
IEOR 4701: Stochastic Models in FE

Summer 2007, Professor Whitt

Class Lecture Notes: Wednesday, July 11.

The Central Limit Theorem and Stock Prices

1. The Central Limit Theorem (CLT)

See Section 2.7 of Ross.

(a) Time on My Hands:
Suppose that I have a lot of time on my hands, e.g., because I am on a New Jersey Transit

train in the tunnel under the Hudson river waiting for a disabled Amtrak train ahead of me to
be removed. Fortunately, I have a coin in my pocket. And now I decide that this is an ideal
time to see if heads will come up half the time in a large number of coin tosses. Specifically,
I decide to see what happens if I toss a coin many times. Indeed, I toss my coin 1, 000, 000
times. Below are various possible outcomes, i.e., various possible numbers of heads that
I might report having observed:

1. 500,000

2. 500,312

3. 501,013

4. 511,062

5. 598,372

What do you think of these reported outcomes? How believable are these outcomes?
How likely are these outcomes?

We rule out outcome 5; there are clearly too many heads. We rule out outcome 1; it is “too
perfect.” Even though 500, 000 is the most likely single outcome, it itself is extremely unlikely.
But how do we think about the remaining three?

The other possibilities require more thinking. We can answer the question by doing a
normal approximation; see Section 2.7 of Ross, especially pages 79-83.

We introduce a probability model. We assume that successive coin tosses are independent
and identically distributed (commonly denoted by IID) with probability of 1/2 of coming
out heads. Let Sn denote the number of heads in n coin tosses. The random variable Sn is
approximately normally distributed with mean np = 500, 000 and variance np(1−p) = 250, 000.
Thus Sn has standard deviation SD(Sn) =

√
V ar(Sn) = 500. Case 2 looks likely because it

is less than 1 standard deviation from the mean; case 3 is not too likely, but not extremely
unlikely, because it is just over 2 standard deviations from the mean. On the other hand, Case
4 is extremely unlikely, because it is over 20 standard deviations from the mean. See the Table
on page 81 of the text.



(b) The Power of the CLT

The normal approximation for the binomial distribution with parameters (n, p) when n
is not too small and the normal approximation for the Poisson with mean λ when λ is not
too small are both special cases of the central limit theorem (CLT). The CLT states
that a properly normalized sum of random variables converges in distribution to the normal
distribution.

Of course there are conditions. We give a formal statement; see Theorem 2.2 on p. 79 of
Ross. For that purpose, let N(m, σ2) denote a random variable having a normal distribution
with mean m and variance σ2. Let ⇒ denote convergence in distribution.

Theorem 0.1 (central limit theorem (CLT)) Suppose that {Xn : n ≥ 1} is a sequence of
independent and identically distributed (IID) random variables, each distributed as X. Form
the partial sums

Sn ≡ X1 + · · ·+ Xn for n ≥ 1 .

If E[X2] < ∞ or, equivalently, if σ2 ≡ V ar(X) < ∞ (which implies that the mean is finite),
then

Sn −E[Sn]√
V ar(Sn)

⇒ N(0, 1) as n →∞ ,

i.e.,

P

(
Sn −E[Sn]√

V ar(Sn)
≤ x

)
→ P (N(0, 1) ≤ x) =

1√
2π

∫ x

−∞
e−y2/2 dy

as n →∞ for each x.

Where does the sum appear in our application? A random variable that has a binomial
distribution with parameters (n, p) can be regarded as the sum of n IID random variables with
a Bernoulli distribution having parameter p; each of these random variables Xi assumes the
value 1 with probability p and assumes the value 0 otherwise. A random variable having a
Poisson distribution with mean λ can be regarded as the sum of n IID random variables, each
with a Poisson distribution with mean λ/n (for any n).

And what about the normalization? We simply subtract the mean of Sn and divide by the
standard deviation of Sn to make the normalized sum have mean 0 and variance 1. Note that

Sn − E[Sn]√
V ar(Sn)

=
Sn − nµ√

nσ2
(1)

has mean 0 and variance 1 whenever

Sn ≡ X1 + · · ·+ Xn ,

where {Xn : n ≥ 1} is a sequence of IID random variables with mean µ and variance σ2. (It
is crucial that the mean and variance be finite.)

