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1 Introduction

1.1 Bernoulli Trials

A sequence of Bernoulli trials is a sequence of independent and identically distributed random
variables {Xn : n ≥ 1}, where

P (Xn = 1) = p = 1− P (Xn = 0), n ≥ 1.

We use Bernoulli trials to model the outcomes of successive coin tosses; we may say that
Xn = 1 if we get heads on the nth toss. Then the partial sum Sn ≡ X1 + · · · + Xn is the
number of heads on the first n tosses. The random variables Sn has a binomial distribution
with parameters n and p:

P (Sn = k) =
(

n
k

)
pk(1− p)n−k, 0 ≤ k ≤ n ;

see Sections 2.2.1 and 2.2.2 of Ross, on pages 28-29. These are bonafide probabilities because
they are positive and

n∑

k=0

P (Sn = k) =
n∑

k=0

(
n
k

)
pk(1− p)n−k = 1 .

To verify this last claim, we can apply the binomial theorem, giving the value of (x + y)n:

(x + y)n =
n∑

k=0

(
n
k

)
xkyn−k .

For the binomial distribution, the sum of the probabilities is thus a representation of (p+(1−
p))n = 1n = 1.

1.2 The Binomial Lattice Model

The binomial lattice model is a modification of a sequence of Bernoulli trials, created to model
stock prices. We again consider a sequence of independent and identically distributed random
variables {Xn : n ≥ 1}, each assuming only two values. We make two changes: First, we allow
the two possible values of Xn to be general: Instead of 1 and 0, the possible values of Xn are
u and d for up and down. We now have

P (Xn = u) = p = 1− P (Xn = d), n ≥ 1.

Second, we consider a multiplicative model instead of an additive model. We let the initial
value be S0 = S and let

Sn = S0 ×X1 ×X2 × · · · ×Xn, n ≥ 1 .
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Figure 1: The general tree for the binomial lattice model with n = 5.

Pictorially, the possible values of Sk for 0 ≤ k ≤ n = 5 with a binomial lattice model are
depicted in Figure 1.2. This is often called a binomial tree.

In the displayed tree there are n = 5 stages (beyond the initial stage 0). The random
variables Sn is intended to represent the stock price at stage n. The random variable Xn is
then the random multiple taking Sn−1 into Sn:

Sn = Sn−1Xn, n ≥ 1 .

Since the random multipliers are assumed to be i.i.d., the stochastic process {Sn : n ≥ 0} is
a Markov chain: the probability of future states conditional on the past and present depends
only on the present state. The possible values of Sn are still determined by binomial(n, p)
probabilities

P
(
Sn = Sukdn−k

)
=

(
n
k

)
pk(1− p)n−k, 0 ≤ k ≤ n . (1)

2 An Approximation to Geometric Brownian Motion

The binomial lattice model is often introduced as a discrete approximation to geometric Brow-
nian motion (GBM), which in turn is a commonly used continuous-time stochastic process to
model security prices. After taking logarithms, this discrete approximation corresponds to the
the relatively familiar approximation of Brownian motion (BM) by a simple random walk, as
described at the beginning of Chapter 10 of Ross, but here we have a non-zero drift. This
non-zero drift makes the analysis somewhat more complicated, but otherwise the story is just
as in Section 10.1 of Ross.
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In fact, it is natural to think of the more elementary random walk as the basic object.
When we want to understand what is Brownian motion, we think of Brownian motion as the
limit of a sequence of the random walks as the time periods get short. This can be formalized
as a proper limit, called a stochastic-process limit: a sequence of appropriately defined random
walks converges to Brownian motion. From a practical perspective, to understand BM, we
think of it as a random walk. Similarly, GBM can be expressed as the limit of a sequence of
BLM’s. To understand GBM, we think of it as a BLM. We can perform calculations by either
using GBM or an associated BLM. In this section we will show how to relate them.

