
IEOR 4701: Stochastic Models in FE

Summer 2007, Professor Whitt

Class Lecture Notes: Thursday, July 12.

Random Variables, Expectation and Transforms

1. Probability Distributions and Ways to Specify Them

(i) In probability theory the basic notion is a probability measure or a probability
distribution. A probability measure assigns number to events (subsets of the sample space);
see §1.3 of the text. In the discrete case we typically specify a probability measure by a
probability mass function (pmf), say pk. We then write, for any event A,

P (A) =
∑

k∈A

pk

In the continuous case we typically specify a probability measure by a probability density
function (pdf), say f(x). We then write, for any event A,

P (A) =
∫

A
f(x) dx

We also often specify a probability measure (or law or distribution) by a cumulative dis-
tribution function (cdf); we usually use the notation F , where F (x) ≡ P ((−∞, x]) In the
discrete case we typically write, for any x,

F (x) =
∑

k:k≤x

pk

In the continuous case we typically write, for any x,

F (x) =
∫ x

−∞
f(x) dx

Complications: We remark that, in general, there are further complications.

(i) First, for many sample spaces, including the real line R or a subinterval [a, b], there are
complicated nonmeasurable subsets for which probability need not be defined. One then
focuses on the collection F of measurable subsets, called the σ-field. It is a complicated exercise
to even construct one such nonmeasurable subset. We will not worry about this problem.

(ii) Second, the discrete and continuous cases are not the only ones. We could have a cdf
F that is the mixture of a discrete cdf, say Fd, and a continuous cdf, say Fc; i.e., we could
have F = pFd + (1 − p)Fc, where Fd is a discrete cdf and Fc is a continuous cdf, as defined
above. But there are still other cases. There are cdf’s F that are continuous functions but
which are not integrals of pdf’s. Even though F is a continuous function, we need not be able
to write F (x) =

∫ x

∞ f(y) dy for all x. However, again, we will not dwell on such complications.



(ii) The next most important basic notion is expectation or expected value. The
expected value of a probability distribution can be thought of as its center of mass. In the
discrete case, with a pmf pk, its expected value is

∑

k

kpk

In the continuous case, with a pdf f(x), its expected value is
∫

xf(x) dx

2. Random Variables and Functions of Random Variables

(i) What is a random variable?

A (real-valued) random variable, often denoted by X (or some other capital letter), is a
function mapping a probability space (S, P ) into the real line R. This is shown in Figure 1.

A random variable: a function

(S,P) R

X

Range: real lineDomain: probability space

Figure 1: A (real-valued) random variable is a function mapping a probability space into the
real line.

As such, a random variable has a probability distribution. We usually do not care about
the underlying probability space, and just talk about the random variable itself, but it is good
to know the full formalism. The distribution of a random variable is defined formally in the
obvious way

PX({(−∞, t]}) ≡ FX(t) ≡ P (X ≤ t) ≡ P ({s ∈ S : X(s) ≤ t}) ,
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where P is the probability measure on the underlying sample space S and {s ∈ S : X(s) ≤ t}
is a subset of S, and thus an event in the underlying sample space. See page 23 of Ross; he
puts this out very quickly.

Given that we understand what is a random variable, we are prepared to understand what
is a function of a random variable. Suppose that we are given a random variable X
mapping the probability space (S, P ) into R and we are given a function h mapping R into
R. Then h(X) is a function mapping the probability space (S, P ) into R. As a consequence,
h(X) is itself a new random variable, i.e., a new function mapping (S, P ) into R, as depicted
in Figure 2.

A function of a random variable

X

(S,P) R

h

R

Domain: probability space Range: real line Range: real line

Figure 2: A (real-valued) function of a random variable is itself a random variable, i.e., a
function mapping a probability space into the real line.

For simplicity, suppose S is a finite set, so that X and h(X) are necessarily finite-valued
random variables. Then we can compute the expected value E[h(X)] in three different ways:

E[h(X)] =
∑

s∈S

h(X(s))P ({s})

=
∑

r∈R
h(r)P (X = r)

=
∑

t∈R
tP (h(X) = t) .

