the transition matrix P in (5.2) is

πG =
q + p(1− q − r)

2− p− r
, πS =

1− p

2− p− r
, πD =

(1− p)(1− q − r)
2− p− r

. (5.3)

Our DTMC model uses both transition matrices. We use the absorbing transition matrix

in (5.1) when we compute the expected return of a fund, while we use the ergodic transition

matrix in (5.2) when we calculate the steady-state death rate and performance variance.

We will act as if the fund earns a state-dependent fixed (average relative return) in each

state. We must specify these relative returns. Let YG, YS and YD denote the expected relative

returns in the states G, S and D, respectively. Overall, we have six parameters: p, q, r, YG,

YS and YD.

5.2. The Four Model-Fitting Equations

We first consider the death rate, which is defined as the proportion of live funds (in a good

or sick state) that die during one transition period, which we take to be one year. For the

transition matrix in (5.1), only sick funds can die in one transition. Thus, the death rate equals

the product of the steady-state probability that a fund is sick times the transition probability

from sick to dead. By (5.1) and (5.3), the death rate is

δ = πS · PS,D =
1− p

2− p− r
(1− q − r) = πD . (5.4)
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We now introduce two equations determined by the persistence. For greater model flexi-

bility, we allow different persistence in states G and S. The two DTMC-persistence equations

are:

γG · YG = p · YG + (1− p) · YS (5.5)

and

γS · YS = q · YG + r · YS + (1− q − r) · YD . (5.6)

We explain these DTMC-persistence equations as follows: In equation (5.5), the fund starts

with state G; in equation (5.6) the fund starts with state S. The left side describes expected

return in the next period calculated using the relevant persistence factor, whereas the right side

calculates expected return in the next period using the transition probabilities of the DTMC

in (5.1).

Our fourth equation is for the steady-state variance of the annual returns. Since we are

working with returns relative to the mean, the variance of the steady-state return coincides

with the second moment. Thus, the variance equation is

σ2 = πG · Y 2
G + πS · Y 2

S + πD · Y 2
D . (5.7)

5.3. Explicit Formulas for the Transition Probabilities

We now derive formulas for the DTMC transition probability parameters p, q and r in terms

of YG, YS , YD, γG, γS and δ using the three equations (5.4), (5.5) and (5.6).

The three formulas. Assuming that γG, γS , δ, YG, YS and YD are specified, the three

equations in (5.4), (5.5), and (5.6) produce three equations in the three unknowns p, q and r.

We first observe that the variable p can be solved from the single equation in (5.5), because

that is a single equation for the single unknown variable p. The solution is

p =
γG · YG − YS

YG − YS
. (5.8)

Having found the explicit expression for p in (5.8), we substitute in for p to obtain two

equations in the remaining two unknowns q and r. Indeed, given p, we can rewrite each of the

two remaining equations to express q directly as a function of r. First, from (5.4), we get

q ≡ q(r) = 1− r − δ(2− p− r)
1− p

= 1− δ

(
2− p

1− p

)
− r

(1− p− δ)
(1− p)

. (5.9)

Since δ < 1− p by (5.4), the function q(r) in (5.9) is necessarily strictly decreasing in r.
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Next, (5.6) can be rewritten as

q ≡ q(r) =
γS · YS − YD − r(YS − YD)

YG − YD
=

(γS − r)YS − (1− r)YD

YG − YD
. (5.10)

Combining the two equations (5.9) and (5.10), we get an explicit expression for r, first in terms

of p and then in terms of the basic model parameters, namely,

r =

(
1−p−δ(2−p)

1−p

)
−

(
γS ·YS−YD

YG−YD

)
(

1−p−δ
1−p

)
−

(
YS−YD
YG−YD

) =

(
(1−δ)(1−γG)YG−δ(YG−YS)

(1−γG)YG

)
−

(
γS ·YS−YD

YG−YD

)
(

(1−γG)YG−δ(YG−YS)
(1−γG)YG

)
−

(
YS−YD
YG−YD

) (5.11)

To be feasible, we of course need 0 ≤ q ≤ 1 − r and 0 ≤ r ≤ 1. Formulas (5.9) and (5.11)

simplify when δ = 0.

