IEOR 6711: Stochastic Models I, Professor Whitt

Solutions to Homework Assignment 10

Numerical Problems 1.(a) $\pi_{5}=0.1667$
1.(b) Yes, because the Markov chain is irreducicle and has a finite state space. The stationary probability of being in state 5 is $\pi_{5}=0.1667$. The stationary probability vector is π such that $\pi=\pi P$. However, there is no limiting probability (i.e., we do not have a limit for P^{n} as $\left.n \rightarrow \infty\right)$, because the chain is periodic, with period 2 .
1.(c) For large $n, P_{1,5}^{2 n+1}=0$ and $P_{1,5}^{2 n} \simeq 2 \pi_{5}=0.3334$
1.(d) $1 / \pi_{5}=6$
2.(a) $M_{1}=14.26303$
2.(b) $N_{1,5}=2.21054$
2.(c) $B_{1,10}=0.3684$

Problem 4.18 Let $a_{j}=e^{-\lambda} \lambda^{j} / j!, \quad j \geq 0$.
(a)

$$
\begin{gathered}
P_{0, j}=a_{j}, j<N, \quad P_{0, N}=1-\sum_{j=0}^{N-1} a_{j} \\
\text { For } i>0, P_{i, j}=a_{j-i+1}, j=i-1, \cdots, N-1, P_{i, N}=1-\sum_{j=0}^{N-i} a_{j}
\end{gathered}
$$

(b) Yes, because it is a finite, irreducible Markov chain.
(c) As one of the equations is redundant, we can write them as follows :

$$
\begin{aligned}
\pi_{j} & =\pi_{0} a_{j}+\sum_{i=1}^{j+1} \pi_{i} a_{j-i+1}, \quad j=0, \cdots, N-1 \\
\sum_{j=0}^{N} \pi_{j} & =1
\end{aligned}
$$

Problem 4.19 (a) are from state i to state j.
(b) go from a state in A to one in A^{c}.
(c) This follows because between any two transitions that go from a state in A to one in A^{c} there must be a transition from a state in A^{c} to one in A, and vice-versa.
(d) It follows from (c) that the long-run proportion of transitions that are from a state in A to one in A^{c} must equal the long-run proportion of transitions that go from a state in A^{c} to one in A; and that is what (d) asserts.

Problem 4.31 Let the states be
0 : spider and fly at same location
1 : spider at location 1 and fly at 2
2 : spider at 2 and fly at 1

$$
P=\left[\begin{array}{ccc}
1 & 0 & 0 \\
.54 & .28 & .18 \\
.54 & .18 & .28
\end{array}\right]
$$

(a)

$$
P_{11}^{n}=(0.46)^{n}\left[\frac{1}{2}+\frac{1}{2}\left(\frac{28}{23}-1\right)^{n}\right]
$$

which is obtained by first conditioning on the event that 0 is not entered and then using the fact that for the

$$
\left[\begin{array}{cc}
p & 1-p \\
1-p & p
\end{array}\right]
$$

chain $P_{00}^{n}=\frac{1}{2}+\frac{1}{2}(2 p-1)^{n}$.
More generally, we can find explicit analytical expressions for n-step transition probabilities by applying the spectral representation of the sub-probability transition matrix

$$
Q=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]
$$

(The same argument applies without that special structure. See the Appendix of Karlin and Taylor for a textbook review of this part of basic linear algebra.) We want to find constants λ such that

$$
\begin{equation*}
x Q=\lambda x \tag{1}
\end{equation*}
$$

Those are the eigenvalues of Q. To find the eigenvalues, we solve the equation

$$
\operatorname{det}(Q-\lambda I)=0
$$

where det is the determinant. Here the equation is

$$
(a-\lambda)^{2}-b^{2}=0
$$

which yields two solutions: $a+b$ and $a-b$. We then find the left eigenvectors of Q. A row vector x is a left eigenvector of Q associated with the eigenvalue
λ if equation (1) hold. Similarly, the transpose of x, denoted by x^{T}, is a right eigenvector of Q associated with eigenvalue λ if

$$
\begin{equation*}
Q x^{T}=\lambda x^{T} \tag{2}
\end{equation*}
$$

We then can find a spectral representation for Q :

$$
\begin{equation*}
Q=R \Lambda L \tag{3}
\end{equation*}
$$

with the following properties: (i) R and L are square matrices with the same dimension as Q, (ii) the columns of R are right eigenvectors of Q; (iii) the rows of L are left eigenvectors of Q, (iv) $R L=L R=I$, and (v) Λ is a square diagonal matrix with the eigenvalues for its diagonal elements. As a consequence, we have

$$
\begin{equation*}
Q^{n}=R \Lambda^{n} L \quad \text { for all } \quad n \geq 1 \tag{4}
\end{equation*}
$$

enabling us to compute Q^{n}, easily because Λ^{n} is a diagonal matrix with diagonal elements λ^{n}, where λ is an eigenvector.

Here we get eigenvalues of Q equal to $a+b$ and $a-b$. Here we get eigenvector matrices

$$
L=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]
$$

and

$$
R=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

We obtain one of these by directly solving for the eigenvectors (which are not unique). Given L or R, we can obtain the other by inverting the matrix, i.e., $L=R^{-1}$.
Hence, equation (4) holds

$$
Q^{n}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \times\left[\begin{array}{cc}
(a+b)^{n} & 0 \\
0 & (a-b)^{n}
\end{array}\right] \times\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]
$$

Thus, in general,

$$
Q_{1,1}^{n}=\frac{(a+b)^{n}}{2}+\frac{(a-b)^{n}}{2}
$$

and, in particular,

$$
Q_{1,1}^{n}=\frac{(0.46)^{n}}{2}+\frac{(0.10)^{n}}{2}
$$

(b) $\mathrm{E}[N]=\frac{1}{.54}$ since N is geometric (on the positive integers, not including 0) with $p=0.54$.

