
IEOR 6711: Stochastic Models I, Professor Whitt

Solutions to Homework Assignment 5, not to be turned in.

Problem 2.25 Just as in Problem 2.20, the key thing here is to apply the conditional distribution
of arrival times given a Poisson number of events in an interval. Under the conditioning,
the unordered arrival times are distributed as IID uniform random variables. We apply this
representation.

Let X be a contribution by an event occurred at random time distributed by uniform(0, t).
If we denote the occurrence time of the event by U (which is uniform (0, t)), then

P(X ≤ x) = E[P(X ≤ x|U)]

= E[FU (x)]

=
∫ t

0
Fu(x)

1
t
du

=
1
t

∫ t

0
Fu(x)du .

Hence, if we define that XT is a contribution of an event occurred at random time T and
U1, · · · , Uk, · · · are random samples from uniform(0, t), then X

d=XUi and

W ≡
N(t)∑

i=1

XUi

=
N∑

i=1

XUi

=
N∑

i=1

Xi

where N is a Poisson random variable with mean λt and Xi are IID with distribution given
above.

Problem 2.30 (a) No. It should be intuitively clear that the answer is indeed no, but providing
a proof is not so easy. It is not hard to make a proof in special cases. For example, when
λ(t) is a monotonically (strictly) decreasing function. Then the larger T1, the larger T2.
However, the variables are never independent if the arrival process is nonhomogeneous.
That is harder to prove. We will not really try. We will be impressed if you work that
out.

(b) No. In the special case above, T1 should be larger than T2.

(c)

P(T1 ≥ t) = P(N(t) = 0)

= e−
∫ t

0
λ(s)ds
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(d)

P(T2 ≥ t) = E[P(T2 ≥ t|T1)]

=
∫ ∞

0
P(T2 ≥ t|T1 = s)fT1(s)ds

=
∫ ∞

0
e−

∫ t+s

s
λ(u)duλ(s)e−

∫ s

0
λ(u)duds

=
∫ ∞

0
e−

∫ t+s

0
λ(u)duλ(s)ds

=
∫ ∞

0
e−m(t+s)λ(s)ds .

Problem 2.31 A key initial step is to observe that the mean function m(t) is a strictly increasing
continuous function, by virtue of the assumptions. (The assumption λ(·) > 0 is important.)
Then m has a unique well defined inverse m−1, which itself has a unique well defined inverse
m.

For the rest of the way, we check the parts of Definition 2.1.1 one by one.

(i) N∗(0) = N(m−1(0)) = N(0) = 0.

(ii) For t > 0 and s > 0, m−1(t + s) > m−1(t) > 0. N∗(t + s)−N∗(t) = N(m−1(t + s))−
N(m−1(t)) and N(m−1(t)) = N∗(t) are independent since (m−1(t),m−1(t + s)] and
[0,m−1(t)] are non-overlapping. So N∗(·) increases independently.

(iii) For s, t ≥ 0,

P(N∗(t + s)−N∗(s) = n)

= P(N(m−1(t + s))−N(m−1(s)) = n))

= e−m(m−1(t+s))+m(m−1(s)) [m(m−1(t + s))−m(m−1(s))]n

n!

=
e−ttn

n!

Problem 2.32 (a) The easy way to proceed is to apply Problem 2.31 above. To do so, we
need to assume that m(t) is continuous and strictly increasing. So assume that is
the case. Then, from Problem 2.31, N∗(m(t)) = N(t) and N∗(·) is a Poisson process
with rate 1. Hence if we set the unordered arrival times of N(·) by V1, · · · , Vn, then
U1 = m(V1), · · · , Un = m(Vn) are those of N∗(·). But we know that the unordered
arrival times U1, · · · , Un of N∗(·) given that N∗(m(t)) = n are random samples from
uniform(0,m(t)).

P(Vi ≤ x) = P(m(Vi) ≤ m(x))

= P(Ui ≤ m(x))

=
min{m(x),m(t)}

m(t)
.
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We can treat the general case of m as the limit of strictly increasing m. We thus obtain
the formula above, by taking the limit.

(b) Note this question is exactly an Mt/G/∞ queue question, so we can apply Theorem
1 in the “Physics” paper. The number of workers out has a Poisson distribution with
the mean given by the mean formula Mean(t) ≡ p =

∫ t
0 λ(x)F̄ (t− x) dx. The Poisson

distribution property implies that the variance equals the mean.

Below we give a direct derivation: Let N(t) denote the number of accidents by time
t. Let I be the indicator representing that an injured person is out of work at time t.
Let V be the time of accident.

P(I = 1|N(t)) = E[P(I = 1|N(t), V )|N(t)]

=
∫ t

0
F̄ (t− x)

dm(x)
m(t)

=
1

m(t)

∫ t

0
F̄ (t− x)λ(x)dx

=
p

m(t)
.

Now X(t) =
∑N(t)

i=1 Ii and X(t)|N(t) is a binomial(N(t), p
m(t)). Hence

E[X(t)|N(t)] = N(t)
p

m(t)

and

Var[X(t)|N(t)] = N(t)
p

m(t)

(
1− p

m(t)

)
.

Therefore

E(X(t)) = E[N(t)]
p

m(t)
= p

and

Var[X(t)] = Var(E[X(t)|N(t)]) + E[Var(X(t)|N(t))]

= Var(N(t))
(

p

m(t)

)2

+ E[N(t)]
p

m(t)

(
1− p

m(t)

)

=
p2

m(t)
+ p

(
1− p

m(t)

)

= p .

Problem 2.33 Here we have a Poisson random measure problem.

Let the reference point be x and B(x, r) represent the circular region of radius r with center
at x.
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(a)

P(X > t) = P(no event in B(x, t))

= e−λπt2 .

(b)

E[X] =
∫ ∞

0
P(X > t)dt

=
∫ ∞

0
e−λπt2dt

=
√

1
λ

∫ ∞

0

1√
2π 1

2λπ

e−λπt2dt

=
√

1
λ
× 1

2

=
1

2
√

λ
.

(c) Since πR2
i − πR2

i−1 is the area of the region between the circle of radius Ri and the one
of radius of Ri−1, we have

P(πR2
i − πR2

i−1 > a|Rj , j < i) = P(no event in the area a)

= e−λa .

Problem 2.35 (a) No, because knowing the number of events in some interval is informative
about the value of τ , which gives information about the distribution of the number of
events in a non-overlapping interval.

(b) Yes, because the occurrences in any non-overlapping intervals are independent.

Problem 2.39 s < t. Let X(t) =
∑N(t)

i=1 Yi. First note that X(t) possesses stationary indepen-
dent increments.

E[X(s)X(t)] = E[X(s)(X(t)−X(s) + X(s))]

= E[X(s)(X(t)−X(s)) + E[X(s)2]

= E[X(s)]E[X(t− s)] + E[X(s)2]

= λsE[Y ]λ(t− s)E[Y ] + λsE[Y 2] + (λsE[Y ])2

= λ2stE[Y ]2 + λsE[Y 2] .

Hence

Cov(X(s), X(t)) = E[X(s)X(t)]−E[X(s)]E[X(t)]

= λ2stE[Y ]2 + λsE[Y 2]− λsE[Y ]λtE[Y ]

= λsE[Y 2] .
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