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Topics for Discussion, Thursday, September 26

Infinite-Server Queues and Staffing

We continued discussing the papers posted last Tuesday. We emphasized Theorem 1 of
the 1993 “Physics” paper. It describes the Mt/GI/∞ infinite-server queueing model, with a
nonhomogeneous Poisson arrival process (NHPP). See Prop. 2.3.2, Example 2.3(B), Example
2.3(C) and Section 2.4 of the Ross textbook for related material.

Last time we discussed Theorem 9 and formula (14) of that same paper, which gives an
approximation for the time lag and the space shift, assuming that the arrival-rate function is
quadratic. Such a quadratic function can arise by taking a Taylor series approximation.

The following are the main topics discussed on Thursday.

1. not a Poisson process

Even though Q(t), the number of busy servers at time t in the Mt/G/∞ model, has a
Poisson distribution for each t, the stochastic process {Q(t) : t ≥ 0} is not a nonhomo-
geneous Poisson process (NHPP). An NHPP is a counting process. It has sample paths
that are nondecreasing. That is not true of {Q(t) : t ≥ 0}.

2. the covariance

Theorem 2 describes Cov(Q(t), Q(t + u)). The idea is to exploit the random measure
representation and the picture, here Figure 3. We see that Q(t) = X+Y , while Q(t+u) =
Y + Z, where X, Y and Z are independent. Hence

Cov(Q(t), Q(t + u)) = Cov(Y, Y ) = V ar(Y ) = E[Y ],

where E[Y ] has a simple integral formula, like the mean m(t) = E[Q(t)].

3. the departure process and the departure rate

Theorem 1 in the physics paper includes a description of the departure process and the
departure rate. Note that the departure process is an NHPP. It is easy to see that it has
independent increments; see Figure 2.

Note that the departure rate has a formula closely related to the mean m(t) ≡ E[Q(t)].

4. ODE with M service

Theorem 6 and Corollary 4 show that the mean m(t) satisfies an ODE when the service-
time distribution is exponential. That reveals how the peaks of m and λ are related.
In particular, that explains why the curve for m(t) crosses the curve for λ(t)E[S] where
the derivative ṁ(t) = 0, e.g., where m(t) assumes its maximum. This tends to be
approximately true in corresponding models with finitely many servers.

5. relaxation time: approach to steady state

For a stationary model, it is important to understand how the system approaches steady
state as time evolves, starting with various typical special initial conditions, such as
starting empty. A very simple revealing formula exists for the Mt/GI/∞ model; formula
(20). It shows how m(t) approaches the steady state value m(∞) = λES when the



system starts empty. That is achieved by letting λ(t) = λ for t ≥ 0, but letting λ(t) = 0
for t < 0.. In particular,

m(t)
m(∞)

= Ge(t) = P (Se ≤ t) < t ≥ 0.

Thus we might say that ESe is approximately the time required to approach steady
state. Since steady state is approached gradually, some simplification is needed in the
definition.

6. sinusoidal and other periodic arrival rates

The sine paper describes results for periodic arrival rate functions,

λ(t) = λ̄ + β sin (γt,

as in (6), which we assume holds for all t into the infinite past.

The key fact is that m inherits structure from λ. The function m(t) is also sinusoidal with
the same frequency, but there is a time lag and space shift there too. Hence revealing
formulas are available. In particular, a general formula for the mean m(t) is given in
Theorem 4.1 when the arrival rate function is given in (6). The case of exponential
service times yields a convenient explicit formula; see (15) in Section 5:

m(t) = λ̄ +
β

1 + γ2
(sin (γt)− γ cos (γt)) .

7. starting in the infinite past

It is important to point out and emphasize that the simple formulas for the sinusoidal
arrival rate function depend on starting in the infinite past. Starting at time 0 is covered
as the special case in which λ(t) = 0 for t < 0. But that assumption makes the formulas
for m(t).

8. staffing: the 1996 paper

We briefly discussed the 1996 staffing paper. The infinite-server (IS) approximation,
or offered-load approximation, we have been discussing should be contrasted with the
pointwise-stationary approximation (PSA) and the simple stationary approximation (SSA)
there, for the case of a sinusoidal arrival-rate function. The PSA approximates the time-
dependent performance at time t by the performance of the stationary model with con-
stant arrival rate equal to λ(t), The SSA approximates the performance at all times t by
the performance of the stationary model with average arrival rate. When the arrival rate
changes slowly compared to the mean service time, the PSA performs well. When the
arrival rate changes very rapidly compared to the mean service time, the SSA performs
well. We can understand by looking at the explicit formula for m(t) in the case of a si-
nusoidal arrival rate, given above. The rate of change depends on the scaling parameter
γ there.

Related topics not discussed in class:

1. Erlangs: the concept of offered load

An Erlang is a dimensionless quantity indicating the average amount of load in a stochas-
tic system. It is the mean number of busy servers in an associated infinite-server model.
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That notion is defined for a stationary model. We want to extend it to a nonstationary
model. The first idea is to go beyond arrival rate and include the service requirements.
The second idea is to adjust for nonstationarity. We regard m(t) above as the time-
varying offered load.

2. the modified offered load approximation

An important concept and method is the modified offered load (MOL) approximation.
The idea is to use a stationary model at each time t but with the arrival rate depending on
the time-varying offered load m(t) instead of the arrival rate function λ(t). In particular,
at time t we use the stationary model with arrival rate function

λMOL(t) ≡ m(t)
ES

.

This tends to work well.

3. networks of infinite-server queues

The theory extends to networks of infinite-server queues; e.g., see W. A. Massey and
WW, Networks of Infinite-Server Queues with Nonstationary Poisson Input. Queueing
Systems, vol. 13, No. 1, 1993, pp. 183-250.

4. many subsequent developments

See Y. Liu and WW, Stabilizing Customer Abandonment in Many-Server Queues with
Time-Varying Arrivals. Operations Research, vol. 60, No. 6, November-December 2012,
pp. 1551-1564.
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