
IEOR 6711: Stochastic Models I

Solutions to Homework Assignment 9

Problem 4.1 Let Dn be the random demand of time period n. Clearly Dn is i.i.d. and indepen-
dent of all Xk for k < n. Then we can represent Xn + 1 by

Xn+1 = max{0, Xn · 1[s,∞)(Xn) + S · 1[0,s)(Xn)−Dn+1}

which depends only on Xn since Dn+1 is independent of all history. Hence {Xn, n ≥ 1} is a
Markov chain. It is easy to see assuming αk = 0 for k < 0,

Pij =





αS−j if i < s, j > 0∑∞
k=S αk if i < s, j = 0

αi−j if i ≥ s, j > 0∑∞
k=i αk if i ≥ s, j = 0

———————————————————————
The following three problems (4.2, 4.4, 4.5) needs a fact:

P(A ∩B|C) = P(A|B ∩ C)P(B|C)

which requires a proof to use. Try to prove it by yourself.
———————————————————————

Problem 4.2 Let S be the state space. First we show that

P(Xnk+1 = j|Xn1 = i1, · · · , Xnk
= ik) = P(Xnk+1 = j|Xnk

= ik)

by the following : Let A = {Xnk+1 = j}, B = {Xn1 = i1, · · · , Xnk
= ik} and Bb, b ∈ I are

elements of {(Xl, l ≤ nk, l 6= n1, · · · , l 6= nk) : Xl ∈ S}.

P(A|B) =
∑

b∈I
P(A ∩Bb|B)

=
∑

b∈I
P(A|Bb ∩B)P(Bb|B)

=
∑

b∈I
P(A|Xnk

= ik)P(Bb|B)

= P(A|Xnk
= ik)

∑

b∈I
P(Bb|B)

= P(A|Xnk
= ik)P(Ω|B)

= P(Xnk+1 = j|Xnk
= ik) .
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We consider the mathematical induction on l ≡ n − m. For l = 1, we just showed. Now
assume that the statement is true for all l ≤ l∗ and consider l = l∗ + 1:

P(Xn = j|Xn1 = i1, · · · , Xnk
= ik)

=
∑

i∈S
P(Xn = j, Xn−1 = i|Xn1 = i1, · · · , Xnk

= ik)

=
∑

i∈S
P(Xn = j|Xn−1 = i, Xn1 = i1, · · · , Xnk

= ik)P(Xn−1 = i|Xn1 = i1, · · · , Xnk
= ik)

=
∑

i∈S
P(Xn = j|Xn−1 = i)P(Xn−1 = i|Xnk

= ik) By l ≤ l∗ cases

=
∑

i∈S
P(Xn = j|Xn−1 = i, Xnk

= ik)P(Xn−1 = i|Xnk
= ik)

=
∑

i∈S
P(Xn = j, Xn−1 = i|Xnk

= ik)

= P(Xn = j|Xnk
= ik)

which completes the proof for l = l∗ + 1 case.

Problem 4.3 Simply by Pigeon hole principle which saying that if n pigeons return to their
m(< n) home (through hole), then at least one home contains more than one pigeon.
Consider any path of states i0 = i, i1, · · · , in = j such that Pik,ik+1

> 0. Call this a path
from i to j. If j can be reached from i, then there must be a path from i to j. Let i0. · · · , in

be such a path. If all of values i0, · · · , in are not distinct, then there must be a subpath from
i to j having fewer elements (for instance, if i, 1, 2, 4, 1, 3, j is a path, then so is i, 1, 3, j).
Hence, if a path exists, there must be one with all distinct states.

Problem 4.4 Let Y be the first passage time to the state j starting the state i at time 0.

Pn
ij = P(Xn = j|X0 = i)

=
n∑

k=0

P(Xn = j, Y = k|X0 = i)

=
n∑

k=0

P(Xn = j|Y = k, X0 = i)P(Y = k|X0 = i)

=
n∑

k=0

P(Xn = j|Xk = j)P(Y = k|X0 = i)

=
n∑

k=0

Pn−k
jj fk

ij

Problem 4.5 (a) The probability that the chain, starting in state i, will be in state j at time n

without ever having made a transition into state k.
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(b) Let Y be the last time leaving the state i before first reaching to the state j starting
the state i at time 0.

