
IEOR 6711: Stochastic Models I, Professor Whitt

Solutions to Homework Assignment 11 on DTMC’s

Problem 4.40 Consider a segment of a sample path beginning and ending in state i, with
no visit to i in between, i.e, the vector (i, j1, j2, j3, . . . , jn−1, jn = i), where jk 6= i for
the non-end states jk. Going forward in time, the probability of this segment is

πiPi,j1Pj1,j2Pj2,j3 · · ·Pjn−1,i.

The probability, say p, of the reversed sequence (i, jn−1, jn−2, jn−3, . . . , j1, j0 = i) under
the reverse DTMC with transition matrix

←−
P i,j ≡ πjPj,i

πi

is

p = πi
←−
P i,jn−1

←−
P jn−1,jn−2

←−
P jn−2,jn−3 · · ·

←−
P j1,i.

However, successively substituting in the reverse-chain transition probabilities, we get

p = πi
πjn−1Pjn−1,i

πi

←−
P jn−1,jn−2

←−
P jn−2,jn−3 · · ·

←−
P j1,i

= Pjn−1,iπjn−1

←−
P jn−1,jn−2

←−
P jn−2,jn−3 · · ·

←−
P j1,i

= Pjn−1,jn−2πjn−1

πjn−2Pjn−2,jn−1

πjn−1

←−
P jn−1,jn−2

←−
P jn−2,jn−3 · · ·

←−
P j1,i

= Pjn−1,iPjn−2,jn−1Pjn−3,jn−2 . . . Pj1,j2πj1

←−
P j1,i

= Pjn−1,iPjn−2,jn−1Pjn−3,jn−2 . . . Pj1,j2Pi,j1πi

= πiPi,j1Pj1,j2Pj2,j3 · · ·Pjn−1,i.

Problem 4.41 (a) The reverse time chain has transition matrix

←−
P i,j ≡ πjPj,i

πi

To find it, we need to first find the stationary vector π. By symmetry (or by noting
that the chain is doubly stochastic), πj = 1/n, j = 1, · · · , n. Hence,

P ∗
ij = πjPji/πi = Pji =

{
p if j = i− 1
1− p if j = i + 1

(b) In general, the DTMC is not time reversible. It is in the special case p = 1/2. Otherwise,
the probabilities of clockwise and counterclockwise motion are reversed.
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Problem 4.42 Imagine that there are edges between each of the pair of nodes i and i + 1,
i = 0, · · · , n− 1, and let the weight on edge (i, i + 1) be wi, where

w0 = 1

wi =
i∏

j=1

pj

qj
, i ≥ 1

where qj = 1− pj . As a check, note that with these weights

Pi,i+1 =
wi

wi−1 + wi
=

pi/qi

1 + pi/qi
= pi , 0 < i < n .

Since the sum of the weights on edges out of node i is wi−1 +wi , i = 1, · · · , n−1, it follows
that

π0 = c

πi = c




i−1∏

j=1

pj

qj
+

i∏

j=1

pj

qj


 =

c

qi

i−1∏

j=1

pj

qj
, 0 < i < n

πn = c
n−1∏

j=1

pj

qj

where c is chosen to make
∑n

j=0 πj = 1.

Problem 4.46 (a) Yes, it is a Markov chain. It suffices to construct the transition matrix and
verify that the process has the Markov property. Let P ∗ be the new transition matrix. Then
we have, for 0 ≤ i ≤ N and 0 ≤ j ≤ N ,

P ∗
i,j = Pi,j +

∞∑

k=N+1

Pi,kB
(N)
k,j ,

where B
(N)
k,j is the probability of absorption into the absorbing state j in the absorbing

Markov chain, where the states N + 1, N + 2, . . . are the transient states, while the state
1, 2, . . . N are the N absorbing states. In other words, B

(N)
k,j is the probability that the next

state with index in the set {1, 2, . . . , N} visited by the Markov chain, starting with k > N

is in fact j. It is easy to see that the markov property is still present.

(b) The proportion of time in j is πj/
∑N

i=1 πi.