Commentary. We now want to determine what parameter values can occur. Figure 7 shows

the three parameters as a function of δ in the base case with YG = 0.067, YS = −0.15,

YD = −0.20 and γG = γS = 0.5.
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Figure 7: The DTMC parameter values p, q and r as a function of δ when YG = 0.067,
YS = −0.15, YS = −0.20 and γG = γS = 0.5

From (5.8) we see that p is a linear function of γG with positive slope YG/(YG − YS). If

YS ≤ 0, then we necessarily have γG < p < 1. The minimum possible value of p, attained when

γG = 0, is |YS |/(YG + |YS |). For example, if YG = 0.05 > 0 > YS = −0.15, then the minimum

value of p is 0.75 (at γG = 0) and the slope is 0.25. On the other hand, if YG > YS > 0, then

we must have p ≤ γG. If, instead, YG > YS > 0, then we require that γG · YG > YS .

Under the general condition that YG > YS > YD, we see that q ≡ q(r) via (5.10) is a

strictly decreasing function of r. The largest possible value of q occurs for r = 0, which is

(γS ·Ys−YD)/(YG−YD). In order for q to be feasible (nonnegative), we must have that largest
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possible value be nonnegative. Hence to have a feasible nonnegative value of q, we must have

γS · YS ≥ YD. That is always satisfied provided that YD ≤ 0 (given that YG > YS > YD).

From (5.10) alone, we can find an upper bound on r in terms of γS , YS and YD. If

0 > YS > YD, then we must have (1− r)|YD| ≥ (r − γS)|YS |, so that

r <
|YD/YS |+ γS

|YD/YS |+ 1
< 1 for 0 < γS < 1 , (5.12)

where |YD/YS | > 1. On the other hand, if YS ≥ 0 > YD, then we have

r <
(|YD|/YS)− γS

(|YD|/YS) + 1
< 1 , (5.13)

where now |YD|/YS can assume a wide range of values.

When YG > 0 ≥ YS > YD, r has the form r = (a − B)/(A − b), where a < A and b < B,

so that we always have r < 1. We then have r > 0 if and only if either a > B or A < b; r is

negative otherwise. To have r > 0, we must have

a−B ≡
(

(1− δ)(1− γG)YG − δ(YG − YS)
(1− γG)YG

)
−

(
γS · YS − YD

YG − YD

)
> 0 (5.14)

or

b−A ≡
(

YS − YD

YG − YD

)
−

(
(1− γG)YG − δ(YG − YS)

(1−G γ)YG

)
> 0 . (5.15)

Examination of (5.11) shows that there can be difficulties in r as γ ↑ 1, because the term

δ(YG−YS)/(1− γ)YG appearing in the terms a and A blows up as γ ↑ 1. The difficulty occurs

approximately for γ such that

δ(YG − YS)
(1− γG)YG

= 1− YS − YD

YG − YD
. (5.16)

In summary, from this analysis, we see that there is an upper limit on how high the death

rate δ can be before the parameter r becomes negative. For the other parameters we consider,

this limit is δ = 0.07. We will see that the CTMC model allows higher values of δ, up to

δ = 0.13 for these parameter values.

5.4. Determining All Model Parameters

We now put everything together to develop an algorithm for computing all the model param-

eters.
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An iterative algorithm. There are several ways we may proceed. We choose to specify YS

and YD in addition to δ, γG, γS and σ. (This decision is supported by the fact that the model

parameters are less sensitive to YS and YD than to YG, as we will see in §6.) Specifying these two

quantities determines all the parameters. We then calculate the model parameters iteratively.

We do so by guessing YG, which enables us to directly calculate the DTMC parameters p, q

and r. and then the steady-state probability vector π. Given π, we can then calculate σ from

(5.7). We then iterate until the calculated σ agrees with the initially specified value of σ.

Although it is not entirely evident from the equations, because π depends on YG too,

experience indicates that σ is an increasing function of YG, so it is easy to find the appropriate

value of YG, e.g., by performing bisection search. A simple plot of σ versus YG verifies this

property, and reveals the appropriate value of YG. We illustrate in Figure 8 below for the

special case in which YS = −0.15, YD = −0.20, γG = γS = 0.5 and δ = 0.03.
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Figure 8: The standard deviation of relative return σ versus YG when YS = −0.15, YD = −0.20,
γG = γS = 0.5, and δ = 0.03.