Pn
ij = P(Xn = j|X0 = i)

=
n∑

k=0

P(Xn = j, Y = k|X0 = i)

=
n∑

k=0

P(Xn = j, Y = k, Xk = i|X0 = i)

=
n∑

k=0

P(Xn = j, Y = k|Xk = i,X0 = i)P(Xk = i|X0 = i)

=
n∑

k=0

P(Xn = j, Y = k|Xk = i)P k
ii

=
n∑

k=0

P(Xn = j, Xl 6= i, l = k + 1, · · · , n− 1|Xk = i)P k
ii

=
n∑

k=0

Pn−k
ij/i P k

ii

Problem 4.7

(a) ∞

Here is an argument: Let x be the expected number of steps required to return to the initial
state (the origin). Let y be the expected number of steps to move to the left 2 steps, which
is the same as the expected number of steps required to move to the right 2 steps. Note
that the expected number of steps required to go to the left 4 steps is clearly 2y, because
you first need to go to the left 2 steps, and from there you need to go to the left 2 steps
again. Then, consider what happens in successive pairs of steps: Using symmetry, we get

x = 2 + (0× (1/2) + y × (1/2) = 2 + y/2

and
y = 2 + (0× (1/4) + y × (1/2) + (2 ∗ y)× (1/4)

If we subtract y from both sides, this last equation yields

2 = 0 .

Hence there is no finite solution. The quantity y must be infinite; a finite value cannot solve
the equation.

(b) Note that the expected number of returns in 2n steps is the sum of the probabilities of
returning in 2k steps for k from 1 to n, each term of which is binomial. Thus, we have

E[N2n] =
n∑

k=1

(2k)!
k!k!

(1/2)2k ,
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which can be shown to be equal to the given expression by mathematical induction.

(c) We say that f(n) ∼ g(n) as n →∞ if

f(n)/g(n) → 1 as n →∞ .

By Stirling’s approximation,

(2n + 1)
(2n)!
n!n!

(1/2)2n ∼ 2
√

n/π ,

so that
E[Nn] ∼

√
2n/π as n →∞ .

Problem 4.8 (a)
Pij =

αj∑∞
k=i+1 αk

, j > i

(b) {Ti, i ≥ 1} is not a Markov chain - the distribution of Ti does depend on Ri. {(Ri+1, Ti), i ≥
1} is a Markov chain.

P(Ri+1 = j, Ti = n|Ri = l, Ti−1 = m) =
αj∑∞

k=l+1 αk

(
l∑

k=0

αk

)n−1 ∞∑

k=l+1

αk

= αj

(
l∑

k=0

αk

)n−1

, j > l

(c) If Sn = j then the (n + 1)st record occurred at time j. However, knowledge of when
these n + 1 records occurred does not yield any information about the set of values
{X1, · · · , Xj}. Hence, the probability that the next record occurs at time k, k > j,
is the probability that both max{X1, · · · , Xj} = max{X1, · · · , Xk−1} and that Xk =
max{X1, · · · , Xk}. Therefore, we see that {Sn} is a Markov chain with

Pjk =
j

k − 1
1
k

, k > j .

Problem 4.11 (a)

∞∑

n=1

Pn
ij = E[number of visits to j|X0 = i]

= E[number of visits to j|ever visit j, X0 = i]fij

= (1 + E[number of visits to j|X0 = j])fij

=
fij

1− fjj
< ∞ .

since 1 + number of visits to j|X0 = j is geometric with mean 1
1−fjj

.
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(b) Follows from above since

1
1− fjj

= 1 + E[number of visits to j|X0 = j]

= 1 +
∞∑

n=1

Pn
jj .

Problem 4.12 If we add the irreducibility of P, it is easy to see that π = 1
n1 is a (and the

unique) limiting probability.
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