IEOR 6711: Stochastic Models I

Solutions to Homework Assignment 9

Problem 4.1 Let D_{n} be the random demand of time period n. Clearly D_{n} is i.i.d. and independent of all X_{k} for $k<n$. Then we can represent $X_{n}+1$ by

$$
X_{n+1}=\max \left\{0, X_{n} \cdot \mathbf{1}_{[s, \infty)}\left(X_{n}\right)+S \cdot \mathbf{1}_{[0, s)}\left(X_{n}\right)-D_{n+1}\right\}
$$

which depends only on X_{n} since D_{n+1} is independent of all history. Hence $\left\{X_{n}, n \geq 1\right\}$ is a Markov chain. It is easy to see assuming $\alpha_{k}=0$ for $k<0$,

$$
P_{i j}= \begin{cases}\alpha_{S-j} & \text { if } i<s, j>0 \\ \sum_{k=S}^{\infty} \alpha_{k} & \text { if } i<s, j=0 \\ \alpha_{i-j} & \text { if } i \geq s, j>0 \\ \sum_{k=i}^{\infty} \alpha_{k} & \text { if } i \geq s, j=0\end{cases}
$$

The following three problems (4.2, 4.4, 4.5) needs a fact:

$$
\mathrm{P}(A \cap B \mid C)=\mathrm{P}(A \mid B \cap C) \mathrm{P}(B \mid C)
$$

which requires a proof to use. Try to prove it by yourself.

Problem 4.2 Let \mathcal{S} be the state space. First we show that

$$
\mathrm{P}\left(X_{n_{k}+1}=j \mid X_{n_{1}}=i_{1}, \cdots, X_{n_{k}}=i_{k}\right)=\mathrm{P}\left(X_{n_{k}+1}=j \mid X_{n_{k}}=i_{k}\right)
$$

by the following : Let $A=\left\{X_{n_{k}+1}=j\right\}, B=\left\{X_{n_{1}}=i_{1}, \cdots, X_{n_{k}}=i_{k}\right\}$ and $B_{b}, b \in \mathcal{I}$ are elements of $\left\{\left(X_{l}, l \leq n_{k}, l \neq n_{1}, \cdots, l \neq n_{k}\right): X_{l} \in \mathcal{S}\right\}$.

$$
\begin{aligned}
\mathrm{P}(A \mid B) & =\sum_{b \in \mathcal{I}} \mathrm{P}\left(A \cap B_{b} \mid B\right) \\
& =\sum_{b \in \mathcal{I}} \mathrm{P}\left(A \mid B_{b} \cap B\right) \mathrm{P}\left(B_{b} \mid B\right) \\
& =\sum_{b \in \mathcal{I}} \mathrm{P}\left(A \mid X_{n_{k}}=i_{k}\right) \mathrm{P}\left(B_{b} \mid B\right) \\
& =\mathrm{P}\left(A \mid X_{n_{k}}=i_{k}\right) \sum_{b \in \mathcal{I}} \mathrm{P}\left(B_{b} \mid B\right) \\
& =\mathrm{P}\left(A \mid X_{n_{k}}=i_{k}\right) \mathrm{P}(\Omega \mid B) \\
& =\mathrm{P}\left(X_{n_{k}+1}=j \mid X_{n_{k}}=i_{k}\right) .
\end{aligned}
$$

We consider the mathematical induction on $l \equiv n-m$. For $l=1$, we just showed. Now assume that the statement is true for all $l \leq l^{*}$ and consider $l=l^{*}+1$:

