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Professor Whitt, Tuesday, October 22, 2013

Renewal Theory: Proof of Blackwell’s theorem

1 Delayed Renewal Processes: Exploiting Laplace Transforms

The proof of Blackwell’s theorem in Chapter 9 exploits delayed renewal processes, especially
the equilibrium renewal process.

We first discussed delayed renewal processes, as in Section 3.5 of Ross. The intervals are
again independent. The first interval then has distribution G, while all subsequent intervals
have cdf F , where we assume F has mean µ ≡ E[X] =

∫∞
0 x dF (x) < ∞. We keep the

assumption that all intervals between points are mutually independent, but now we give the
first interval a different distribution.

Some of the properties of delayed renewal processes can be established by Laplace trans-
forms. Again, we emphasize that Ross uses unconventional notation for Laplace transforms,
so that our notation differs. See pages 19-20. For a general function g(t), I would write its
Laplace transform as

ĝ(s) ≡
∫ ∞

0
e−stg(t) dt ,

but Ross writes instead
ĝ(s) ≡

∫ ∞

0
e−st dg(t) .

That is really a Laplace-Stieltjes transform of g. In fact, arbitrary functions do not have
Laplace-Stieltjes transforms. For a cdf F with a density (pdf) f , we would write

F̂ (s) ≡
∫ ∞

0
e−stF (t) dt ,

and
f̂(s) ≡

∫ ∞

0
e−st dF (t) =

∫ ∞

0
e−stf(t) dt ,

which makes

F̂ (s) =
f̂(s)

s
.

I too use a Laplace-Stieltjes transform here, but I have different notation for ordinary Laplace
transform and for Laplace-Stieltjes transform. Laplace-Stieltjes transforms are well defined
if the function is monotone, as with a cdf or the renewal function, or even for functions of
bounded variation, which are differences of two monotone functions.

We can use transforms to establish that me(t) = t/µ, which implies equation (1). In
particular, the Laplace transform is

m̂e(s) ≡
∫ ∞

0
e−stme(t) dt =

1
s2µ

.

For a delayed renewal process, we have

mD(t) ≡ E[N(t)] = G(t) +
∫ t

0
m(t− u)dG(u) ,



where F is the cdf between renewals, except for the first interval, which has cdf G, and m
is the renewal function of the ordinary renewal process associated with cdf F . Using Laplace
transforms, we get

m̂D(s) ≡
∫ ∞

0
e−stmD(t) dt = Ĝ(s) + m̂(s)ĝ(s).

Since

m̂(s) =
f̂(s)

s(1− f̂(s))
and Ĝ(s) =

ĝ(s)
s

,

we get

m̂D(s) =
ĝ(s)

s(1− f̂(s))
.

Since,

f̂e(s) =
1− f̂(s)

sµ
,

we get

m̂e(s) =
1

s2µ
,

as claimed.
As an aside, we point out that it is also possible to start from the representation

mD(t) =
∞∑

n=1

G ∗ Fn−1(t),

as a variant of Proposition 3.2.1, where the first F is replaced by G. Then with transforms we
get

m̂D(s) =
∞∑

n=1

(ĝ(s)f̂(s)n−1)/s = (ĝ(s)/f̂(s))m̂(s),

which also gives the formula above.

2 The Equilibrium Renewal Process

We next focus on equilibrium renewal processes. A delayed renewal process becomes
an equilibrium renewal process when the first exceptional interval is distributed as Fe, the
stationary-excess cdf or equilibrium-lifetime cdf or equilibrium-residual-lifetime cdf; i.e.,

Fe(t) ≡ 1
E[X]

∫ t

0
P (X > s) ds ≡ 1

µ

∫ t

0
F c(s) ds

where µ ≡ E[X] and F c(t) ≡ 1− F (t) ≡ P (X > t), t ≥ 0.
The equilibrium renewal processes are an important reference point for Blackwell’s theorem,

because for an equilibrium renewal process, the limit we want to prove holds as an equality.
Let mD(t) be the delayed renewal function, i.e., mD(t) ≡ E[ND(t)].

Let me(t) ≡ E[Ne(t)], where Ne ≡ {Ne(t) : t ≥ 0} is the equilibrium renewal counting
process. If the first interval has distribution Fe instead of G, then we have the equilibrium
renewal process, with the property that

me(t + b)−me(t) =
b

µ
for all t , (1)
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where µ = E[X], where X is a time between renewals, having cdf F . See Theorem 3.5.2 on
page 131. We proved this in class. Our proofs of parts (i) and (ii) were different, because we
use different notation for Laplace transforms and because we started with the renewal equation
for P (Y (t) > x) to then construct the expression for the residual lifetime in a delayed renewal
process, P (YD(t) > x). In particular, we first considered the ordinary renewal process and
wrote down

P (Y (t) > x) = P (X1 > t + x) +
∫ t

0
P (Y (t− s) > x) dF (s)

and then wrote down its solution in the usual way as

P (Y (t) > x) = F c(t + x) +
∫ t

0
F c(t + x− s) dm(s).

We then observed that if the first interval has cdf G, then we simply must change the first
term on the right, getting

P(YD(t) > x) = Gc(t + x) +
∫ t

0
Fc(t + x− s)dm(s).

We then do calculations (rearranging an integral) to see that P (Ye(t) > x) = F c
e (x) when we

make two substitutions above: G = Fe and m(t) = me(t) ≡ t/E[X], as shown in Ross.
A further important reference case is a Poisson process. Then F = Fe and me(t) = m(t) =

λt for all t. (It is important to note that F = Fe if and only if F is exponential.) We then have
mD(t) = λt provided the initial distribution G is the exponential distribution F with mean
1/λ. Otherwise, we even have some trouble proving the limit (3) for a delayed Poisson process
(where G 6= F ). The argument here covers the delayed Poisson process as well as the more
general case in (1).