2.1 Brownian motion

We first give some minimal background on Brownian motion; see Chapter 10 of Ross. If
B ≡ {B(t) : t ≥ 0} is standard Brownian motion (with 0 drift coefficient and unit (1) variance
coefficient), we can get an associated (µ, σ2) Brownian motion {X(t) : t ≥ 0}, with drift
coefficient µ and variance coefficient σ2 (i.e., E[X(t)] = µt and V ar(X(t)) = σ2t for all t ≥ 0)
by setting

X(t) ≡ µt + σB(t), t ≥ 0 .

Clearly, X(t) is distributed as N(µt, σ2t), where N(a, b) denotes a normal random variable
with mean a and variance b.

2.2 Geometric Brownian Motion

Then geometric Brownian motion (GBM) with parameters µ and σ, and with initial value
Y (0) regarded as constant, is defined by

Y (t) ≡ Y (0)eX(t) = Y (0)eµt+σB(t), t ≥ 0 .

Dividing by the constant Y (0) and taking logarithms, we get

ln (Y (t)/Y (0)) = X(t) = µt + σB(t), t ≥ 0 .

Notice that the parameters µ and σ2 are the mean and variance, respectively, of ln (Y (t)/Y (0))
at t = 1. They are not the mean and variance of Y (t) or Y (t)/Y (0) at t = 1. This construction
gives Y (t) a lognormal distribution with mean

E[Y (t)/Y (0)] = E[eX(t)] = Y (0)E[eµt+σB(t)] = Y (0)eµt+σ2t/2 ,

second moment

E[(Y (t)/Y (0))2] = E[(eX(t))2] = E[(e2X(t)] = e2µt+2σ2t ,

and variance

V ar((Y (t)/Y (0)) = E[(Y (t)/Y (0))2]− (E[Y (t)/Y (0)])2 = e2µt+σ2t(eσ2t − 1)

These calculations are based on simple properties of the exponential function and the form of
the moment generating function of a normal random variable; see Example 2.42 on page 67.
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2.3 Approximating GBM by a BLM

To approximate GBM by a binomial lattice model (BLM), we first simplify by letting d =
1/u in our binomial lattice model. This choice would be obvious if µ = 0, because then
ln (Y (t)/Y (0) would have a normal distribution with mean 0. It would then be natural to have
ln (d) = − ln (u), which is equivalent to d = 1/u. We do this more generally because this is the
standard approach.

That leaves two parameters to specify: u and p. To make the approximation, we have to
decide how we are going to break up time. It is common to think of time t expressed in years,
so that t = 1 corresponds to one year. Suppose that we do indeed measure time in years and let
∆ be the time period in the discrete model. If time in the discrete model represents weeks, then
∆ = 1/52 ≈ 0.0192; if time in the discrete model represents months, then ∆ = 1/12 ≈ 0.0833;
time in the discrete model represents days, then ∆ = 1/365 ≈ 0.002740 (ignoring the leapyear
possibility).

Given time measured in years and the parameters µ and σ measured in that time scale, and
having chosen the length of a time period ∆ in the approximating BLM (∆ = 1/n if n∆ = 1),
we can make the approximation by matching the first two moments of the distribution of
ln (Sn/S0) to ln (Y (n∆)/Y (0)). Doing so gives

E[ln (Sn/S0)] = nE[ln (S1/S0)] = nµ∆

and
V ar(ln (Sn/S0)) = nV ar(ln (S1/S0)) = nσ2∆

Since both the left and right sides of both equations are proportional to n, we can divide
through by n, which is tantamount to considering the case of n = 1:

E[ln (S1/S0)] = µ∆

and
V ar(ln (S1/S0)) = σ2∆

However, letting U = ln (u), we see that these two equations are equivalent to

pU + (1− p)(−U) = (2p− 1)U = µ∆ (2)

and, working with the second moment instead of the variance,

pU2 + (1− p)(−U)2 = U2 = σ2∆ + (µ∆)2 . (3)

