IEOR 6711: Stochastic Models I, Professor Whitt

SOLUTIONS to Homework Assignment 7

Problem 3.12 Take $h(t)=\mathbf{1}_{(0, a]}(t)$.

Problem 3.13 Since the state circulates the state space $\{1,2, \cdots, n\}$ in the same order. Hence we can define the alternating renewal process by on when it is in the state i and off when it is among $\{1, \cdots, i-1, i+1, \cdots, n\}$. Define $\mu_{i}=\int \bar{F}_{i}(t) d t$. Then

$$
\mathrm{P}(\text { process is in } i) \rightarrow \frac{\mathrm{E}[o n]}{\mathrm{E}[o n]+\mathrm{E}[o f f]}=\frac{\mu_{i}}{\sum_{j=1}^{n} \mu_{j}} .
$$

Problem 3.14 (a) $[t-x, t]$
(b) $[t, t+x]$
(c) $\mathrm{P}(Y(t)>x)=\mathrm{P}(A(t+x)>x)$
(d) See Problem 3.3.

Problem 3.15 (a)

$$
\begin{aligned}
\mathrm{P}(Y(t)>x \mid A(t)=s) & =\mathrm{P}\left(X_{N(t)+1}>x+s \mid \text { time at } t \text { since the last renewal }=s\right) \\
& =\frac{\bar{F}(x+s)}{\bar{F}(s)}
\end{aligned}
$$

(b) Using (a),

$$
\mathrm{P}(Y(t)>x \mid A(t+x / 2)=s)=\left\{\begin{array}{ll}
0 & \text { if } s<\frac{x}{2} \\
\frac{\bar{F}(s+x / 2)}{\bar{F}(s)} & \text { if } s \geq \frac{x}{2}
\end{array} .\right.
$$

(c)

$$
\mathrm{P}(Y(t)>x \mid A(t+x)>s)=\left\{\begin{array}{ll}
1 & \text { if } s \geq x \\
\mathrm{P}(\text { no events in }[t, t+x-s])=e^{-\lambda(x-s)} & \text { if } s<x
\end{array} .\right.
$$

(d)

$$
\mathrm{P}(Y(t)>x, A(t)>y)=\mathrm{P}(Y(t-y)>x+y)=\mathrm{P}(A(t+x)>x+y)
$$

(e)

$$
\frac{A(t)}{t}=\frac{t-S_{N(t)}}{t}=1-\frac{S_{N(t)}}{N(t)} \frac{N(t)}{t} \rightarrow 1-\mu \frac{1}{\mu}=0 .
$$

Problem 3.16

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \mathrm{E}[Y(t)] & =\frac{\mathrm{E}\left[X^{2}\right]}{2 \mu} \\
& =\frac{n\left(\frac{1}{\lambda}\right)^{2}+\left(\frac{n}{\lambda}\right)^{2}}{2 \frac{n}{\lambda}} \\
& =\frac{1+n}{2 \lambda} .
\end{aligned}
$$

To get it without any computations, consider a Poisson process with rate λ and say the a renewal occurs at the Poisson events numbered $n, 2 n, \cdots$. Now at time t, t large, it is equally likely that the most recent event was an event of the form $i+k n, i=0,1,2, \cdots, n-1$. That is, modulo n, the number of the most recent Poisson event is equally likely to be $n, 1, \cdots, n-1$. Conditioning on the value of this quantity gives that for the renewal process

$$
\lim _{t \rightarrow \infty} \mathrm{E}[Y(t)]=\frac{1}{n}\left(\frac{1}{\lambda}+\cdots+\frac{n}{\lambda}\right)=\frac{n+1}{2 \lambda} .
$$

Problem 3.18 (a) Delayed renewal process.
(b) Neither.

If F is exponential,
(a) Delayed renewal process.
(b) Renewal process.

Problem 3.21 Let X_{i} equal 1 if the gambler wins bet i, and let it be 0 otherwise. Also, let N denote the first time the gambler has won k consecutive bets. Then $X=\sum_{i=1}^{N} X_{i}$ is equal to the number of bets that he wins, and $X-(N-X)=2 X-N$ is his winnings. By Wald's equation

$$
\mathrm{E}[X]=p \mathrm{E}[N]=p \sum_{i=1}^{k} p^{-i}
$$

Thus
(a) $\mathrm{E}[2 X-N]=2 \mathrm{E}[X]-\mathrm{E}[N]=(2 p-1) \mathrm{E}[N]=(2 p-1) \sum_{i=1}^{k} p^{-i}$
(b) $\mathrm{E}[X]=p \sum_{i=1}^{k} p^{-i}$

Problem 3.22 (a)

$$
\begin{aligned}
\mathrm{E}\left[T_{H H T T H}\right] & =\mathrm{E}\left[T_{H H}\right]+p^{-4}(1-p)^{-2} \\
& =\mathrm{E}\left[T_{H}\right]+p^{-2}+p^{-4}(1-p)^{-2} \\
& =p^{-1}+p^{-2}+p^{-4}(1-p)^{-2}
\end{aligned}
$$