The CLT applies much more generally; it has remarkably force. The random variables
being added do not have to be Bernoulli or Poisson; they can have any distribution.
We only require that the distribution have finite mean µ and variance σ2. The statement of a
basic CLT is given in Theorem 2.2 on p. 79 of Ross. The conclusion actually holds under even
weaker conditions. The random variables being added do not actually have to be independent;
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it suffices for them to be “weakly dependent;” and the random variables do not have to be
identically distributed; it suffices for no single random variable to be large compared to the
sum. But the statement then need adjusting: the first expression in (1) remains valid, but the
second does not.

What does the CLT say? The precise mathematical statement is a limit as n →∞. It says
that, as n →∞, the normalized sum in (1) converges in distribution to N(0, 1), a random
variable that has a normal distribution with mean 0 and variance 1, whose distribution is given
in the table on page 81 of our textbook. (Let N(a, b) denote a normal distribution with mean
a and variance b.) What does convergence in distribution mean? It means that the cumulative
distribution functions (cdf’s) converge to the cdf of the normal limit, denoted by

Sn − E[Sn]√
V ar(Sn)

⇒ N(0, 1) ,

which means that

P

(
Sn − E[Sn]√

V ar(Sn)
≤ x

)
→ P (N(0, 1) ≤ x) ≡ 1√

2π

∫ x

−∞
e−y2/2 dy

for all x. Note that convergence in distribution means convergence of cdf’s, which means
convergence of functions.

How do we apply the CLT? We approximate the distribution of the normalized sum in (1)
by the distribution of N(0, 1). The standard normal (with mean 0 and variance 1) has no
parameters at all; its distribution is given in the Table on page 81. By scaling, we can reduce
other normal distributions to this one. The approximation is

Sn −E[Sn]√
V ar(Sn)

≈ N(0, 1) ,

which, upon undoing the normalization becomes

Sn ≈ E[Sn] +
√

V ar(Sn)N(0, 1) d= N(E[Sn], V ar(Sn)) .

As a consequence of the CLT, we conclude that Sn is approximately normally distributed with
its true mean and variance. The CLT states that the distribution is approximately normal,
regardless of the distribution of the underlying random variables Xi. The CLT helps explain
why the normal distribution arises so often.

2. An Application of the CLT: Modelling Stock Prices

Given the generality of the CLT, it is nice to consider an application where the random
variables being added in the CLT are not Bernoulli or Poisson, as in many applications. Hence
we consider such an application now.

(a) An Additive Random Walk Model for Stock Prices

We start by introducing a random-walk (RW) model for a stock price. Let Sn denote the
price of some stock at the end of day n. We then can write

Sn = S0 + X1 + · · ·+ Xn , (2)

where Xi is the change in stock price between day i − 1 and day i (over day i) and S0 is
the initial stock price, presumably known (if we start at current time and contemplate the
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evolution of the stock price into the uncertain future. We are letting the index n count days,
but we could have a different time unit.

We now make a probability model. We do so by assuming that the successive changes come
from a sequence {Xn : n ≥ 1} of IID random variables, each with mean µ and variance σ2.
This is roughly reasonable. Moreover, we do not expect the distribution to be Bernoulli or
Poisson. The stochastic process {Sn : n ≥ 0} is a random walk with steps Xn, but a general
random walk. If the steps are Bernoulli random variables, then we have a simple random walk,
as discussed in Chapter 4, in particular, in Example 4.5 on page 183 and Example 4.15. But
here the steps can have an arbitrary distribution.

We now can apply the CLT to deduce that the model implies that we can approximate the
stock price on day n by a normal distribution. In particular,

P (Sn ≤ x) ≈ P (N(S0 + nµ, nσ2) ≤ x) = P (N(0, 1) ≤ (x− S0 − nµ)/σx) .

How do we do that last step? Just re-scale: subtract the mean from both sides and then
divide by the standard deviation for both sides, inside the probabilities. The normal variable
is then transformed into N(0, 1). We can clearly estimate the distribution of Xn by looking at
data. We can investigate if the stock prices are indeed normally distributed.