$$
\begin{aligned}
& \mathrm{P}\left(X_{n}=j \mid X_{n_{1}}=i_{1}, \cdots, X_{n_{k}}=i_{k}\right) \\
= & \sum_{i \in \mathcal{S}} \mathrm{P}\left(X_{n}=j, X_{n-1}=i \mid X_{n_{1}}=i_{1}, \cdots, X_{n_{k}}=i_{k}\right) \\
= & \sum_{i \in \mathcal{S}} \mathrm{P}\left(X_{n}=j \mid X_{n-1}=i, X_{n_{1}}=i_{1}, \cdots, X_{n_{k}}=i_{k}\right) \mathrm{P}\left(X_{n-1}=i \mid X_{n_{1}}=i_{1}, \cdots, X_{n_{k}}=i_{k}\right) \\
= & \sum_{i \in \mathcal{S}} \mathrm{P}\left(X_{n}=j \mid X_{n-1}=i\right) \mathrm{P}\left(X_{n-1}=i \mid X_{n_{k}}=i_{k}\right) \quad \text { By } l \leq l^{*} \text { cases } \\
= & \sum_{i \in \mathcal{S}} \mathrm{P}\left(X_{n}=j \mid X_{n-1}=i, X_{n_{k}}=i_{k}\right) \mathrm{P}\left(X_{n-1}=i \mid X_{n_{k}}=i_{k}\right) \\
= & \sum_{i \in \mathcal{S}} \mathrm{P}\left(X_{n}=j, X_{n-1}=i \mid X_{n_{k}}=i_{k}\right) \\
= & \mathrm{P}\left(X_{n}=j \mid X_{n_{k}}=i_{k}\right)
\end{aligned}
$$

which completes the proof for $l=l^{*}+1$ case.

Problem 4.3 Simply by Pigeon hole principle which saying that if n pigeons return to their $m(<n)$ home (through hole), then at least one home contains more than one pigeon.
Consider any path of states $i_{0}=i, i_{1}, \cdots, i_{n}=j$ such that $P_{i_{k}, i_{k+1}}>0$. Call this a path from i to j. If j can be reached from i, then there must be a path from i to j. Let $i_{0} \cdots, i_{n}$ be such a path. If all of values i_{0}, \cdots, i_{n} are not distinct, then there must be a subpath from i to j having fewer elements (for instance, if $i, 1,2,4,1,3, j$ is a path, then so is $i, 1,3, j$). Hence, if a path exists, there must be one with all distinct states.

Problem 4.4 Let Y be the first passage time to the state j starting the state i at time 0 .

$$
\begin{aligned}
P_{i j}^{n} & =\mathrm{P}\left(X_{n}=j \mid X_{0}=i\right) \\
& =\sum_{k=0}^{n} \mathrm{P}\left(X_{n}=j, Y=k \mid X_{0}=i\right) \\
& =\sum_{k=0}^{n} \mathrm{P}\left(X_{n}=j \mid Y=k, X_{0}=i\right) \mathrm{P}\left(Y=k \mid X_{0}=i\right) \\
& =\sum_{k=0}^{n} \mathrm{P}\left(X_{n}=j \mid X_{k}=j\right) \mathrm{P}\left(Y=k \mid X_{0}=i\right) \\
& =\sum_{k=0}^{n} P_{j j}^{n-k} f_{i j}^{k}
\end{aligned}
$$

Problem 4.5 (a) The probability that the chain, starting in state i, will be in state j at time n without ever having made a transition into state k.
(b) Let Y be the last time leaving the state i before first reaching to the state j starting the state i at time 0 .

$$
\begin{aligned}
P_{i j}^{n} & =\mathrm{P}\left(X_{n}=j \mid X_{0}=i\right) \\
& =\sum_{k=0}^{n} \mathrm{P}\left(X_{n}=j, Y=k \mid X_{0}=i\right) \\
& =\sum_{k=0}^{n} \mathrm{P}\left(X_{n}=j, Y=k, X_{k}=i \mid X_{0}=i\right) \\
& =\sum_{k=0}^{n} \mathrm{P}\left(X_{n}=j, Y=k \mid X_{k}=i, X_{0}=i\right) \mathrm{P}\left(X_{k}=i \mid X_{0}=i\right) \\
& =\sum_{k=0}^{n} \mathrm{P}\left(X_{n}=j, Y=k \mid X_{k}=i\right) P_{i i}^{k} \\
& =\sum_{k=0}^{n} \mathrm{P}\left(X_{n}=j, X_{l} \neq i, l=k+1, \cdots, n-1 \mid X_{k}=i\right) P_{i i}^{k} \\
& =\sum_{k=0}^{n} P_{i j / i}^{n-k} P_{i i}^{k}
\end{aligned}
$$