Denominating in terms of σ. For additional insight, it is helpful to express our returns

in units of the standard deviation σ. We can divide through by σ2 in (5.7) to obtain

1 = πG · (YG/σ)2 + πS · (YS/σ)2 + πD · (YD/σ)2 . (5.17)

Observe that the steady-state probability vector π in (5.3) and the death rate δ in (5.4)

depend only on DTMC parameters p, q and r, while the equations (5.8), (5.10) and (5.11) for

p, q and r are invariant under scale multiples of YG, YS and YD.

Paralleling Figure above, it is useful to see how YG/σ behaves as a function of σ when we

fix YS/σ and YD/σ in addition to δ and γ. It turns out that YG/σ is nearly constant after fixing

21



YS/σ and YD/σ. For the special case in which YS/σ = −1.5, YD/σ = −2.0, γG = γS = 0.5, and

δ = 0.03, YG/σ ≈ 0.685 for σ ranging from 0.07 to 0.13.

5.5. Numerical Examples

We now consider some numerical examples. Our base case is δ = 0, γG = γS = γ = 0.5, σ = 0.1,

YS = −0.15, and YD = −0.20. If we try YG = 0.067, then we get p = 0.8456, q = 0.3456,

r = 0.6544, πG = 0, 6912, πS = 0.3088, πD = 0 and σ = 0.1002.

Table 1 shows parameter values for various δ, γG, γS , with YS , YD and σ fixed as above,

the return YG is calculated iteratively by the method above. The last line of the Table 1 shows

that r is negative. Our numerical analysis shows that r reaches 0 and becomes negative when

δ is above 0.07. The CTMC model is more flexible, providing a solution for δ ≤ 0.13.

Table 1: Parameter value sets

δ γG γS σ YG YS YD Calculated σ p q r
0 0.5 0.5 0.1 0.067 -0.15 -0.20 0.1002 0.8456 0.3456 0.6544

0.03 0.5 0.5 0.1 0.0685 -0.15 -0.20 0.1001 0.8432 0.3719 0.5030
0.06 0.5 0.5 0.1 0.070 -0.15 -0.20 0.1001 0.8409 0.4207 0.2282
0.07 0.5 0.5 0.1 0.075 -0.15 -0.20 0.1001 0.8401 0.4474 0.0796
0 0.6 0.4 0.1 0.076 -0.15 -0.20 0.1000 0.8655 0.3982 0.6018

0.03 0.6 0.4 0.1 0.077 -0.15 -0.20 0.1002 0.8643 0.4320 0.4069
0.06 0.6 0.4 0.1 0.0775 -0.15 -0.20 0.1000 0.8637 0.5068 -0.0127

5.6. The Lockup Premium Calculation

The lockup premium calculation is essentially the same as in §4, following (4.3) and (4.4), but

using the DTMC in (5.2) to compute the expected relative returns for the n-year lockup. In

particular,

An ≡ Cn

n
≡ R1 − 1

n

n∑

i=1

Ri = γYG − 1
n

n∑

i=1

(
P i

G,G · YG + P i
G,S · YS + P i

G,D · YD

)
, (5.18)

where P i is the ith power of the transition matrix P in (5.2).

For example, if we set YG = 0.067, YS = −0.15, YD = −0.20, γG = γS = γ = 0.5 and

δ = 0.03, we get p = 0.846, q = 0.375 and r = 0.497 from §5.4. The difference between a 2-year

lockup and a 1-year lockup is 1.2676%. Figure 4 in §4 shows the lockup premium function for

three values of δ: 0.00, 0.03 and 0.06.
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6. Sensitivity Analysis for the DTMC model

The mathematical models developed here are useful to estimate how the lockup premium

depends on the different variables. We describe highlights of such analyses here and present

more details in the appendix.

Our results here are related to the standard base case with γG = γS = γ = 0.5, σ = 0.1,

YS = −0.15, YD = −0.20 and δ = 0.03, as in the second row of Table 1.

Figure 9 shows the lockup premium for three values of γ: 0.4, 0.5 and 0.6 while Figure

10 shows the lockup premium for three values of σ: 0.09, 0.10 and 0.11. In both cases, these

changes produce minor changes in YG and the other model parameters; see the Appendix.
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Figure 9: The lockup premium for the DTMC model in the base case with three values of γ:
0.4, 0.5 and 0.6.