(b) $\mathrm{E}\left[T_{H T H T T}\right]=p^{-2}(1-p)^{-3}$
$\mathrm{E}\left[N_{B \mid A}\right]=\mathrm{E}\left[N_{H T H T T \mid H}\right]=\mathrm{E}\left[N_{H T H T T}\right]-\mathrm{E}\left[N_{H}\right]=32-2=30, \mathrm{E}\left[N_{A \mid B}\right]=\mathrm{E}\left[N_{A}\right]=$ $64+4+2=70$ and $\mathrm{E}\left[N_{B}\right]=32$.
(c) $P_{A}=(32+70-70) /(30+70)=0.32$
(d) $\mathrm{E}[M]=32-30(0.32)=22.4$

Problem 3.23 Let H denote the first k flips and Ω is the set of all possible H. Conditioning on H gives:

$$
\begin{aligned}
\mathrm{E}[\text { number until repeat }] & =\sum_{H \in \Omega} \mathrm{E}[\text { number until repeat } \mid H] \mathrm{P}(H) \\
& =\sum_{H \in \Omega} \frac{1}{\mathrm{P}(H)} \mathrm{P}(H)=|\Omega|=2^{k}
\end{aligned}
$$

Problem 3.25 (a) First note that

$$
\begin{gathered}
\mathrm{E}\left[N_{D}(t) \mid X_{1}=x\right]= \begin{cases}1+\mathrm{E}[N(t-x)] & \text { if } x \leq t \\
0 & \text { if } x>t\end{cases} \\
m_{D}(t)=\mathrm{E}\left[N_{D}(t)\right]
\end{gathered}=\int_{0}^{\infty} \mathrm{E}\left[N_{D}(t) \mid X_{1}=x\right] d G(x), ~ \begin{aligned}
& 0 \\
& \\
& =\int_{0}^{t}(1+\mathrm{E}[N(t-x)]) d G(x) \\
&
\end{aligned}=G(t)+\int_{0}^{t} m(t-x) d G(x)
$$

(b)

$$
\begin{aligned}
\mathrm{E}\left[A_{D}(t)\right] & =\mathrm{E}\left[A_{D}(t) \mid S_{N_{D}(t)}=0\right] \bar{G}(t)+\int_{0}^{t} \mathrm{E}\left[A_{D}(t) \mid S_{N_{D}(t)}=s\right] \bar{F}(t-s) d m_{D}(s) \\
& =t \bar{G}(t)+\int_{0}^{t}(t-s) \bar{F}(t-s) d m_{D}(s) \\
& \xrightarrow{t \rightarrow \infty} \frac{1}{\mu} \int_{0}^{\infty} t \bar{F}(t) d t \quad \text { By key renewal theorem (Proposition 3.5.1(v) } \\
& =\frac{1}{\mu} \int_{0}^{\infty} t \int_{t}^{\infty} d F(s) d t \\
& =\frac{\int_{0}^{\infty} s^{2} d F(s)}{2 \int_{0}^{\infty} s d F(s)}
\end{aligned}
$$

(c) $t \bar{G}(t)=t \int_{t}^{\infty} d G(x) \leq \int_{t}^{\infty} s d G(s) \xrightarrow{t \rightarrow \infty} 0$ since $\int_{0}^{\infty} s d G(s)<\infty$.
(Here we used the so-called dominated convergence theorem.

$$
\begin{array}{lll}
\int_{n}^{\infty} s d G(s) & = & \int_{0}^{\infty} s \mathbf{1}_{[n, \infty)}(s) d G(s) \\
& \int_{0}^{\infty} \lim _{n \rightarrow \infty} s \mathbf{1}_{[n, \infty)}(s) d G(s)=\int_{0}^{\infty} 0 d G(s)
\end{array}
$$

since $s \mathbf{1}_{[n, \infty)}(s) \leq s$ and s is integrable with respect to $G(\cdot)$ from $\int_{0}^{\infty} s d G(s)<\infty$ and $s \mathbf{1}_{[n, \infty)}(s) \rightarrow 0$ for each s in pointwise sense. (Check the conditions for the dominated convergence theorem.) Now we extend n to t using monotonicity of the integral. Wow! This is a good example showing that if you are familiar with a little rigorous analysis, then it's O.K. with only one line. But if not, you should practice the underlying logic whenever you encounter them.)

Problem 3.28 Using the uniformity of each Poisson arrival under given $N(t)$,

$$
\mathrm{E}[\text { Cost of a cycle } \mid N(T)]=K+N(T) \times c \times \frac{T}{2}
$$

and so

$$
\frac{\mathrm{E}[\text { Cost }]}{\mathrm{E}[\text { Time }]}=\frac{K+\lambda c T^{2} / 2}{T}=\frac{K}{T}+\frac{\lambda c T}{2}
$$

which is minimized at $T^{*}=\sqrt{2 K / \lambda c}$ and minimal average cost is thus $\sqrt{2 \lambda K c}$. On the other hand the optimal value of N is (using calculus) $N^{*}=\sqrt{2 \lambda K / c}$ and the minimal average cost is $\sqrt{2 \lambda c K}-\frac{c}{2}$.