This gives us two equations in the two unknowns p and U . They can be combined to produce
a single quadratic equation in one unknown, but a simplification follows from the observation
that ∆ is supposed to be small, so that ∆2 should be much smaller than ∆. Assuming that µ
is of the same order as σ, we then can deduce that (µ∆)2 should be small compared to σ2∆.
Assuming that indeed (µ∆)2 is suitably small compared to σ2∆, we can omit the term (µ∆)2

with little loss in accuracy, and that is what we do.
Hence we replace the last equation (3) by

U2 ≈ σ2∆ , (4)

which immediately yields

U = σ
√

∆ and u = eU = eσ
√

∆ . (5)
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Since d = 1/u, we also have
d = e−U = e−σ

√
∆ . (6)

Finally, plugging (5) into (2), we obtain

p =
1
2

+
µ

2σ

√
∆ . (7)

Notice that (2) for the mean is satisfied exactly after this simplifying approximation, so that
we have introduced no error in the mean, but there is a small error in the second moment and
the variance; (3) is not satisfied exactly when we go to (4).

Summary. Given a specified time scale such as years (t = 1 means one year) in which the
parameters µ and σ2 are specified, let each discrete time period be of length ∆ (assumed to be
relatively short, such as a month, week or day in the yearly time scale), we let S0 = Y (0) = S
be the initial price of the stock and then let the parameters u, d and p in the approximating
binomial lattice model be given by (5), (6), and (7), i.e.,

u = eσ
√

∆

d = 1/u = e−σ
√

∆

p =
1
2

+
µ

2σ

√
∆ . (8)

Example 2.1 Consider a stock with a yearly time scale, where the parameters µ and σ are
given by with µ = 0.15 and σ = 0.30. (That is a relatively volatile stock; a more common
parameter value would be σ = 0.15.) Assume that the initial stock price is S0 = 100. Make a
binomial lattice model with weekly time periods, assuming that the stock prices follow a GBM
in continuous time.

Answer: With the time specifications, ∆ = 1/52 ≈ 0.01923. From (8), we get

u = eσ
√

∆ = e0.30/
√

52 ≈ 1.04248
d = 1/u ≈ 0.95925

p =
1
2

+
µ

2σ

√
∆ =

1
2

+
0.15

20.30
√

52
= 0.534669 . (9)

Given that the initial stock price is S0 = 100, we get the tree in Figure 2.1. We do not show
the probabilities in this tree. They are as in (1) with p = 0.534669.

3 Option Pricing with the Binomial Lattice Model

We now consider option pricing with the BLM. The setting is a BLM model as defined above,
allowing general up and down values u and d. In particular, we now do not assume that
d = 1/u, but we will make that assumption when we obtain the BLM as an approximation
of GBM. Thus, we assume that there is a stock with initial price S evolving according to a
BLM, with states and prices as shown in Figure 1.2 and probabilities as given in (1). However,
it turns out that we will not use the initial specified probability p. (That will be explained
below!)

In addition we add a risk-free asset (money) with fixed interest rate r, 0 < r < 1, satisfying
u > 1 + r > d. We assume that you earn interest at rate r per period when you put money
in the bank; i.e., 1 dollar put in the bank at the beginning of any period returns 1 + r dollars
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Figure 2: The binomial lattice model approximating the specified geometric Brownian motion
in Example 2.1. The time periods are weeks in a yearly time scale. Time periods 0 through 5
are shown.

at the end of that period (which coincides with the beginning of the next period). We assume
that the investor can buy or sell stock each period, and can put money in the bank or take it
out at the common interest rate r.

In this context (with the stock and risk-free asset as described above), we consider a
European call option giving the opportunity to buy shares of a specific stock at the expiration
time T = n (after period n) for (the strike price) K per share. Let Sn be the value of
the stock at the end of period n. At that time, the the option is worth (Sn − K)+, where
(x)+ ≡ max {x, 0}.

We assume the investor can either buy or sell shares of this option. We want to derive a
fair price for this option. In this setting we will see that there exists one and only one price for
the option that is arbitrage free; i.e., there is one required price that must prevail to prevent
the investor from making an arbitrarily large profit without any risk.

