IEOR 6711: Stochastic Models I, Professor Whitt

Solutions to Homework Assignment 12

Problem 5.3 (a) Let $N(t)$ denote the number of transitions be t. It is easy to show in this case that

$$
\mathrm{P}(N(t) \geq n) \leq \sum_{j=n}^{\infty} e^{-M t} \frac{(M t)^{j}}{j!}
$$

and thus $\mathrm{P}(N(t)<\infty)=1$.
(b) Let X_{n+1} denote the time between the n-th and $(n+1)$-st transition and let J_{n} denote the n-th state visited. Also if we let

$$
N(t) \triangleq \sup \left\{n: X_{1}+\cdots+X_{n} \leq t\right\}
$$

then $N(t)$ denotes the number of transitions by t. Now let j be the first recurrent state that is reached and suppose it was reached at the n_{0}-th transition (n_{0} must be finite by assumption). Let n_{1}, n_{2}, \cdots be the successive integers n at which $J_{n}=j$. (Such integers exist since j is recurrent.) Set $T_{0}=X_{1}+\cdots+X_{n_{0}}$, and

$$
T_{k} \triangleq X_{n_{k-1}+1}+\cdots+X_{n_{k}}
$$

In other words, T_{k} denote the amount of time between the k-th and $(k+1)$-th visit to j. Therefore it follows that $\left\{T_{k}, k \geq 1\right\}$ forms a renewal process, and so $\sum_{k=1}^{\infty} T_{k}=\infty$ with probability 1 . Since

$$
\sum_{n=1}^{\infty} X_{n}=\sum_{k=0}^{\infty} T_{k}
$$

it follows that $\sum_{n=1}^{\infty} X_{n}=\infty$.

Problem 5.4 Let T_{i} denote the time to go from i to $i+1, i \geq 0$. Then $\sum_{i=0}^{N-1} T_{i}$ is the time to go from 0 to N. Now T_{i} is exponential with rate λ_{i} and the T_{i} are independent. Hence

$$
\mathrm{E}\left[e^{s \sum_{i=0}^{N-1} T_{i}}\right]=\prod_{i=0}^{N-1} \frac{\lambda_{i}}{\lambda_{i}-s}
$$

We may use it to compute the mean and variance or we can do directly and mean $=$ $1 / \lambda_{0}+\cdots+1 / \lambda_{N-1}$, variance $=1 / \lambda_{0}^{2}+\cdots+1 / \lambda_{N-1}^{2}$.

Problem 5.9

$$
\begin{aligned}
P_{i j}(t+s) & =\sum_{k} \mathrm{P}\left(X(t+s)=j \mid X_{0}=i, X(t)=k\right) \mathrm{P}\left(X(t)=k \mid X_{0}=i\right) \\
& =\sum_{k} P_{k j}(s) P_{i k}(t)
\end{aligned}
$$

Problem 5.10 (a)

$$
\lim _{t \rightarrow 0} \frac{1-P(t)}{t}=v_{0}
$$

(b) The first inequality follows from exercise 5.9 and

$$
\begin{aligned}
P(t+s)= & \mathrm{P}(X(t+s)=0 \mid X(0)=0, X(s)=0) P(s) \\
& +\mathrm{P}(X(t+s)=0 \mid X(0)=0, X(s) \neq 0)(1-P(s)) \\
\leq & P(t) P(s)+1-P(s) .
\end{aligned}
$$

(c) From (b)

$$
P(s) P(t-s) \leq P(t) \leq P(s) P(t-s)+1-P(t-s)
$$

or

$$
P(s)+P(t-s)-1 \leq P(t) \leq P(s)+1-P(t-s)
$$

where the left hand inequality follows from

$$
P(s)(1-P(t-s)) \leq 1-P(t-s) .
$$

$\lim _{s \rightarrow t} P(s-t)=1$ implies the continuity of P.

Problem 5.13

$$
\prod_{j=i}^{i+k-1} \frac{\lambda_{j}}{\lambda_{j}+\mu_{j}}
$$

Problem 5.15 (a) Birth and death process.
(b) $\lambda_{n}=n \lambda+\theta, \mu_{n}=n \mu$.
(c) Set $M(t)=\mathrm{E}[X(t) \mid X(0)=i]$. Then

$$
\mathrm{E}[X(t+h) \mid X(t)]=X(t)+(\lambda X(t)+\theta) h-\mu X(t) h+o(h)
$$

and so $M(t+h)=M(t)+(\lambda-\mu) M(t) h+\theta h+o(h)$. Therefore, $M^{\prime}(t)=(\lambda-\mu) M(t)+\theta$ or $e^{-(\lambda-\mu) t}\left[M^{\prime}(t)-(\lambda-\mu) M(t)\right]=\theta e^{-(\lambda-\mu) t}$. Integrating both sides gives

$$
e^{-(\lambda-\mu) t} M(t)=-\frac{\theta}{\lambda-\mu} e^{-(\lambda-\mu) t}+C
$$

or

$$
M(t)=C e^{-(\lambda-\mu) t}-\frac{\theta}{\lambda-\mu} .
$$

As $M(0)=i$ we obtain

$$
M(t)=\frac{\theta}{\lambda-\mu}\left(e^{-(\lambda-\mu) t}-1\right)+i e^{-(\lambda-\mu) t} .
$$

Problem 5.21 With the number of customers in the shop as the state, we get a birth and death process with $\lambda_{0}=\lambda_{1}=3, \mu_{1}=\mu_{2}=4$. Therefore $P_{1}=\frac{3}{4} P_{0}, P_{2}=\frac{3}{4} P_{1}=\left(\frac{3}{4}\right)^{2} P_{0}$. And since $P_{0}+P_{1}+P_{2}=1$, we get $P_{0}=16 / 37$.
(a)

$$
P_{1}+2 P_{2}=\left[\frac{3}{4}+2\left(\frac{3}{4}\right)^{2}\right] P_{0}=\frac{30}{37}
$$

(b) The proportion of customers that enter the shop is

$$
\frac{\lambda\left(1-P_{2}\right)}{\lambda}=1-P_{2}=1-\frac{9}{37}=\frac{28}{37} .
$$

(c) $\mu=8$, and so $P_{0}=\frac{64}{97}$. So the proportion of customers who now enter the shop is

$$
1-P_{2}=1-\left(\frac{3}{8}\right)^{2} \frac{64}{97}=\frac{88}{97} .
$$

The rate of added customers is therefore

$$
\lambda \frac{88}{97}-\lambda \frac{28}{37} \simeq 0.45 .
$$

The business he does would improve by 0.45 customers per hour.

