IEOR 6711: Stochastic Models I, Professor Whitt
 SOLUTIONS to Homework Assignment 8.

Problem 3.19

$$
\begin{array}{rc}
P\left\{S_{N(t)} \leq s\right\} & = \\
& \sum_{n=0}^{\infty} P\left\{S_{n} \leq s, S_{n+1}>t\right\} \\
& = \\
\bar{G}(t)+\sum_{n=1}^{\infty} P\left\{S_{n} \leq s, S_{n+1}>t\right\} \\
& =
\end{array} \quad \bar{G}(t)+\sum_{n=1}^{\infty} \int_{0}^{\infty} P\left\{S_{n} \leq s, S_{n+1}>t \mid S_{n}=y\right\} d\left(G * F_{n-1}\right)(s)
$$

Problem 3.20

(a) Say that a renewal occurs when that pattern appears. By Blackwell's theorem for renewal processes we obtain

$$
E[t i m e]=\frac{1}{(1 / 2)^{7}}=2^{7}
$$

(b) By Blackwell's theorem
$E[$ time between HHTT renewals $]=E[$ time between HTHT renewals] $=16$
But the HHTT renewal process is an ordinary one and so the mean time until HHTT occurs is 16 whereas the HTHT process is a delayed renewal process and so the mean time until HTHT occurs is greater than 16 .

Problem 3.29

Let L denote the lifetime of a car with distribution function $F(\cdot)$.
(a) Under the policy of replacements at A,

$$
\text { Cost of cycle }= \begin{cases}C_{1}+C_{2} & \text { if } L \leq A \\ C_{1}-R(A) & \text { if } L>A\end{cases}
$$

and

$$
\text { Length of cycle }=\left\{\begin{array}{ll}
L & \text { if } L \leq A \\
A & \text { if } L>A
\end{array} .\right.
$$

Then

$$
\frac{\mathrm{E}[\mathrm{Cost}]}{\mathrm{E}[\text { Time }]}=\frac{C_{1}+C_{2} F(A)-R(A) \bar{F}(A)}{\int_{0}^{A} x d F(x)+A \bar{F}(A)}
$$

(Validate the final formula by yourself. If you are confusing, utilize the indicator to combine the if-clauses into one function as I said in the first recitation.)
(b) Condition on the life of the initial car.

$$
\begin{aligned}
\mathrm{E}[\text { Length of cycle }] & =\int_{0}^{\infty} \mathrm{E}[\text { Length } \mid L=x] d F(x) \\
& =\int_{0}^{A} x d F(x)+\int_{A}^{\infty}(A+\mathrm{E}[\text { Length }]) d F(x) \\
& =\int_{0}^{A} x d F(x)+(A+\mathrm{E}[\text { Length }]) \bar{F}(A) \\
& =\frac{\int_{0}^{A} x d F(x)+A \bar{F}(A)}{F(A)}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\mathrm{E}[\text { Cost of cycle }] & =\int_{0}^{\infty} \mathrm{E}[\operatorname{Cost} \mid L=x] d F(x) \\
& =\int_{0}^{A}\left(C_{1}+C_{2}\right) d F(x)+\left(C_{1}-R(A)+\mathrm{E}[\operatorname{Cost}]\right) \bar{F}(A) \\
& =\frac{C_{1}+C_{2} F(A)-R(A) \bar{F}(A)}{F(A)}
\end{aligned}
$$

Then

$$
\frac{\mathrm{E}[\text { Cost }]}{\mathrm{E}[\text { Time }]}=\text { same as in (a). }
$$

Problem 3.31

Let μ_{i} and ν_{i} denote the means of F_{i} and G_{i}, respectively for $i=1,2,3,4$. Then,

$$
\lim P\{\mathrm{i} \text { is working at } \mathrm{t}\}=\mu_{i} /\left(\mu_{i}+\nu_{i}\right), i=1,2,3,4
$$

Now, if p_{i} is the probability that component i is working, then

$$
P\{\text { system works }\}=\left(p_{1}+p_{2}-p_{1} p_{2}\right)\left(p_{3}+p_{4}-p_{3} p_{4}\right)
$$

Hence $\lim P\{$ system works at t$\}$ is equal to the preceding expression with $p_{i}=\mu_{i} /\left(\mu_{i}+\nu_{i}\right), i=$ 1, 2, 3, 4

Problem 3.32

(a) $1-P_{0}=$ average number in service $=\lambda \mu$
(b) By alternating renewal processes

$$
P_{0}=\text { proportion of time empty }=\frac{E[I]}{E[I]+E[B]}
$$

where I is an idle period and B a busy period. But clearly I is exponential with rate λ and so

$$
1-\lambda \mu=\frac{1 / \lambda}{1 / \lambda+E[B]} \text { or } E[B]=\frac{\mu}{1-\lambda \mu}
$$

(c) Let C denote the number of customers served in a busy period B and let S_{i} denote the service time of the i-th customer, $i \geq 1$. Then

$$
B=\sum_{i=1}^{C} S_{i}
$$

and by Wald's equation

$$
E[C]=\frac{E[B]}{E[S]}=\frac{1}{1-\lambda \mu}
$$