We next consider how the DTMC model parameters p, q and r depend on the other driving

variables. To supplement Figure 7 and the commentary in §5.3, Figure 11 shows how these

parameters p, q and r depend on γ (assuming γG = γS = γ) and each of the return values YG,

YS and YD, taken one at a time. We see that the model becomes unstable if γ gets very large,

but there is nice near-linear behavior for values of γ ≤ 0.5. We also see that the parameters p,

q and r are considerably more sensitive to YG than the other two returns YS and YD.

Lastly, we consider how the DTMC lockup premium for a fixed lockup period depends

on three variables δ, γ, and σ. Figure 12 shows how the three-year lockup premium depends

on two of the three variables while fixing the remaining variable. We see that the three-year

lockup premium is reasonably well approximated by a linear function of γ and σ, respectively;

there is concavity in γ but convexity in σ. Also, the three-year lockup premium is relatively
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0.09, 0.10 and 0.11.
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Figure 11: The parameters p, q and r as a function of γ in the base case for values of YG ranging
from 0.5 (starting value, denoted by S) to 0.15 (ending value, denoted by E),YS ranging from
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insensitive to δ. However, we note that the CTMC model predicts greater impact of δ on the

three-year lockup premium, as illustrated in Figure 3.
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Figure 12: The three-year lockup premium for the DTMC model with YS = −0.15, YD = −0.20.
The lockup premium is set to 0 if q or r becomes negative.
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7. The CTMC Model

In the hope of providing better predictions, we now propose a more sophisticated model, which

uses a CTMC - specifically a continuous-time birth-and-death (BD) process - and a DTMC;

see Chapter 6 of Ross (2003) for background. Now the fund changes state in continuous time,

but the investment updates take place in discrete time. We can study the model behavior as

a function of the time T allowed for updates, if we wish, but we let T = 1 in our numerical

examples.

With the DTMC model, when a fund starts in a good state, at least two years are required

for the fund to become dead. In contrast, with the CTMC model, a fund can become dead

at any time. There is a cost, however: For the CTMC model, we are unable to fit the model

parameters simply by solving three equations in three unknowns as we had for the DTMC

in §5.3. Instead, we do the model fitting numerically. However, the parameter fitting for the

CTMC model is not substantially harder than for the DTMC model, when we consider the

iteration needed to find YG for given σ with the DTMC, discussed in §5.4.

In our proposed CTMC model we replace the three-state absorbing DTMC in (5.1) by a

two-state absorbing BD process. The states now are G and S; we do not directly use the state

D here, but we will be able to account for it. As usual, we specify the BD process by specifying

its infinitesimal transition matrix Q. That means we specify the birth and death rates. Let

µG be the death rate in G, the rate of transition down to state S from state G. Let λS be the

birth rate in state S, the rate of transition up to state G from state S. Let µS be the death

rate in state S, the rate of transition down to state D from state S. We may leave state S

to go to state D, but we get absorbed in D. We do not need to include the state D in our

transition rate matrix. Here is the infinitesimal transition matrix, with the parameters above:

Q =
G
S

( −µG µG

λS −(λS + µS)

)
. (7.1)

7.1. The Transition Matrix

We now want to derive the time-dependent transition probability matrix P (t) for this BD

process. It is well-known that P (t) is the solution to the matrix ordinary differential equation

P (t)′ = P (t)Q, P (0) = I , (7.2)

where I is the identity matrix, so that P (t) is the matrix exponential P (t) = etQ. If we

diagonalize Q so that Q = UDU−1, where D is a diagonal matrix and UU−1 = I, then we
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can write P (t) = UetDU−1; see §4.8 and the appendix of Karlin and Taylor (1975). Since D

is a diagonal matrix, the ith diagonal element of etD is related to the corresponding diagonal

element of D, i.e., (etD)i,i = eDi,it for t > 0. Let Λ(t) be a diagonal matrix of the form

Λ(t) =
G
S

(
eηGt 0
0 eηSt

)
, (7.3)

with the two parameters ηG and ηS being the eigenvalues of the matrix Q, while the columns

of U are the associated right eigenvectors. The resulting formula for P (t) is

P (t) = UΛ(t)U−1 . (7.4)

The characterization (7.4) implies that Pi,j(t) = Ai,je
η1t + Bi,je

η2t for t ≥ 0 and all state pairs

(i, j), where η1 and η2 are the eigenvalues of Q and Ai,j and Bi,j are appropriate constants.

Since P (0) = I, we necessarily have Ai,i + Bi,i = 1 for i = 1, 2 and Ai,j + Bi,j = 0 for i 6= j.