Similarly, we have the following expressions when all these probability distributions have prob-
ability density functions (the continuous case). First, suppose that the underlying probability
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distribution (measure) P on the sample space S has a probability density function (pdf) f .
Then, under regularity conditions, the random variables X and h(X) have probability density
functions fX and fh(X). Then we have:

E[h(X)] =
∫

s∈S
h(X(s))f(s) ds

=
∫ ∞

−∞
h(r)fX(r) dr

=
∫ ∞

−∞
tfh(X)(t) dt .

3. Pairs of Random Variables and Joint Distributions
Given two random variables, both defined on the same probability space, we can talk about

their joint distribution. Given random variables X and Y mapping (S, P ) into R, we can think
of the pair (X, Y ) as a random vector mapping (S, P ) into R2.

(1) What is the joint distribution of (X, Y ) in general?

See Section 2.5, especially page 47.

The joint distribution of X and Y is

FX,Y (x, y) ≡ P (X ≤ x, Y ≤ y) .

(ii) What does it mean for two random variables X and Y to be independent random
variables?

See Section 2.5.2, page 51. Pay attention to for all. We say that X and Y are independent
random variables if

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) for all x and y .

We can rewrite that in terms of cumulative distribution functions (cdf’s) as We say that X
and Y are independent random variables if

FX,Y (x, y) ≡ P (X ≤ x, Y ≤ y) = FX(x)FY (y) for all x and y .

When the random variables all have pdf’s, that relation is equivalent to

fX,Y (x, y) = fX(x)fY (y) for all x and y .

(iii) Conditional Distributions.
We now turn to conditional distributions; see §§3.2 and 3.3.

Given random variables X and Y , we can talk about the conditional distribution of X
given Y . In the discrete case, we have a direct application of the definition of conditional
probability:

pX|Y (j|k) ≡ P (X = j|Y = k) =
P (X = j, Y = k)

P (Y = k)
.

Given the joint probability mass function pX,Y (j, k) ≡ P (X = j, Y = k), we can obtain the
marginal distribution of Y , needed above by summing the joint distribution:

pY (k) =
∑

j

pX,Y (j, k) =
∑

j

P (X = j, Y = k) .
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Given random variables X and Y with probability density functions, we can also talk
about the conditional distribution of X given Y . In this alternative continuous case, we have
an analogous definition of conditional probability in terms of pdf’s:

fX|Y (x|y) ≡ fX,Y (x, y)
fY (y)

.

Given the joint pdf fX,Y (x, y), we can obtain the marginal pdf of Y , needed above by integrating
the joint pdf:

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx .

4. Transforms

We now turn to a discussion of transforms, which are very useful tools in probability
analysis. We are now elaborating on Section 2.6 of the textbook, which focuses on one special
kind of transform: the moment generating function (mgf).

(a) What is the main idea? When we construct a transform, we map one function into
another function. Just as a random variable can be said to be a function, so can a transform
be said to be a function. For example, we might start with a probability density function (pdf)
f(x) ≡ fX(x) of a random variable X. When we construct an mgf, we construct a function of
another variable by forming an integral

φ(t) ≡ φX(t) ≡ E[e(tX)] ≡
∫ +∞

−∞
etxfX(x) dx . (1)

Note that we start with a function of x, fX(x), and we transform it into a function of t. It
is important that the t in (1) is not regarded as fixed, but instead it too is a variable. So we
replace one function, fX(x) as a function of x, by another function, φX(t) as a function of t.
We do so because it is easier to work with. It is a convenient mathematical trick, just like the
logarithm used to convert the multiplicative model above into an additive model. Indeed, the
exponential function in the transform plays the same role here. It is important that there is a
one-to-one relationship. The transform φ(t) as a function of t uniquely determine the pdf f(x)
as a function of x. We can go back and forth. We can start with the pdf f , construct the mgf
φ, work with it, and go back.

(b) Different Kinds of Transforms

We now briefly introduce some of the standard transforms used in probability theory. These
will be found in many probability texts, even though only mgf’s are used in Ross.