(b) A Multiplicative Model for Stock Prices

Actually, many people do not like the previous model, because they believe that the change
in a stock price should be somehow proportional to the price. (There is much much more hard-
nosed empirical evidence, not just idle speculation.) That leads to introducing an alternative
multiplicative model of stock prices. Instead of (2) above, we assume that

Sn = S0 ×X1 × · · · ×Xn , (3)

where the random variables are again IID, but now they are random daily multipliers. Clearly,
the random variable Xn will have a different distribution if it is regarded as a multiplier instead
of an additive increment.

But, even with this modification, we can apply the CLT. We obtain an additive model
again if we simply take logarithms (using any base, but think of standard base e = 2.71828....).
Note that

log (Sn) = log (S0) + log (X1) + · · ·+ log (Xn) , (4)

so that, by virtue of the CLT above,

log (Sn) ≈ N(log (S0) + nµ, nσ2) , (5)

where now (with this new interpretation of Xn)

µ ≡ E[log (X1)] and σ2 ≡ V ar(log (X1) . (6)

As a consequence, we can now take exponentials of both sides of (5) to deduce that

Sn ≈ e(N(log (S0)+nµ,nσ2) . (7)

That says that Sn has a lognormal distribution. Some discussion of this model appears on
page 608 of our textbook. It underlies geometric Brownian motion, one of the fundamental
stochastic models in finance.
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3. Advanced (Optional) Topic: Stochastic-Process Limits
There exists a generalization of the CLT that explains Brownian motion and geometric

Brownian motion. With appropriate scaling of time and space, the entire random walk (addi-
tive model) converges to Brownian motion, while an appropriate sequence of the corresponding
multiplicative models converges to geometric Brownian motion.

To briefly explain, consider the simple case in which the IID random variables Xi have
mean 0 and variance 1. Then the CLT says that Sn/

√
n ⇒ N(0, 1) as n → ∞. But there

is a more general result, which implies the CLT as a special case. The whole random walk
is the sequence {Sk : k ≥ 0}. With appropriate scaling of time and space, this random walk
converges to Brownian motion {B(t) : t ≥ 0}, discussed in Chapter 10 of Ross. The scaling
creates a new scaled random walk for each n. The sequence of scaled random walks, generated
from the one initial random walk, converges to Brownian motion as n → ∞. Brownian mo-
tion is a continuous-time stochastic process having continuous sample paths and independent
increments, with B(t) distributed as N(0, t) for each t. (See Chapter 10 in Ross.) Thus B(1)
is distributed as N(0, 1).

Given the entire random walk, {Sk : k ≥ 0} we can get convergence to Brownian motion by
considering a sequence of stochastic processes with scaling depending upon n. For each n, we
scale time by n and space by

√
n. To do so, consider one fixed n. For n given, plot Sk/

√
n at

time k/n for all k ≥ 0. That compresses time by the factor n, but scales space by dividing by√
n. In other words, consider the continuous-time stochastic process {Sbntc, t ≥ 0}, where bxc

is the greatest integer less than or equal to x; i.e., bntc = k/n for k/n ≤ t < (k + 1)/n. The
generalized “functional” CLT concludes that the entire stochastic process {Sbntc/

√
n, t ≥ 0}

converges in distribution to Brownian motion {B(t), t ≥ 0} as n →∞:

{Sbntc/
√

n, t ≥ 0} ⇒ {B(t), t ≥ 0} as n →∞ .

Mathematically, there is a question about what the convergence ⇒ means in this more general
context. It is interpreted as convergence in distribution, but the objects should be interpreted
as random functions. These more general limits are stochastic-process limits; see Chapter 1 of
my book, Stochastic-Process Limits, available online at: http://www.columbia.edu/∼ww2040/book.html

As a corollary to the stochastic-process limit, by considering what happens at one time
point t, we get

Sbntc/
√

n ⇒ B(t)

for each t. If we consider the single time point t = 1, then we get the ordinary CLT:

Sn/
√

n ⇒ B(1) .

That implies the CLT because B(1) is distributed as N(0, 1).
Paralleling this generalization of the CLT, there is a limit for sequences of multiplicative

models in which the limit process is the exponential of Brownian motion, called geometric
Brownian motion. Thus the CLT explains the prevalence of geometric Brownian motion in
finance models. The convergence of the sequence of multiplicative models to geometric Brow-
nian motion is discussed in Section 2.1 in Chapter 2 of my book. We will come back to this
topic in the second half of the course.
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