
IEOR 6711: Stochastic Models I, Professor Whitt

Solutions to Homework Assignment 4.

Problem 2.14 Let us use Dj instead of Oj for the number of people getting off at floor j. Let
Di,j denote the number of people that get on at floor i and get off at floor j. First, Di,j is
an independent thinning of Ni with

Ni =
n∑

j=i+1

Di,j

so Di,j for different j are independent Poisson random variables. But then Ni are inde-
pendent for different i. Consequently Di,j , as i and j both vary, are independent Poisson
random variables, with mean λipi,j .

(a)-(c) Clearly,

Dj =
j−1∑

i=0

Di,j

so that Dj is the sum of independent Poisson random variables, so itself must have a Poisson
distribution with mean

E[Dj ] =
j−1∑

i=0

E[Di,j ] =
j−1∑

i=0

λipi,j .

Moreover, Since Dj1 and Dj2 for j1 6= j2 have no variables in common in the sums, these
two Poisson random variables are independent Poisson random variables.

Problem 2.16 For fixed j, let

Ii =

{
1 if outcome i occurs j times,
0 otherwise ,

and note that Ii, i = 1, · · · , n are independent since the number of type i outcomes, i =
1, · · · , n, will be independent. (If we think that there is a Poisson process with rate λ and
we count on [0, 1], then the n-types of events are independent by proposition 2.3.2 and hence
so are Ii’s.) Writing

Xj =
n∑

i=1

Ij

we have

E[Xj ] =
n∑

i=1

P(Ii = 1)

and

Var[Xj ] =
n∑

i=1

P(Ii = 1)(1−P(Ii = 1)) .
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As the number of times outcome i results is Poisson with mean λPi we have that

P(Ii = 1) =
e−λPi(λPi)j

j!

and so

E[Xj ] =
n∑

i=1

e−λPi(λPi)j

j!
,

Var[Xj ] = E[Xj ]−
n∑

i=1

e−2λPi(λPi)2j

(j!)2
.

Problem 2.17 (a) {X(i) = x} implies i− 1 Xj ’s are less than x and n− i Xj ’s are greater than
x and one is equal to x. Hence

fX(i)
(x) =

P(X(i) ∈ (x, x + dx))
dx

=
n!

(i− 1)!1!(n− i)!
(F (x))i−1f(x)dx(F̄ (x + dx))n−i

dx

=
n!

(i− 1)!(n− i)!
(F (x))i−1f(x)(F̄ (x))n−i .

(b) At least i.

(c)

P(X(i) ≤ x) = P(i or more X ′
js are less than or equal to x)

=
n∑

k=i

(
n

k

)
(F (x))k(F̄ (x))n−k .

(d)

P(X(i) ≤ x) =
n∑

k=i

(
n

k

)
(F (x))k(F̄ (x))n−k

=
∫ x

0
fX(i)

(t)dt =
∫ x

0

n!
(i− 1)!(n− i)!

(F (t))i−1f(t)(F̄ (t))n−idt

=
∫ x

0

n!
(i− 1)!(n− i)!

(F (t))i−1(F̄ (t))n−idF (t)

and substituting F (x) by y gives

n∑

k=i

(
n

k

)
yk(1− y)n−k =

∫ y

0

n!
(i− 1)!(n− i)!

xi−1(1− x)n−idx .
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(e) First note that S(i)|{N(t) = n} ∼ Uniform(0, t) if i ≤ n. Hence from (a),

E[X(i)] =
∫ t

0
xfX(i)

(x)dx

=
∫ t

0
x

n!
(i− 1)!(n− i)!

(
x

t

)i−1 (
1− x

t

)n−i dx

t

=
i

n + 1
t

∫ t

0

(n + 1)!
i!(n− i)!

(
x

t

)i (
1− x

t

)n−i dx

t

=
i

n + 1
t

if i ≤ n. For i > n, using memoryless property

E[Si|N(t) = n] = t + E[Si − t|N(t) = n] = t + E[Xn+1 + · · ·+ Xi]

= t +
i− n

λ
.

Hence

E[Si|N(t) = n] =

{
i

n+1 t if i ≤ n,

t + i−n
λ if i > n .

Problem 2.18 As the joint density of U(1), U(2), · · · , U(n) is f(u1, · · · , un) = 1/n!, 0 < u1 < · · · <
un < 1, the conditional density is

f(u1, · · · , un−1, y|U(n) = y) =
f(u1, · · · , un−1, y|U(n) = y)

fU(n)(y)

=
n!

nyn−1

=
(n− 1)!

yn−1
, 0 < u1 < · · · < un−1 < y

which proves the result.

Problem 2.19 Observe that this is essentially an M/G/∞ queue problem, so we can apply the
“Physics” paper. We could also easily generalize the results to a nonhomogeneous Poisson
arrival process.

It is not clear if the service times apply to each bus or to each customer. We assume
the service times apply to the buses, rather than the customers, but the overall mean is
unaffected by that result. Presumably the service times are meant to be IID. We need to
assume that too.

(a) We first want to apply the splitting or thinning property. We can split the original
Poisson process according to the number of customers on the bus. A bus is of type j if
the bus contains j customers. Thus, by the splitting property, the overall arrival process is
the superposition of infinitely many independent Poisson processes. Poisson process j has
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arrival rate λαj . Thus the whole system behaves as infinitely many independent M/G/∞
queues. Arrival process j has arrival rate λαj .