Problem 4.7

(a) ∞

Here is an argument: Let x be the expected number of steps required to return to the initial state (the origin). Let y be the expected number of steps to move to the left 2 steps, which is the same as the expected number of steps required to move to the right 2 steps. Note that the expected number of steps required to go to the left 4 steps is clearly $2 y$, because you first need to go to the left 2 steps, and from there you need to go to the left 2 steps again. Then, consider what happens in successive pairs of steps: Using symmetry, we get

$$
x=2+(0 \times(1 / 2)+y \times(1 / 2)=2+y / 2
$$

and

$$
y=2+(0 \times(1 / 4)+y \times(1 / 2)+(2 * y) \times(1 / 4)
$$

If we subtract y from both sides, this last equation yields

$$
2=0
$$

Hence there is no finite solution. The quantity y must be infinite; a finite value cannot solve the equation.
(b) Note that the expected number of returns in $2 n$ steps is the sum of the probabilities of returning in $2 k$ steps for k from 1 to n, each term of which is binomial. Thus, we have

$$
E\left[N_{2 n}\right]=\sum_{k=1}^{n} \frac{(2 k)!}{k!k!}(1 / 2)^{2 k}
$$

which can be shown to be equal to the given expression by mathematical induction.
(c) We say that $f(n) \sim g(n)$ as $n \rightarrow \infty$ if

$$
f(n) / g(n) \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty .
$$

By Stirling's approximation,

$$
(2 n+1) \frac{(2 n)!}{n!n!}(1 / 2)^{2} n \sim 2 \sqrt{n / \pi}
$$

so that

$$
E\left[N_{n}\right] \sim \sqrt{2 n / \pi} \quad \text { as } \quad n \rightarrow \infty .
$$

Problem 4.8 (a)

$$
P_{i j}=\frac{\alpha_{j}}{\sum_{k=i+1}^{\infty} \alpha_{k}}, \quad j>i
$$

(b) $\left\{T_{i}, i \geq 1\right\}$ is not a Markov chain - the distribution of T_{i} does depend on R_{i}. $\left\{\left(R_{i+1}, T_{i}\right), i \geq\right.$ $1\}$ is a Markov chain.

$$
\begin{aligned}
\mathrm{P}\left(R_{i+1}=j, T_{i}=n \mid R_{i}=l, T_{i-1}=m\right) & =\frac{\alpha_{j}}{\sum_{k=l+1}^{\infty} \alpha_{k}}\left(\sum_{k=0}^{l} \alpha_{k}\right)^{n-1} \sum_{k=l+1}^{\infty} \alpha_{k} \\
& =\alpha_{j}\left(\sum_{k=0}^{l} \alpha_{k}\right)^{n-1}, \quad j>l
\end{aligned}
$$

(c) If $S_{n}=j$ then the $(n+1)^{s t}$ record occurred at time j. However, knowledge of when these $n+1$ records occurred does not yield any information about the set of values $\left\{X_{1}, \cdots, X_{j}\right\}$. Hence, the probability that the next record occurs at time $k, k>j$, is the probability that both $\max \left\{X_{1}, \cdots, X_{j}\right\}=\max \left\{X_{1}, \cdots, X_{k-1}\right\}$ and that $X_{k}=$ $\max \left\{X_{1}, \cdots, X_{k}\right\}$. Therefore, we see that $\left\{S_{n}\right\}$ is a Markov chain with

$$
P_{j k}=\frac{j}{k-1} \frac{1}{k}, \quad k>j .
$$

Problem 4.11 (a)

$$
\begin{aligned}
\sum_{n=1}^{\infty} P_{i j}^{n} & =\mathrm{E}\left[\text { number of visits to } j \mid X_{0}=i\right] \\
& =\mathrm{E}\left[\text { number of visits to } j \mid \text { ever visit } j, X_{0}=i\right] f_{i j} \\
& =\left(1+\mathrm{E}\left[\text { number of visits to } j \mid X_{0}=j\right]\right) f_{i j} \\
& =\frac{f_{i j}}{1-f_{j j}}<\infty
\end{aligned}
$$

since $1+$ number of visits to $j \mid X_{0}=j$ is geometric with mean $\frac{1}{1-f_{j j}}$.
(b) Follows from above since

$$
\begin{aligned}
\frac{1}{1-f_{j j}} & =1+\mathrm{E}\left[\text { number of visits to } j \mid X_{0}=j\right] \\
& =1+\sum_{n=1}^{\infty} P_{j j}^{n}
\end{aligned}
$$

Problem 4.12 If we add the irreducibility of \mathbf{P}, it is easy to see that $\boldsymbol{\pi}=\frac{1}{n} \mathbf{1}$ is a (and the unique) limiting probability.

