
IEOR 6711: Stochastic Models I

Professor Whitt

Solutions to Homework Assignment 3

Problem 2.1 The conditions (i) and (ii) of definition 2.1.2 are apparent from the definition 2.1.1.
Hence it is sufficient to show that definition 2.1.1 implies the last two conditions of definition
2.1.2.

• P(N(h) = 1) = λh + o(h) :

lim
h→0

P(N(h) = 1)− λh

h
= lim

h→0

e−λhλh− λh

h
= lim

h→0

(
e−λh − 1

)
λ = 0 .

• P(N(h) ≥ 2) = o(h) :

lim
h→0

P(N(h) ≥ 2)
h

= lim
h→0

1− e−λh − e−λhλh

h
= lim

h→0

1− e−λh

h
− lim

h→0
eλhλ

=
1− (1− λh + o(h))

h
− (1− o(h))λ = λ +

o(h)
h

− λ + o(h) → 0.

Or using eax = 1 + ax + o(x), o(x) × o(x) = o(x), and f(x) × o(x) = o(x) for any f(x)
satisfying limx→0 f(x) is finite,

• P(N(h) = 1) = e−λhλh = (1− λh + o(h))λh = λh + o(h) .

• P(N(h) ≥ 2) = 1−e−λh−e−λhλh = 1− (1+λh)(1−λh+o(h)) = λ2h2 +o(h) = o(h) .

Problem 2.2 For s < t,

P(N(s) = k|N(t) = n) =
P(N(s) = k,N(t) = n)

P(N(t) = n)
=

P(N(s) = k, N(t)−N(s) = n− k)
P(N(t) = n)

=
P(N(s) = k)P(N(t)−N(s) = n− k)

P(N(t) = n)

=
P(N(s) = k)P(N(t− s) = n− k)

P(N(t) = n)

=

(
e−λs(λs)k

k!

) (
e−λ(t−s)

(λ(t− s))(n−k)

(n− k)!

) (
e−λt(λt)n

n!

)−1

=
n!

k!(n− k)!
sk(t− s)n−k

tn

=

(
n

k

) (
s

t

)k (
1− s

t

)n−k

.
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Problem 2.4 Let {X(t) : t ≥ 0} be a stochastic process having stationary independent incre-
ments and X(0) = 0. (People call it Levy process.) Two typical Levy processes are Poisson
and Brownian motion processes. They are representatives of purely discrete and purely
continuous continuous time stochastic processes, respectively. Furthermore, it is not easy
to find any non-trivial Levy process except them. Now let’s try to express E[X(t)X(t + s)]
by moments of X using only the properties of Levy process.

E[X(t)X(t + s)] = E[X(t)(X(t + s)−X(t) + X(t))]

= E[X(t)(X(t + s)−X(t)) + X(t)2]

= E[X(t)(X(t + s)−X(t))] + E[X(t)2]

= E[X(t)]E[(X(t + s)−X(t))] + E[X(t)2] by independent increment

= E[X(t)]E[(X(s))] + E[X(t)2] by stationary increment

Now return to our original process, Poisson process. By substituting E[N(t)] = λt, E[N(t)2] =
λt + (λt)2,

E[N(t)N(t + s)] = λ2st + λt + λ2t2 .

A digression : if X(t) ∼ Normal(0, t), what is the result? This is the Brownian motion case.

Problem 2.5 • {N1(t) + N2(t), t ≥ 0} is a Poisson process with rate λ1 + λ2.
Axioms (i) and (ii) of definition e.1.2 easily follow. Letting N(t) = N1(t) + N2(t),

P(N(h) = 1) = P(N1(h) = 1, N2(h) = 0) + P(N1(h) = 0, N2(h) = 1)

= λ1h(1− λ2h) + λ2h(1− λ1h) + o(h)

= (λ1 + λ2)h + o(h)

and

P(N(h) = 2) = P(N1(h) = 1, N2(h) = 1)

= (λ1h + o(h))(λ2h + o(h))

= λ1λ2h
2 + o(h) = o(h) .

• The probability that the first event of the combined process comes from {N1(t), t ≥ 0}
is λ1/(λ1 +λ2), independently of the time of the event. Let Xi and Yi are the i-th inter
arrival times of N1 and N2, respectively. Then

P(first from N1|first at t) = P(X1 < Y1|min{X1, Y1} = t)

=
λ1

λ1 + λ2

where the last equality comes from our old homework 1.1.34.
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Problems 2.6–2.9 Answers in back of the book.

Problem 2.10 (a) First note that the time until next bus arrival follows exponential distribution
with rate λ by the memoryless property of exponential distribution. Let X be the time
until next bus arrival. Then T , the random variable representing the time spent to
reach home is

T =

{
X + R if X ≤ s ,

s + W if X > s

= (X + R)1{X≤s} + (s + W )1{X>s} .

Hence

E[T ] = E[(X + R)1{X≤s}] + E[(s + W )1{X>s}]

= E[X1{X≤s}] + RE[1{X≤s}] + (s + W )E[1{X>s}]

=
∫ s

0
xλe−λxdx + RP(X ≤ s) + (s + W )P(X > s)

=
∫ s

0
xλe−λxdx + R(1− e−λs) + (s + W )e−λs

= −xe−λx
∣∣∣
s

0
− 1

λ
e−λx

∣∣∣∣
s

0
+ R + (s + W −R)e−λs

=
1
λ

(1− e−λs)− se−λs + R + (s + W −R)e−λs

=
1
λ

+ R +
(

W −R− 1
λ

)
e−λs.

(b) Considering

d

ds
E[T ] = (1− λ(W −R))e−λs





> 0 if W < 1
λ + R ,

= 0 if W = 1
λ + R ,

< 0 if W > 1
λ + R ,

we get

argmin0≤s<∞E[T ] =





0 if W < 1
λ + R ,

any number ∈ [0,∞) if W = 1
λ + R ,

∞ if W > 1
λ + R ,

(c) Since the time until the bus arrives is exponential, it follows by the memoryless property
that if it is optimal to wait any time then one should always continue to wait for the
bus.

Problem 2.11 Conditioning on the time of the next car yields

E[wait] =
∫ ∞

0
E[wait|car at x]λe−λxdx .
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Now,

E[wait|car at x] =

{
x + E[wait] if x < T ,

0 if x ≥ T

and so

E[wait] =
∫ T

0
xλe−λxdx + E[wait](1− e−λT )

or

E[wait] =
1
λ

e−λT − T − 1
λ

.

Problem 2.13 First note that T is (unconditionally) exponential with rate λp, N is geometric
with parameter p, and the distribution of T given that N = n is gamma with parameter n

and λ, we obtain

P(N = n|t− ε < T ≤ t) =
P(t− ε < T ≤ t|N = n)

P(t− ε < T ≤ t)

' ελe−λt(λt)n−1

(n− 1)!
p(1− p)n−1

ε λp e−λpt

=
e−λt(1−p)[λt(1− p)]n−1

(n− 1)!
.

Hence, given that T = t, N has the distribution of X + 1, where X is a Poisson random
variable with mean λt(1− p). A simpler argument is to note that the occurrences of failure
causing shocks and non-failure causing shocks are independent Poisson processes. Hence, the
number of non-failure causing shocks by time t is Poisson with mean λ(1−p)t, independent
of the event that the first failure shock occurred at that time.
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