If 0 > η1 > η2, then asymptotically Pi,j(t) ∼ Ai,je
−η1t as t → ∞, which means that the ratio

approaches 1. As a consequence, necessarily Ai,j > 0 for all state pairs (i, j); Bi,j = −Ai,j for

i 6= j.

As usual, we find the eigenvalues of Q by finding the determinant of ηI −Q. The charac-

teristic polynomial as a function of the variable η is the quadratic equation

(η + λS + µS)(η + µG)− λSµG = 0 , (7.5)

which has two strictly negative roots, as required for the formula in (7.3) to yield bonafide

probabilities. In particular, solving the quadratic equation, we obtain

η =
−(λS + µS + µG)±

√
(λS + µS + µG)2 − 4µSµG

2
. (7.6)

Since the term inside the square root can be rewritten as (µG − µS)2 + λ2
S + 2µGλS + 2λSµS ,

it is nonnegative. The first term clearly dominates the square root in absolute value. So we

indeed have two negative roots.

Now we find eigenvectors corresponding to the eigenvalues in (7.6). Given eigenvalues, the

eigenvectors form the null space of (Q − ηI), i.e., a matrix U such that (Q − ηI)U = 0. We

arrange eigenvalues ηG, ηS as η matrix:

η =
(

ηG

ηS

)
=




−(λS+µS+µG)−
√

(λS+µS+µG)2−4µSµG

2λS

−(λS+µS+µG)+
√

(λS+µS+µG)2−4µSµG

2λS


 . (7.7)

Such an eigenvectors matrix U, where the columns of U are eigenvectors of Q, can be found

by algebraic manipulation or by symbolic calculation package like Mathematica. One such
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eigenvalue matrix is

U =

(
−(λS+µS+µG)−

√
(λS+µS+µG)2−4µSµG

2λS

−(λS+µS+µG)+
√

(λS+µS+µG)2−4µSµG

2λS

1 1

)
. (7.8)

Its inverse matrix is then

U−1 =



− λS√

(λS+µS+µG)2−4µSµG

λS−µG+µS+
√

(λS+µS+µG)2−4µSµG

2
√

(λS+µS+µG)2−4µSµG

λS√
(λS+µS+µG)2−4µSµG

−λS+µG−µS+
√

(λS+µS+µG)2−4µSµG

2
√

(λS+µS+µG)2−4µSµG


 . (7.9)

Thus, we now have derived the components of P (t) in (7.4). We have derived P (t) as a

nonlinear function of µG, λS and µS from (7.7)-(7.9).

7.2. The Associated Ergodic DTMC

We use the time-dependent transition matrix P (t) in the role of (5.1). We now specify an

updating time interval of length T . We then replace a dead fund by a good fund at time T .

So we make an ergodic two-state DTMC with transition matrix

P =
G
S

(
1− PG,S(T ) PG,S(T )
1− PS,S(T ) PS,S(T )

)
. (7.10)

We construct P in (7.10) by letting PG,S = PG,S(T ) and PS,S = PS,S(T ) and then making

the DTMC ergodic by letting the row sums be 1. In other words, we insert an instantaneous

transition from state D to G at time T , which is the time of a single transition in the DTMC.

Paralleling (5.3), this two-state DTMC has steady-state probability vector π, where

π ≡ (πG, πS) =
(

1− PS,S(T )
1− PS,S(T ) + PG,S(T )

,
PG,S(T )

1− PS,S(T ) + PG,S(T )

)
. (7.11)

7.3. Parameter Fitting in the CTMC Model

We now proceed toward parameter fitting for this new model. Paralleling (5.4), we have the

time-dependent death rate being

δ ≡ δ(T ) = πG{1− PG,G(T )− PG,S(T )}+ πS{1− PS,G(T )− PS,S(T )} . (7.12)

Just as for the DTMC, we can derive the survival probability from the CTMC model, which

is closely related to the death rate. At time t, the survival probability of a fund is defined as

S(t) = PG,G(t)+PG,S(t) for t ≥ 0. Figure 13 displays the survival probabilities for the CTMC

model with δ = 0.03, 0.06 and 0.09. The survival probability for δ = 0.09 is possible only in

the CTMC model, since for the DTMC model, r becomes negative when δ ≈ 0.07. As we see

from Figure 13, median fund life is less than 10 year for δ = 0.09. Since this median hedge
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Figure 13: Survival probability curves for the CTMC model with δ = 0.03, 0.06, and 0.09. The
parameters values p, q, r, YG, YS , and YD are from table 1.

fund life is within the range of Rouah (2006) and Park (2006), it should be worth considering

δ = 0.09 with the CTMC model.