3.1 Replication

The key idea is that the option can be replicated by a strategy of buying or selling the stock
and borrowing or lending the risk-free asset. This replication forces the payoffs for the option
to be identical to the investment strategy for the stock and risk-free asset for every possible
random outcome of the stock. Hence there is only one permissible price for the option (under
these model assumptions). If that price does not prevail, then an arbitrage opportunity neces-
sarily exists: We have two investment opportunities with identical outcomes; if the prices are
different, then we buy a massive amount of the cheaper one and sell the same massive amount
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of the more expensive one, and consequently make massive profit, guaranteed, with no risk. It
is significant that this argument does not depend on the transition probabilities in the BLM.
As stated above, for this reason, we do not use the probability p at all.

In fact, the replication scheme is usually regarded as being even more important than the
arbitrage-free price of the option, which the replication scheme allows us to derive. In general,
we want to know both the arbitrage-free price of the option and the replication
scheme for matching all option payoffs by an investment strategy with the stock
and the risk-free asset.

This replication approach applies to arbitrary derivatives of the stock; it is not
limited to European call options. It suffices to specify the payoffs of the derivative in every
possible state of the stock at the end of period n. It is important that this derivative have its
payoffs depend on the stock prices; the derivative value is a direct function of the stock prices.
That is what the term derivative means in this financial setting. (This is a totally different
meaning from derivative in calculus.)

3.2 A Single Period Suffices

The BLM looks complicated with the expanding tree of states as the number of periods in-
creases. The analysis simplifies greatly because it suffices to consider only a single time period;
i.e., it suffices to consider a one-period tree with two possible outcomes. The more general
model can be treated by iteratively applying established results for the simple one-period tree.

With one period, we have the stock starting at price S, which will either go up to Su or
down to Sd. There is interest at the fixed rate r, where u > 1 + r > d. That extra inequality
is to avoid trivial uninteresting cases: If 1 + r > u, then you would never invest in the stock;
if d > 1 + r, then you would never put money in the bank.

To treat general derivatives in this one-period setting, we let Cu be the payoff of the
derivative if the stock goes up, and we let Cd be the payoff if it goes down. It is natural to
have Cu > Cd as well as u > 1 + r > d, but that is not required.

We will now construct a special portfolio (α, β) of the stock and the risk-free asset in order
to replicate the option in both cases (if it goes up or if it goes down). (We let α and β be
arbitrary real numbers, positive or negative; e.g., we can buy or sell fractional shares of the
stock.) The portfolio (α, β) means that we buy α shares of the stock and put β dollars in the
bank. If α is negative, we sell the stock; if β is negative, then we borrow from the bank (at
the same interest rate r). The initial value of this portfolio is αS + β.

To achieve replication, the value of the portfolio at the end of our single period must match
the value of the derivative at the same time, if the stock goes up or if it goes down. That leads
to two equations:

αuS + β(1 + r) = Cu if the stock price goes up (10)

and
αdS + β(1 + r) = Cd if the stock price goes down (11)

Those two equations constitute two equations in the two unknowns α and β. We can solve for
these variables, obtaining the replicating portfolio:

α =
Cu − Cd

S(u− d)
(12)

and
β =

uCd − dCu

(1 + r)(u− d)
. (13)
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In summary, we replicate the derivative payoffs exactly if we initially (at time 0) buy α shares
of the stock and put β dollars in the bank, where these specific values are given above in (12)
and (13).

Since the portfolio replicates the derivative, the values of these two must be identical.
Hence the initial value (unique arbitrage-free price) of the derivative is C0, where

C0 = αS + β =
Cu − Cd

u− d
+

uCd − dCu

(1 + r)(u− d)
. (14)

However, this expression for C0 in (14) can be simplified to yield

C0 =
1

1 + r
(p∗Cu + (1− p∗)Cd) , (15)

where
p∗ =

1 + r − d

u− d
and 1− p∗ =

u− (1 + r)
u− d

. (16)

Since we have assumed that u > 1 + r > d, we see that p∗ is a probability, called the risk-
neutral probability. Notice that this risk-neutral probability p∗ in (16) need not agree with
any a priori probability p specified for the BLM. If we started with a probability p, then we
would perform a change of measure to change to the risk-neutral probability distribution
based on p∗.

