
IEOR 6711: Stochastic Models I, Professor Whitt

Solutions to Homework Assignment 10

Numerical Problems 1.(a) π5 = 0.1667

1.(b) Yes, because the Markov chain is irreducicle and has a finite state space. The station-
ary probability of being in state 5 is π5 = 0.1667. The stationary probability vector is
π such that π = πP . However, there is no limiting probability (i.e., we do not have a
limit for Pn as n →∞), because the chain is periodic, with period 2.

1.(c) For large n, P 2n+1
1,5 = 0 and P 2n

1,5 ' 2π5 = 0.3334

1.(d) 1/π5 = 6

2.(a) M1 = 14.26303

2.(b) N1,5 = 2.21054

2.(c) B1,10 = 0.3684

Problem 4.18 Let aj = e−λλj/j! , j ≥ 0.

(a)

P0,j = aj , j < N, P0,N = 1−
N−1∑

j=0

aj

For i > 0, Pi,j = aj−i+1 , j = i− 1, · · · , N − 1, Pi,N = 1−
N−i∑

j=0

aj .

(b) Yes, because it is a finite, irreducible Markov chain.

(c) As one of the equations is redundant, we can write them as follows :

πj = π0aj +
j+1∑

i=1

πiaj−i+1 , j = 0, · · · , N − 1

N∑

j=0

πj = 1 .

Problem 4.19 (a) are from state i to state j.

(b) go from a state in A to one in Ac.

(c) This follows because between any two transitions that go from a state in A to one in
Ac there must be a transition from a state in Ac to one in A, and vice-versa.
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(d) It follows from (c) that the long-run proportion of transitions that are from a state in
A to one in Ac must equal the long-run proportion of transitions that go from a state
in Ac to one in A; and that is what (d) asserts.

Problem 4.31 Let the states be

0 : spider and fly at same location

1 : spider at location 1 and fly at 2

2 : spider at 2 and fly at 1

P =




1 0 0
.54 .28 .18
.54 .18 .28




(a)

Pn
11 = (0.46)n

[
1
2

+
1
2

(
28
23
− 1

)n]

which is obtained by first conditioning on the event that 0 is not entered and then
using the fact that for the [

p 1− p

1− p p

]

chain Pn
00 = 1

2 + 1
2(2p− 1)n.

More generally, we can find explicit analytical expressions for n-step transition
probabilities by applying the spectral representation of the sub-probability transi-
tion matrix

Q =

[
a b

b a

]

(The same argument applies without that special structure. See the Appendix of
Karlin and Taylor for a textbook review of this part of basic linear algebra.) We
want to find constants λ such that

xQ = λx . (1)

Those are the eigenvalues of Q. To find the eigenvalues, we solve the equation

det(Q− λI) = 0 ,

where det is the determinant. Here the equation is

(a− λ)2 − b2 = 0 ,

which yields two solutions: a + b and a − b. We then find the left eigenvectors
of Q. A row vector x is a left eigenvector of Q associated with the eigenvalue
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λ if equation (1) hold. Similarly, the transpose of x, denoted by xT , is a right
eigenvector of Q associated with eigenvalue λ if

QxT = λxT . (2)

We then can find a spectral representation for Q:

Q = RΛL , (3)

with the following properties: (i) R and L are square matrices with the same
dimension as Q, (ii) the columns of R are right eigenvectors of Q; (iii) the rows of
L are left eigenvectors of Q, (iv) RL = LR = I, and (v) Λ is a square diagonal
matrix with the eigenvalues for its diagonal elements. As a consequence, we have

Qn = RΛnL for all n ≥ 1 , (4)

enabling us to compute Qn, easily because Λn is a diagonal matrix with diagonal
elements λn, where λ is an eigenvector.

Here we get eigenvalues of Q equal to a + b and a − b. Here we get eigenvector
matrices

L =

[
1/2 1/2
1/2 −1/2

]

and

R =

[
1 1
1 −1

]

We obtain one of these by directly solving for the eigenvectors (which are not
unique). Given L or R, we can obtain the other by inverting the matrix, i.e.,
L = R−1.
Hence, equation (4) holds

Qn =

[
1 1
1 −1

]
×

[
(a + b)n 0

0 (a− b)n

]
×

[
1/2 1/2
1/2 −1/2

]

Thus, in general,

Qn
1,1 =

(a + b)n

2
+

(a− b)n

2
and, in particular,

Qn
1,1 =

(0.46)n

2
+

(0.10)n

2

(b) E[N ] = 1
.54 since N is geometric (on the positive integers, not including 0) with

p = 0.54.
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