In addition to equation (7.12), we will need analogs of equations (5.5) and (5.6). These will

involve transitions in the DTMC over the time interval of length T . In particular, we obtain

the new equations

γG · YG = PG,G(T ) · YG + PG,S(T ) · YS + {1− PG,G(T )− PG,S(T )}YD (7.13)

and

γS · YS = PS,G(T ) · YG + PS,S(T ) · YS + {1− PS,G(T )− PS,S(T )}YD . (7.14)

This is just as for the DTMC model before, except that we have to add the term for a D state

when the fund starts in the G state at the beginning of the year. Since we are thinking of

yearly updates, we let T = 1.

We now want to do the model fitting. We want to determine the three parameters µG, λS

and µS , exploiting the three equations (7.12), (7.13) and (7.14), but we have been unable to

obtain explicit solutions for the desired parameters as we did in §5.3. So we use an iterative

algorithm.

We start with a candidate initial parameter triple (µG, λS , µS). Given that parameter triple

and the specified time T , we calculate the transition probabilities PG,G(T ), PG,S(T ), PS,G(T ),

and PS,S(T ) in (7.4)–(7.6) by calculating the eigenvalues and eigenvectors of the infinitesimal

matrix Q in (7.1). Afterwards we calculate the steady-state probability vector π ≡ (πG, πS) in

(7.11) of the two-state DTMC in (7.10). We then calculate the right-hand sides of the three
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equations (7.12)–(7.14). Our goal is to have three bonafide equations, where the two sides of

the equations are equal, but in the iteration we will not achieve that. Based on the errors

we see, we update the parameter triple (µG, λS , µS) and repeat until the errors in the three

equations (7.12)–(7.14) are negligible.

Since we are confronted with a three-dimensional iteration, we do not want to proceed in

a haphazard way. Hence, we apply nonlinear programming to do this iteration. The idea is

to find parameter triple (λS , µS , µG) minimizing errors between the right-hand and left-hand

sides of equations (7.12), (7.13) and (7.14). To formulate a minimization problem, we define

three error functions ε1, ε2 and ε3 as a function of parameter triple (λS , µS , µG) as follows:

ε1 ≡ ε1(λS , µS , µG) = δ(T )− πG{1− PG,G(T )− PG,S(T )} − πS{1− PS,G(T )− PS,S(T )},

ε2 ≡ ε2(λS , µS , µG) = γG · YG − PG,G(T ) · YG − PG,S(T ) · YS − {1− PG,G(T )− PG,S(T )}YD,

ε3 ≡ ε3(λS , µS , µG) = γS · YS − PS,G(T ) · YG − PS,S(T ) · YS − {1− PS,G(T )− PS,S(T )}YD.

(7.15)

Our objective, then, is to find λS , µS and µG such that ε1(λS , µS , µG) = ε2(λS , µS , µG) =

ε3(λS , µS , µG) = 0. To obtain values of ε1, ε2, and ε3 for a given parameter triple of λS , µS

and µG, we have to calculate PG,G(T ), PG,S(T ), PS,G(T ), which are elements of P (t) matrix

in (7.4). As indicated above, this involves finding eigenvalues and eigenvectors of Q matrix in

(7.1). From (7.6), we derived eigenvalues as a function of λS , µS and µG. Given the eigenvalues,

the eigenvectors can be calculated as in (7.8), but also in other ways. Since Q is only a 2× 2

matrix, calculation of the eigenvectors for given eigenvalues can be done easily. One way is to

use the Schur decomposition algorithm, as in Anderson et al. (1999), which is implemented in

MATLAB as the eig function. Then Λ(t) can be calculated easily from (7.3), so we can easily

compute the U and Λ matrices numerically. The final step is to compute PG,G(T ), PG,S(T )

and PS,G(T ) from P (t) = UΛ(t)U−1.