Let Cn be the value of the derivative at time n. We know that C1 is a random variable,
equal to Cu if the stock goes up, and equal to Cd if the stock goes down. The risk-neutral
probability makes C0 equal to the expected present value (at time 0) of C1 with respect to
the probability p∗. That is, formula (15) can be restated in terms of an expected value with
respect to the risk-neutral probability distribution as follows:

C0 =
1

1 + r
E∗[C1] , (17)

where E∗ denotes the expectation with respect to the Bernoulli distribution in (16) with
probability p∗. In fact, the same is true for the stock itself. Let Sn be the value of the stock
at time n. Then S0 = S and S1 is a random variable, either equal to uS if the stock goes up
or dS if the stock goes down. Then

1
1 + r

E∗[S1] =
1

1 + r
(p∗Su + (1− p∗)Sd)

=
1

1 + r

(
1 + r − d

u− d
Su +

u− (1 + r)
u− d

Sd

)

=
1

1 + r

(
(1 + r)(u− d)

u− d
S

)
= S . (18)

This is a very important conclusion: We can find the arbitrage-free price of the
derivative by first finding the risk-neutral probability for the stock. We then can
compute the expected value to get the option price at time 0. Indeed, it is common to start
by finding the risk-neutral probability for the stock. The Arbitrage Theorem supports this
step more generally. It states, for a more general setting, that there exists an arbitrage-free
price for the derivative if and only if there exists associated risk-neutral probabilities. What
is special about the BLM, however, is that there can be at most one risk-neutral probability.
To have a simple clean story, we rely heavily on having only two possible outcomes.
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3.3 Extending to More Periods

Now suppose that there are n periods instead of only one. We are given the values of the
derivative for all possible outcomes at period n. Let Sn be the price of the stock in period
n; let Cn be the arbitrage-free value of the derivative in period n. We are given the values of
the derivative for all possible outcomes at period n, but it remains to determine appropriate
(arbitrage-free) values Ck of the derivative, as a function of the state then, for k < n. We can
use the previous single-period analysis to determine the arbitrage-free prices of the derivative
at the previous period n− 1, using the logic just presented. The situation for the stock is the
same in period n− 1, except that the initial price at that time will be different. But starting
from any stock price Sn−1, it will either go up to uSn−1 or go down to dSn−1. The single-period
analysis applies again, yielding

Cn−1 =
1

1 + r
E∗[Cn] , (19)

where, as before, E∗ denotes the expectation with respect to the Bernoulli distribution in
(16) with probability p∗ in (16). Notice from (16) that these risk-neutral probabilities are
independent of the period n and the history up to the state at that period.

We can thus calculate all the arbitrage-free derivative prices at stage n− 1, using the one-
period analysis above. We then can proceed recursively in this way to stage n − 2 and so on
back to stage 1 and then stage 0. When we proceed in this way, we derive the replication
strategy for every conceivable stock price Sk at time k for all k, 0 ≤ k ≤ n− 1.

Given the derivative payoffs at time n and the risk-neutral probability p∗, we can easily
compute the expectation in (19). We can then recursively perform similar calculations until we
arrive at the arbitrage-free price of the derivative at time 0, C0, which was to be determined.
We could also write

C0 =
(

1
1 + r

)n

E∗ [Cn] , (20)

where E∗ is the expectation with respect to a binomial probability distribution with parameters
n and p∗.