By the basic M/G/∞ theory, the number of buses of type j to depart from the system has
a Poisson distribution with mean mj(t) = λαj

∫ t
0 G(s) ds, t ≥ 0. Thus the total number

of buses to depart in [0, t] also has a Poisson distribution with a mean equal to the sum of
the means, i.e., m(t) =

∑∞
j=1 mj(t).

However, we are asked about the number of customers. The number of customers on a bus
of type j (which contains exactly j customers) is j times the Poisson random variable with
mean mj(t). Thus the overall mean is

E[X(t)] =
∞∑

j=1

jmj(t) = λ

∫ t

0
G(s) ds

∞∑

j=1

jαj . (1)

(b) If the service times apply to buses, then batches of customers depart together, so that the
departure process of customers cannot be Poisson. Even if the service times are associated
with customers, the departure process is not Poisson. That is easy to show if the service
time distribution G is in fact deterministic. Then the customers that arrive together on the
same bus will also depart together. Otherwise the non-Poisson character of the departure
process is harder to show. But since the arrival process is a batch Poisson process, we should
not expect the departure process to be a Poisson process.

We now give an alternative direct derivation of part (a): Let Ni be the number of customers
in i−th busload. Then E[Ni] =

∑∞
k=1 kαk since P(Ni = k) = αk. Let the indicator, Ii,j for

1 ≤ j ≤ Ni, denote whether the j − th customer in i−th busload finishes his/her service at
time t. Then X(t) =

∑N(t)
i=0

∑Ni
j=1 Ii,j .

(a) First note that E[E[X|Y, Z]|Z] = E[X|Z] and E[E[X|Z]|Y, Z] = E[X|Z] which mean
smaller information wins always in double conditioning! (You might prove it right
now, or may consult the equation (6.1.2) in page 296.) Also, we have

E[Ii,j |N(t) = n] =
∫ t

0
G(t− s)

1
t
ds =

1
t

∫ t

0
G(s)ds ≡ p .

E[X(t)] = E




N(t)∑

i=0

Ni∑

j=1

Ii,j




= E


E




N(t)∑

i=0

Ni∑

j=1

Ii,j

∣∣∣∣∣∣
N(t)







= E




N(t)∑

i=0

E




Ni∑

j=1

Ii,j

∣∣∣∣∣∣
N(t)






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= E




N(t)∑

i=0

E


E




Ni∑

j=1

Ii,j

∣∣∣∣∣∣
N(t), Ni




∣∣∣∣∣∣
N(t)





 (smaller information wins)

= E




N(t)∑

i=0

E




Ni∑

j=1

E [Ii,j |N(t), Ni]

∣∣∣∣∣∣
N(t)







= E




N(t)∑

i=0

E [NiE [Ii,j |N(t)]|N(t)]


 (Ii,j are independent of Ni)

= E




N(t)∑

i=0

pE [Ni|N(t)]




= E




N(t)∑

i=0

pE [Ni]


 (N(t) is independent of Ni)

= pE [Ni]E [N(t)]

= λtpE [Ni]

= λ
∞∑

j=1

jαj

∫ t

0
G(s)ds .

Problem 2.20 The key thing here is to apply the conditional distribution of arrival times given
a Poisson number of events in an interval. Under the conditioning, the unordered arrival
times are distributed as IID uniform random variables. We apply this representation in the
first step.

Assume that n =
∑k

i=1 ni. Note that given N(t) = n the unordered set of arrival times are
independent uniform (0, t). The probability that an arbitrary event is type i is thus

pi ≡ 1
t

∫ t

0
Pi(x)dx .

P(Ni(t) = ni, i = 1, · · · , k) = P(Ni(t) = ni, i = 1, · · · , k|N(t) = n)
e−λt(λt)n

n!

=
n!

n1! · · ·nk!
pn1
1 · · · pnk

k

e−λt(λt)n

n!
(multinomial)

=
e−λp1t(λp1t)n1

n1!
· · · e

−λpkt(λpkt)nk

nk!
.

Hence we’re done.(Why?)

Problem 2.21 The key idea here is to apply Problem 2.20. In this problem, the state of an
individual varies, which might cause trouble to put into the setting of Problem 2.20. But,
if we fix the observation time t, then the probability that an individual who arrived at time
s is in state i at time t is just αi(t− s) and if we define Pi(s) ≡ αi(t− s), then we can apply
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Problem 2.20. Furthermore,

E[Ni(t)] = λ

∫ t

0
Pi(x)dx

= λ

∫ t

0
αi(t− x)dx

= λ

∫ t

0
αi(y)dy

= λ

∫ t

0
E[Ii(y)]dy

= λE
[∫ t

0
Ii(y)dy

]

which leads to the desired interpretation of the mean.

Now, are we done? Unless you are an advanced reader, not yet. The problem doesn’t
mention on the number of states i. Hence it is possible that there are countably many
states and the random variables, Ni(t), are countably many. Then what is the definition of
independence among countably many random variables. One general fact in mathematics
and probability is that when we define a property among countably many objects, we require
that the property holds among any finitely many ones. (Recall the definition of basis in
infinite dimensional vector space.) So, to prove the independence of Ni(t) it is sufficient to
show it under finite states.
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