(c) Let πi(N) be the steady-state probabilities for the chain, only counting to visits among
the states in the subset {1, 2, . . . , N}. (This chain is necessarily positive recurrent.) By
renewal theory,

πi(N) = (E[Number ofY − transitions betweenY − visits to i)−1
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and

πj(N) =
E[No. Y -transitions to j between Y visits to i]
E[No. Y -transitions to i between Y visits to i]

=
E[No. X-transitions to j between X visits to i]

1/πi(N)

(d) For the symmetric random walk, the new MC is doubly stochastic, so πi(N) = 1/(N +1)

for all i. By part (c), we have the conclusion.

(e) It suffices to show that

πi(N)P ∗
i,j = πj(N)P ∗

j,i

for all i and j with i ≤ N and j ≤ N . However, by above,

πi(N)P ∗
i,j = πi(N)Pi,j + πi(N)

∞∑

k=N+1

Pi,kB
(N)
k,j ,

and

πj(N)P ∗
j,i = πj(N)Pj,i + πj(N)

∞∑

k=N+1

Pj,kB
(N)
k,i ,

The two terms on the right are equal in these two displays. First, by the original reversibility,
we have

πi(N)Pi,j = πj(N)Pj,i.

Second, by Theorem 4.7.2, we have

πj(N)
∞∑

k=N+1

Pj,kB
(N)
k,i = πi(N)

∞∑

k=N+1

Pi,kB
(N)
k,j .

We see that by expanding into the individual paths, and seeing that there is a reverse path.

Problem 4.47 Intuitively, in steady state each ball is equally likely to be in any of the urns and
the positions of the balls are independent. Hence it seems intuitive that

π(n) =
M !

n1! · · ·nm!

(
1
m

)M

.

To check the above and simultaneously establish time reversibility let

n′ = (n1, · · · , ni−1, ni − 1, ni+1, · · · , nj−1, nj + 1, nj+1, · · · , nm)
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and note that

π(n)P (n, n′) =
M !

n1! · · ·nm!

(
1
m

)M ni

M

1
m− 1

=
M !

n1! · · · (ni − 1)! · · · (nj + 1)! · · ·nm!

(
1
m

)M nj + 1
M

1
m− 1

= π(n′)P (n′, n) .

Problem 4.48 (a) Each transition into i begins a new cycle. A reward of 1 is earned if state
visited from i is j. Hence average reward per unit time is Pij/µii.

(b) Follows from (a) since 1/µjj is the rate at which transitions into j occur.

(c) Suppose a reward rate of 1 per unit time when in i and heading for j. New cycle
whenever enter i. Hence, average reward per unit time is Pijηij/µii.

(d) Consider (c) but now only give a reward at rate 1 per unit time when the transition
time from i to j is within x time units. Average reward is

E[Reward per cycle]
E[Time of cycle]

=
PijE[min(Xij , x)]

µii

=
Pij

∫ x
0 F̄ij(y)dy

µii

=
PijηijF

e
ij(x)

µii

where Xij ∼ Fij .

Problem 4.49

lim
t→∞P(S(t) = j|X(t) = i) =

limt→∞ P(S(t) = j, X(t) = i)
P(X(t) = i)

=
Pij

∫∞
0 F̄ij(y)dy/µii

Pi
by Theorem 4.8.4

=
Pijηij

µi

Problem 4.50 π = (6, 3, 5)/14, µ1 = 25, µ2 = 80/3, and µ3 = 30.

(a)

P1 =
6× 25

6× 25 + 3× 80
3 + 5× 30

=
15
38

P2 =
3× 80

3

6× 25 + 3× 80
3 + 5× 30

=
8
38

P3 =
5× 30

6× 25 + 3× 80
3 + 5× 30

=
15
38
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(b)

P(heading for 2) = P1
P12t12

µ1
=

15
38
× 10

25
=

3
19

(c)

fraction of time from 2 to 3 = P2
P23t23

µ2
=

8
38
× 60

80
=

3
19
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