For the special case in which the derivative is actually a call option having payoffs Cn =
(Sn −K)+, we have

C0 =
(

1
1 + r

)n

E∗ [Cn]

=
(

1
1 + r

)n

E∗
[
(Sn −K)+

]

=
(

1
1 + r

)n n∑

k=0

(ukdn−k −K)+P (Sn = ukdn−k)

=
(

1
1 + r

)n n∑

k=0

(ukdn−k −K)+
(

n
k

)
(p∗)k(1− p∗)n−k . (21)

However, we usually want to compute all possible option values Ck depending on all pos-
sible stock prices Sk, because that yields the replication strategy (for all time periods) as a
byproduct.

Example 3.1 Now return to Example 2.1, where we developed a BLM approximation for a
GBM with parameters µ = 0.15 and σ = 0.30 with a yearly time scale. As before, assume
that the initial stock price is S0 = 100. Figure 2.1 displays a binomial lattice model with
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weekly time periods. Now suppose that the interest rate is 8% compounded weekly. Find the
arbitrage-free price of an option to buy the stock at K = 98 dollars per share after 5 weeks.

Answer: We previously derived the parameters of the BLM. With the time specifications,
∆ = 1/52 ≈ 0.01923. From (8), we got

u = eσ
√

∆ = e0.30/
√

52 ≈ 1.04248
d = 1/u ≈ 0.95925

p =
1
2

+
µ

2σ

√
∆ =

1
2

+
0.15

2(0.30)
√

52
= 0.534669 . (22)

Given that the initial stock price is S0 = 100, we get the tree in Figure 2.1, just as before.
However, instead of the probability p just computed, we use the risk-neutral probability p∗.
To compute it, we need to determine r. We have assumed that the interest is compounded
weekly, which is consistent with our time scale. The interest rate per week is then

r = 0.08/52 = 0.001538 ,

which yields an annual interest of (1 + 0.001538)52 = 1.083, corresponding to 8.3%, which
exceeds the originally specified 8% because of the compounding. (To check that this is approx-
imately correct, note that e0.08 = 1.083.) Over individual weeks, the interest rate does not
play a big role. The risk-neutral probability then is

p∗ =
1− r − d

u− d
=

1 + 0.001538− 0.9593
1.0425− 0.9593

=
0.0422
0.0832

= 0.5072

Now we proceed to develop the values Ck of the option in period k depending on the state
of the stock. To do so, we first put the values of the option in at the final period n = 5.
The values there are (Sn − K)+ = (S5 − 98)+. We then calculate the values of the option
in preceding periods using equation (19). The option values are displayed in Figure 3.1. For
n = 5, the option values depend on the stock prices that may occur at that period; i.e., we
have just computed (Sn−K)+ = (S5− 98)+ in each case, where S5 is given in Figure 2.1. We
then calculate the arbitrage-free option prices in previous periods by computing the discounted
expected present value, as in (19). The values are displayed in Figure 3.1. We see that the
arbitrage-free option price initially is C0 = 5.28 dollars per share.

Figure 3.1 shows all the option values over time, but it does not show the replicating
strategy, but it is easy to construct the replicating strategy. It is given by equations (12) and
(13). To determine the strategy at any point in the tree, let Cu and Cd be the option values
at the next stage if the stock goes up or down, respectively. To illustrate, suppose that we are
at state Su3 after the stock price has gone up three times. From Figures 2.1 and 3.1, we see
that the stock price in this state is 113.29, while the option value is 15.57. From that node in
the tree, Cu = 20.25 and Cd = 10.82. We use these to calculate the replicating strategy in this
state. We get

α =
Cu − Cd

S(u− d)
=

20.25− 10.82
113.29(1.04248− 0.95925)

=
9.43
9.43

= 1.00 (23)

and
β =

uCd − dCu

(1 + r)(u− d)
=

1.04248(10.82)− 0.95925(20.25)
(1.001538)(0.0832)

= −97.75 . (24)

Note that 1.00 × 113.29 − 97.75 × 1 = 113.29 − 97.75 = 15.54. This is close to the directly
computed value of the option of 15.57.
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Option Values Over Time
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Figure 3: The option prices over time determined by the binomial lattice model for Example
3.1.

