IEOR 6711: Stochastic Models I, Professor Whitt

Solutions to Homework Assignment 12

Problem 5.3 (a) Let N(t) denote the number of transitions be t. It is easy to show in this case that

$$\mathsf{P}(N(t) \ge n) \le \sum_{j=n}^{\infty} e^{-Mt} \frac{(Mt)^j}{j!}$$

and thus $\mathsf{P}(N(t) < \infty) = 1$.

(b) Let X_{n+1} denote the time between the *n*-th and (n+1)-st transition and let J_n denote the *n*-th state visited. Also if we let

$$N(t) \triangleq \sup\{n : X_1 + \dots + X_n \le t\}$$

then N(t) denotes the number of transitions by t. Now let j be the first recurrent state that is reached and suppose it was reached at the n_0 -th transition (n_0 must be finite by assumption). Let n_1, n_2, \cdots be the successive integers n at which $J_n = j$. (Such integers exist since j is recurrent.) Set $T_0 = X_1 + \cdots + X_{n_0}$, and

$$T_k \triangleq X_{n_{k-1}+1} + \dots + X_{n_k} \; .$$

In other words, T_k denote the amount of time between the k-th and (k+1)-th visit to j. Therefore it follows that $\{T_k, k \ge 1\}$ forms a renewal process, and so $\sum_{k=1}^{\infty} T_k = \infty$ with probability 1. Since

$$\sum_{n=1}^{\infty} X_n = \sum_{k=0}^{\infty} T_k$$

it follows that $\sum_{n=1}^{\infty} X_n = \infty$.

Problem 5.4 Let T_i denote the time to go from i to i + 1, $i \ge 0$. Then $\sum_{i=0}^{N-1} T_i$ is the time to go from 0 to N. Now T_i is exponential with rate λ_i and the T_i are independent. Hence

$$\mathsf{E}\left[e^{s\sum_{i=0}^{N-1}T_i}\right] = \prod_{i=0}^{N-1} \frac{\lambda_i}{\lambda_i - s} \ .$$

We may use it to compute the mean and variance or we can do directly and mean = $1/\lambda_0 + \cdots + 1/\lambda_{N-1}$, variance = $1/\lambda_0^2 + \cdots + 1/\lambda_{N-1}^2$.

Problem 5.9

$$\begin{aligned} P_{ij}(t+s) &= \sum_{k} \mathsf{P}(X(t+s) = j \mid X_0 = i, X(t) = k) \mathsf{P}(X(t) = k \mid X_0 = i) \\ &= \sum_{k} P_{kj}(s) P_{ik}(t) \;. \end{aligned}$$

Problem 5.10 (a)

$$\lim_{t \to 0} \frac{1 - P(t)}{t} = v_0 \; .$$

(b) The first inequality follows from exercise 5.9 and

$$\begin{aligned} P(t+s) &= \mathsf{P}(X(t+s) = 0 | X(0) = 0, X(s) = 0) P(s) \\ &+ \mathsf{P}(X(t+s) = 0 | X(0) = 0, X(s) \neq 0) (1 - P(s)) \\ &\leq P(t) P(s) + 1 - P(s) \;. \end{aligned}$$

(c) From (b)

$$P(s)P(t-s) \le P(t) \le P(s)P(t-s) + 1 - P(t-s)$$

or

$$P(s) + P(t - s) - 1 \le P(t) \le P(s) + 1 - P(t - s)$$

where the left hand inequality follows from

$$P(s)(1 - P(t - s)) \le 1 - P(t - s)$$

 $\lim_{s \to t} P(s-t) = 1$ implies the continuity of P.

Problem 5.13

$$\prod_{j=i}^{i+k-1} \frac{\lambda_j}{\lambda_j + \mu_j} \; .$$

Problem 5.15 (a) Birth and death process.

(b)
$$\lambda_n = n\lambda + \theta, \ \mu_n = n\mu.$$

(c) Set $M(t) = \mathsf{E}[X(t)|X(0) = i]$. Then

$$\mathsf{E}[X(t+h)|X(t)] = X(t) + (\lambda X(t) + \theta)h - \mu X(t)h + o(h)$$

and so $M(t+h) = M(t) + (\lambda - \mu)M(t)h + \theta h + o(h)$. Therefore, $M'(t) = (\lambda - \mu)M(t) + \theta$ or $e^{-(\lambda - \mu)t}[M'(t) - (\lambda - \mu)M(t)] = \theta e^{-(\lambda - \mu)t}$. Integrating both sides gives

$$e^{-(\lambda-\mu)t}M(t) = -\frac{\theta}{\lambda-\mu}e^{-(\lambda-\mu)t} + C$$

or

$$M(t) = Ce^{-(\lambda-\mu)t} - \frac{\theta}{\lambda-\mu}$$
.

As M(0) = i we obtain

$$M(t) = \frac{\theta}{\lambda - \mu} \left(e^{-(\lambda - \mu)t} - 1 \right) + i e^{-(\lambda - \mu)t} .$$

Problem 5.21 With the number of customers in the shop as the state, we get a birth and death process with $\lambda_0 = \lambda_1 = 3$, $\mu_1 = \mu_2 = 4$. Therefore $P_1 = \frac{3}{4}P_0$, $P_2 = \frac{3}{4}P_1 = \left(\frac{3}{4}\right)^2 P_0$. And since $P_0 + P_1 + P_2 = 1$, we get $P_0 = 16/37$.

(a)

$$P_1 + 2P_2 = \left[\frac{3}{4} + 2\left(\frac{3}{4}\right)^2\right]P_0 = \frac{30}{37}$$

(b) The proportion of customers that enter the shop is

$$\frac{\lambda(1-P_2)}{\lambda} = 1 - P_2 = 1 - \frac{9}{37} = \frac{28}{37}$$

(c) $\mu = 8$, and so $P_0 = \frac{64}{97}$. So the proportion of customers who now enter the shop is

$$1 - P_2 = 1 - \left(\frac{3}{8}\right)^2 \frac{64}{97} = \frac{88}{97}$$
.

The rate of added customers is therefore

$$\lambda \frac{88}{97} - \lambda \frac{28}{37} \simeq 0.45$$
.

The business he does would improve by 0.45 customers per hour.