(1) generating function

——————————————–
The generating function of the sequence {an : n ≥ 0} is

â(z) ≡
∞∑

n=0

anzn ,

which is defined where it converges.

Given a random variable X with a probability mass function (pmf)

pn ≡ P (X = n) ,
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the probability generating function of X (really of its probability distribution) is the generating
function of the pmf, i.e.,

P̂ (z) ≡ E[zX ] ≡
∞∑

n=0

pnzn .

(2) z transform

——————————————–
A z transform is just another name for a generating function.

——————————————–

(3) moment generating function (mgf)

——————————————–

Given a random variable X the moment generating function of X (really of its probability
distribution) is

φ(t) ≡ φX(t) ≡ E[etX ] .

The random variable X could have a continuous distribution or a discrete distribution; e.g.,
see Section 2.6 of Ross.

Discrete case: Given a random variable X with a probability mass function (pmf)

pn ≡ P (X = n), n ≥ 0, ,

the moment generating function (mgf) of X (really of its probability distribution) is the gen-
erating function of the pmf, where et plays the role of z, i.e.,

φX(t) ≡ E[etX ] ≡ P̂ (et) ≡
∞∑

n=0

pnetn .

Continuous case: Given a random variable X with a probability density function (pdf)
f ≡ fX on the entire real line, the moment generating function (mgf) of X (really of its
probability distribution) is

φ(t) ≡ φX(t) ≡ E[etX ] ≡
∫ ∞

−∞
f(x)etx dx .

A major difficulty with the mgf is that it may be infinite or it may not be defined. For
example, if X has a pdf f(x) = A/(1 + x)p, x > 0, then the mgf is infinite for all t > 0.

——————————————–

(4) characteristic function

——————————————–
The characteristic function (cf) is the mgf with an extra imaginary number i ≡ √−1:

ψ(t) ≡ ψX(t) ≡ E[eitX ] .

where i ≡ √−1. Thus we are in the domain of complex variables. Again, the random variable
X could have a continuous distribution or a discrete distribution.
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Unlike mgf’s, every probability distribution has a well-defined cf. To see why, recall that
eit is very different from et. In particular,

eitx = cos(tx) + i sin(tx) .

This is a basic fact in complex numbers. If you have not had complex numbers, then do not
worry about it.

——————————————–

(5) Fourier transform

——————————————–
A Fourier transform is just a minor variant of the characteristic function. Really, it should

be said the other way around, because the Fourier transform is the more general notion. There
are a few different versions, all differing from each other in minor unimportant ways. Under
regularity conditions, a function f has Fourier transform

f̃(y) =
∫ ∞

−∞
f(x)e−2πixy dx .

Again under regularity conditions, the original function f can be recovered from the inversion
integral

f(x) =
∫ ∞

−∞
f̃(y)e2πixy dy .

For example, see D. C. Champeney, A Handbook of Fourier Theorems, Cambridge University
Press, 1987.

——————————————–

(6) Laplace transform

——————————————–
Given a real-valued function f defined on the positive half line R+ ≡ [0,∞), its Laplace

transform is
f̂(s) ≡

∫ ∞

0
e−sxf(x) dx,

where s is a complex variable with positive real part, i.e., s = u + iv with i =
√−1, u and v

real numbers and u > 0.

—————————————————————–

(c) What can we do with transforms?

(1) Characterize the distribution of a sum of independent random variables. (See Ross)

——————————————————-
Suppose that X and Y are independent random variables. Then the mgf of X + Y is the

product of the mgf’s of X and Y :

φX+Y (t) ≡ E[et(X+Y )] = E[etXetY ] = φX(t)φY (t) .

The first equality is by properties of the exponential function; the last equality is by the
assumed independence.
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——————————————————-

(2) Calculate moments of a random variable. (See Ross)

——————————————————-
Note that the mean of X is the derivative of the mgf evaluated at 0: φ′X(0) = E[X], while

the kth moment is the kth derivative of the mgf evaluated at 0. Hence the name “ moment
generating function.”