3.4 Testing Your Understanding

Example 3.2 In Example 2.1 we developed a BLM approximation for a GBM with parameters
µ = 0.15 and σ = 0.30 with a yearly time scale, and used it to price an option. As before,
assume that the initial stock price is S0 = 100. Figure 2.1 displays a binomial lattice model
with weekly time periods. We now make some changes. Now suppose that the interest rate
is 26% compounded weekly. Find the arbitrage-free price of an option to buy the stock at
K = 98 dollars per share after 3 weeks. Notice that the interest rate r and the expiration time
T have been changed.

(a) What are the option values over time?

(a) What is the replicating strategy to use at time 2 after the stock has gone up twice, i.e.,
in state Su2?

Answers: (a) The BLM is just as in Figures 1.2 and 2.1, but now the arbitrage-free option
values over time change. Note that r = 0.26/52 = 0.005, so that the risk-neutral probabilty
is p∗ = (1.005− d)/(u− d) = 0.5493. We can use this risk-neutral probability to compute the
option values in previous periods. They now are as shown in Figure 3.2 instead of as in Figure
3.1.

(b) Figure 3.2 shows all the option values over time, but it does not show the replicating
strategy, but it is again easy to construct the replicating strategy. It is given by equations (12)
and (13). To determine the strategy at any point in the tree, let Cu and Cd be the option
values at the next stage if the stock goes up or down, respectively. As asked, suppose that we
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Option Values Over Time
u = 1.04248

d = 0.95925

K = 98, T = 3

r = 0.26 compounded weekly

Value of Option 

at time n = 3

15.29

5.08

0

3.43

1.89

11.21

7.70

risk-neutral probability

p = (1+0.005 – 0.9593)/(1.0425 – 0.9593)

=  0.0457/0.0832 = 0.5493

6.25

0

0

Figure 4: The option prices over time determined by the binomial lattice model for Example
3.2.

are at state Su2 after the stock price has gone up two times. From Figures 2.1 and 3.1, we see
that the stock price in this state is 108.67, while the option value is 11.21. From that node in
the tree, Cu = 15.29 and Cd = 6.25. We use these to calculate the replicating strategy in this
state. We get

α =
Cu − Cd

S(u− d)
=

15.29− 6.25
108.67(1.04248− 0.95925)

=
9.04
9.04

= 1.00 (25)

and
β =

uCd − dCu

(1 + r)(u− d)
=

1.04248(6.25)− 0.95925(15.29)
(1.005)(0.0832)

= −97.49 . (26)

Note that 1.00 × 108.67 − 97.49 × 1 = 108.67 − 97.49 = 11.18. This is close to the directly
computed value of the option of 11.21. The small error seems to be due to rounding.

4 Martingales

The risk neutral probability that was key to having an arbitrage-free price of the derivative
corresponds to having the discounted stock price process be a martingale under the risk-neutral
probability distribution. The discounted stock price process is {(1 + r)−nSn : n ≥ 0}. The key
martingale property is

E∗
[
(1 + r)−(n+1)Sn+1|(1 + r)−kSk, 0 ≤ k ≤ n

]
= E∗

[
(1 + r)−(n+1)Sn+1|Sk, 0 ≤ k ≤ n

]

= E∗
[
(1 + r)−(n+1)Sn+1|Sn

]
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= (1 + r)−nSn , (27)

where E∗ denotes expectation with respect to the risk-neutral measure.
The Arbitrage Theorem says that there is no arbitrage opportunity if and only if there exists

at least one underlying probability distribution under which the stochastic process of discounted
stock prices is a martingale. In general, there may be many such underlying probability
distributions. For BLM’s, where there are only two possible outcomes at each stage, and for
GBM, which is governed by only two parameters, there turns out to be a unique underlying
probability distribution, so that we can find a unique arbitrage-free price for each derivative.
That makes BLM’s and GBM’s very useful.

5 Black-Scholes

The direct continuous-time analog of the derivative pricing via a BLM is derivative pricing for
GBM. That leads to the Black-Scholes or Black-Scholes-Merton theory.
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