We can obtain the desired parameter triple (λS , µS , µG) by solving the following constrained

minimization problem:

min
λS ,µS ,µG

max{|ε1|, |ε2|, |ε3|}

such that

ε1 = δ(T )− πG(1− PG,G(T )− PG,S(T ))− πS{(1− PS,G(T )− PS,S(T )},

ε2 = γG · YG − PG,G(T ) · YG − PG,S(T ) · YS − {1− PG,G(T )− PG,S(T )}YD,

ε3 = γS · YS − PS,G(T ) · YG − PS,S(T ) · YS − {1− PS,G(T )− PS,S(T )}YD

λS , µS , µG ≥ 0

(7.16)
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We regard γG, γS , YG, YS and YD as given constants, and we regard the BD rates λS , µS

and µG as the variables. Since the transition probabilities PG,G(T ), PG,S(T ) and PS,G(T ) are

functions of the BD rates λS , µS and µG through the eigenvalue and eigenvector calculation,

we must regard (7.16) as a nonlinear programming (NLP) problem, for which it is natural

to apply an iterative procedure. However, since we only have three variables, we are able to

solve the NLP (7.16) easily. One effective way is to use Sequential Quadratic Programming

(SQP), as in Schittkowski (1985). With SQP, at each iteration, an approximation is made of

the Hessian of the Lagrangian function using a quasi-Newton updating method. That is then

used to generate a QP subproblem whose solution is used to form a search direction for a line

search procedure. This algorithm is implemented in MATLAB via the functions fminsearch

and fmincon. Both functions solve (7.16) within seconds.

In addition to fitting λS , µS and µG, we want to calibrate σ2. To do so, we need to

adjust the definition of σ2 for the CTMC model. Suppose that πG and πS are the stationary

probabilities for the transition matrix in (7.10). We let π′D be the stationary probability that

the fund dies at the end of 1 year when it starts alive before. This is equal to death rate δ in

our definition:

π′D = δ = πG{1− PG,G(1)− PG,S(1)}+ πS{1− PS,G(1)− PS,S(1)} (7.17)

We then also define π′G and π′S accordingly, using (7.11):

π′G = πG · PG,G(1) + πS · PS,G(1)

π′S = πG · PG,S(1) + πS · PS,S(1)
(7.18)

where (πG, πS) is defined in (7.11). Finally, the variance satisfies

σ2 = π′G · Y 2
G + π′S · Y 2

S + π′D · Y 2
D , (7.19)

where π′ is defined in (7.17) and (7.18). It turns out that we can easily achieve any desired σ,

such as σ ≈ 0.1, by iterating YG. Given (7.19), this iteration step is essentially the same as for

the DTMC in §5.4.

Below are parameter values obtained using the NLP in (7.16) and iterating YG values. In

the following table, ε records the maximum absolute value of errors in equations (7.12), (7.13)

and (7.14). As before, we let T = 1.

Unlike the DTMC model, where the parameter r becomes negative if δ exceeds 0.07 for

the base-case parameter values, for the CTMC we can fit the model to δ up to around 0.13.

When δ ≈ 0.13, we observe that the CTMC lockup premium becomes nearly 0.
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Table 2: Parameter value sets for the CTMC model with γG = γS = 0.5

δ µG λS µS YG YS YD Calculated σ ε

0 0.2410 0.4791 0.0000 0.0670 -0.15 -0.20 0.1003 2.3033× 10−6

0.03 0.2204 0.5531 0.1240 0.0690 -0.15 -0.20 0.1005 3.9441× 10−8

0.06 0.2264 0.7017 0.3488 0.0700 -0.15 -0.20 0.1001 1.2849× 10−6

0.07 0.2286 0.7916 0.4741 0.0701 -0.15 -0.20 0.0997 1.4160× 10−6

0.09 0.2381 1.1063 0.8806 0.0710 -0.15 -0.20 0.0997 5.9465× 10−7

7.4. The Lockup Premium Calculation

Once we have fit all the parameters, we can calculate the lockup premium. The procedure is

essentially the same as in §5.6. For a 1-year Lockup, the fund’s annual return is

R1 = PG,G(1) · YG + PG,S(1) · YS + {1− PG,G(1)− PG,S(1)}YD = γG · YG (7.20)

The fund’s expected return after the ith year if the fund is under lockup is

Ri = PG,G(i) · YG + PG,S(i) · YS

+ [PG,G(i− 1) · {1− PG,G(1)− PG,S(1)}+ PG,S(i− 1) · {1− PS,G(1)− PS,S(1)}] · YD

+ {1− PG,G(i− 1)− PG,S(i− 1)} · γG · YG.