——————————————————-

(3) Establish probability limits, such as the weak law of large numbers (WLLN) and the
central limit theorem (CLT). (see pp. 82-83 of Ross)

——————————————————-
We will now elaborate on point (3), using characteristic functions. In the book, on pages

82-83, Ross covers the same ground using moment generating functions. It is brief, but he
gives the main ideas.

Optional Extra Material (You will not be held responsible for this.)

The key result behind the proofs is the continuity theorem for characteristic functions
(cf ’s). Let the cf be defined by

φ(t) ≡ E[eitX ] ,

where again i =
√−1.

We say that a sequence of random variables {Xn : n ≥ 1} converges in distribution to a
random variable X, and write Xn ⇒ X, if

P (Xn ≤ x) → P (X ≤ x) for all x

such that P (X ≤ x) is continuous at x (x is not a point where the cdf P (X ≤ x) has a jump).

Theorem 0.1 (continuity theorem) Suppose that Xn and X are real-valued random variables,
n ≥ 1. Let φn and φ be their characteristic functions (cf ’s), which necessarily are well defined.
Then

Xn ⇒ X as n →∞ (convergence in distribution)

if and only if
φn(t) → φ(t) as n →∞ for all t .

Now to prove the WLLN (convergence in probability, which is equivalent to convergence
in distribution here, because the limit is deterministic) and the CLT, we exploit the continuity
theorem for cf’s and the following two lemmas:

Lemma 0.1 (convergence to an exponential) If {cn : n ≥ 1} is a sequence of complex numbers
such that cn → c as n →∞, then

(1 + (cn/n))n → ec as n →∞ .

Lemma 0.2 (Taylor’s theorem) If E[|Xk|] < ∞, then the following version of Taylor’s theo-
rem is valid for the characteristic function φ(t) ≡ E[eitX ]

φ(t) =
j=k∑

j=0

E[Xj ](it)j

j!
+ o(tk) as t → 0
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where o(t) is understood to be a quantity (function of t) such that

o(t)
t
→ 0 as t → 0 .

Suppose that {Xn : n ≥ 1} is a sequence of independent and identically distributed (IID)
random variables. Let

Sn ≡ X1 + · · ·+ Xn, n ≥ 1 .

Theorem 0.2 (WLLN) If E[|X|] < ∞, then

Sn

n
⇒ EX as n →∞ .

Proof. Look at the cf of Sn/n:

φSn/n(t) ≡ E[eitSn/n] = φX(t/n)n = (1 +
itEX

n
+ o(t/n))n

by the second lemma above. Hence, we can apply the first lemma to deduce that

φSn/n(t) → eitEX as n →∞.

By the continuity theorem for cf’s (convergence in distribution is equivlent to convergence of
cf’s), the WLLN is proved.

Theorem 0.3 (CLT) If E[X2] < ∞, then

Sn − nEX√
nσ2

⇒ N(0, 1) as n →∞ ,

where σ2 = V ar(X).

Proof. For simplicity, consider the case of EX = 0. We get that case after subtracting the
mean. Look at the cf of Sn/

√
nσ2:

φ
Sn/

√
nσ2(t) ≡ E[eit[Sn/

√
nσ2]]

= φX(t/
√

nσ2)n

= (1 +
itEX

n
+ (

it√
nσ2

)2
EX2

2
+ o(t/n))n

= (1 +
−t2

2n
+ o(t/n))n

→ e−t2/2 = φN(0,1)(t)

by the two lemmas above. Thus, by the continuity theorem, the CLT is proved.

——————————————————-
Remark. Ross works with moment generating functions (mgf’s) instead of cf’s. He shows

that et2/2 is the mgf of a standard normal random variable N(0, 1). Above we use the fact
that e−t2/2 = e(+it)2/2 is the cf of a standard normal random variable N(0, 1).

—————

Optional Next topic: Numerical Transform Inversion
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It is very useful in many probability applications to be able to numerically calculate a cdf or
pdf given its transform. There are ways to do that. Learning about that is one of the optional
extra-credit projects. In particular, the extra credit project is to write your own program for
numerically inverting a Laplace transform. We use Laplace transforms for nonnegative random
variables.
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