(7.21)

Just as for the DTMC in §5.6, the cumulative difference of expected returns between a

1-year lockup and an n-year lockup is

Cn =
n∑

i=1

(R1 −Ri) = nR1 −
n∑

i=1

Ri (7.22)

The lockup premium is then the average difference An = Cn/n. Figure 3 in §1 shows the lockup

premium functions for four different values of δ, ranging from 0.00 to 0.09. The remaining

parameter values are as specified in Table 2.

7.5. Premium Comparison between CTMC and DTMC

Having created both the DTMC and CTMC models, it is interesting to see how they compare.

Since funds die more quickly in the CTMC model, we expect that the lockup premium for the

CTMC to be lower than for the DTMC model, and that is what we see. There is no difference

at all for δ = 0, but as δ increases the difference between the estimated lockup premiums

increases. We provide several plots and tables in the Appendix. Here we illustrate by showing

the larger differences for δ = 0.07 in Table 3 below.
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Table 3: Lockup premium comparisons when δ = 0.07

Lockup Period 2 3 4 5 6
DTMC 0.8822 1.1288 1.2215 1.2546 1.2593
CTMC 0.6428 0.9296 1.0642 1.1270 1.1528

(DTMC-CTMC)/DTMC (%) 27.1320 17.6480 12.8814 10.1705 8.4604

8. Conclusion

We have defined the hedge fund lockup premium as the average difference (per year) between

the annual returns from investments in hedge funds, where one has a nominal one-year lockup

and the other has an extended n-year lockup. We have developed DTMC and CTMC models

to estimate the hedge-fund lockup premium as a function of the length n of the extended

lockup period. To account for immediate redemption of investment when a hedge fund fails,

we include a death state in the model. The lockup premium represents the cost of not being

able to switch from sick funds to good funds while under the lockup condition. The effect of

the lockup is mitigated by the death rate, and so is more difficult to analyze.

We have shown how the Markov chain models can be fit to basic hedge-fund performance

measures, notably, the persistence of returns, γ (also allowing different γG and γS), the standard

deviation of returns, σ, and the hedge-fund death rate δ. We then have applied the models

to estimate how the lockup premium depends on these important performance measures. The

models quantify how the lockup premium increases as a function of the persistence factor γ

and the standard deviation σ, but decreases as a function of the death rate δ.

We examined the literature to see what researchers have concluded about hedge-fund per-

formance persistence and the other hedge-fund performance measures, but we have found

varying conclusions. We also performed our own statistical analysis using the TASS hedge

fund data to estimate these hedge fund performance measures. We found strong evidence of

persistence, but the specific persistence values cannot be predicted with great confidence, as

is evident from the scatter plots in Figure 2. Thus we think we have been more successful

showing how the lockup premium depends on the hedge-fund performance measures than in

determining these performance measures themselves.

In §4 we provided a simple analysis without Markov chains to quantify the lockup premium

in the case of no death. That analysis yields the explicit no-death lockup premium formulas

in (4.4) and (4.7). In that case the lockup premium tends to be proportional to σ. In all
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cases, the lockup premium is a concave function of n, initially increasing and then eventually

decreasing for δ > 0 because the fund will eventually die, so that the lockup will eventually

provide no extra penalty. The simple approximation with δ = 0 yields an upper bound.

The model fitting requires solving equations. For the DTMC, we were able to give explicit

formulas for the three DTMC parameters p, q and r as a function of YG, YS , YD, γG and γS , but

in order to calibrate the standard deviation of returns, σ, we needed to use an iterative method.

For the CTMC we used a more involved iterative method based on nonlinear programming.

For both models, we developed efficient algorithms for doing the model fitting.

We conclude that all three performance measures - δ, γ and σ - can have a significant

impact on the lockup premium, but we predict that the effect will be negligible if either γ or σ

is small. We estimated these key hedge-fund performance measures from the TASS data, but

further work needs to be done to obtain reliable estimates.

The CTMC model is more realistic because the DTMC model requires two years for a

transition from G to D. The CTMC model allows a wider range of δ - up to 0.13 instead of

only up to 0.07 for the DTMC model - for the base case of parameters. Figure 3 shows for

the CTMC model that the lockup premium for δ = 0.09 is about half what it would be with

δ = 0.00.
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