3 Stationary Point Processes

There is an important connection to the theory of stationary point processes; see Section
3.8 in Ross. There are many books on stationary point processes; e.g., see K. Sigman (1995),
Stationary Marked Point Processes: An Intuitive Approach, Chapman and Hall, and F. Baccelli
and P. Brémaud (1994) Elements of Queueing Theory, Springer. The counting process Ne(t) :
t ≥ 0} associated with an equilibrium renewal process is a stationary point process (from the
continuous-time counting process perspective); it has stationary increments (but not necessarily
independent increments). It turns out that the interval until the first point in a stationary
point process always has cdf Fe.

On the other hand, the ordinary renewal process {N(t) : t ≥ 0} is the associated Palm
version, because the associated discrete-time sequence {Xn : n ≥ 1} is a stationary process.
(For a renewal process, this sequence {Xn : n ≥ 1} is actually IID.) The equilibrium renewal
process differs from the ordinary renewal process only by the distribution of the first interval.
For more general stationary processes, the Palm transformation is more complicated. As
an application of the Palm transformation, I mentioned the fundamental queueing identity
L = λW ; e.g., see W. Whitt, A Review of L = λW and Extensions, Queueing Systems, vol. 9,
No. 3, 1991, pp. 235-268:

http://www.columbia.edu/ ww2040/ReviewLlamW91.pdf
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4 Blackwell’s Theorem

Consider a renewal process {N(t) : t ≥ 0} with times between renewals Xk having cdf F . Let
m(t) ≡ E[N(t)] be the renewal function.

This lecture is devoted to a discussion of Blackwell’s theorem and its proof. We focus
on the proof given in Chapter 9 of Ross, in particular, as given on page 422. That proof has
an extra condition, as stated in (9.3.4) on p. 423, but it illustrates a clever argument, based
on coupling. A great reference on coupling is the book by Lindvall (1992); see p. 456 of Ross.

A great reference on renewal theory and a source of further references is Asmussen (2003).
The basics are in Chapter V, but important related theory is in Chapters VI and VII, with
more related material throughout the book. We discussed Section V.4 giving four equivalent
statements of the renewal theorem, one of which is the Blackwell theorem and another is the
key renewal theorem. The other two are convergence in distribution as t →∞ of the residual
lifetime (forward excess) Y (t) and convergence in distribution of the age (backward excess)
A(t) to limits distributed according to the equilibrium excess Fe.

Of course we need to assume that F is non-lattice, but there is a corresponding result for
the lattice case. We also assume that the mean E[X] < ∞, but there is also a statement for
the case E[X] = ∞.

We want to prove:

Theorem 4.1 (Blackwell’s theorem) If F is a non-lattice cdf with finite mean, then

m(t + b)−m(t) → b

µ
as t →∞ , (2)

where µ = E[X], where X is a time between renewals, having cdf F . If, instead, we have a
delayed renewal process with initial cdf G, and using F thereafter, then

mD(t + b)−mD(t) → b

µ
as t →∞ , (3)

This is Proposition 3.5.1 (iii) on page 125. It extends Theorem 3.4.1 (i) on page 110.

5 Stochastic Order Relations

The extra condition imposed in (9.34) on p. 423 of Ross is that the hazard rate (or failure
rate) function is well defined and bounded away from 0 and ∞, i.e., there exist constants c1

and c2 such that

0 < c1 ≤ h(x) ≡ f(x)
F c(x)

≤ c2 < ∞ for all x. (4)

In order to have (4), we need for F to have a pdf f .
The extra condition (4) can be expressed as a stochastic order relation. From that per-

spective, it says that
Y1 ≥h X ≥h Y2,

where ≥h is “greater than or equal to” in hazard-rate stochastic ordering defined in
(9.3.1) on p. 420 and Yi is an exponential random variable with mean 1/ci. Useful background
is the material on stochastic order in Chapter 9. Hazard rate ordering X1 ≤h X2 means
that hX1(x) ≥ hX1(x) for all x ≥ 0. Hazard rate ordering is equivalent to X1,t ≤st X2,t,
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where ≤st is ordinary stochastic order, as in §9.1, and Xt is a random variable with the cdf
P (Xt ≤ s) ≡ P (X ≤ s + t|X > t) for s ≥ 0; see p. 421. That is easy to see because

P (X ≤ s + t|X > t) = exp {−
∫ s+t

t
h(u) du}.

Since the hazard rate function h arises as the derivative of the logarithm of F c(t). As a
consequence, we have the useful representation

F c(t) = exp {−
∫ t

0
h(x) dx}, t ≥ 0.

6 Proof of Blackwell’s theorem

The proof of Blackwell’s theorem is given on pages 423-424 of Ross. The following discussion
elaborates on the overall argument and points not discussed enough in Ross. We do not repeat
many of his (important) detailed steps. This should be read together with Ross.

The following lemma shows that if the cdf F satisfies (4) than so does the stationary-excess
cdf Fe. The lemma plays a key role in the proof.

Lemma 6.1 Consider a nonnegative random variable X with cdf F having probability density
function (pdf) f and hazard rate function h ≡ f/F c. Let Fe be the associated stationary-excess
cdf, having pdf fe ≡ F c/E[X] and hazard rate function he ≡ fe/F c

e . If the inequalities in (4)
hold, then

c1 ≤ he(x) ≤ c2 for all x. (5)

Proof of the lemma. The argument is essentially the same for each of the inequalities.
Hence, consider the second inequality. Note that the second inequality in (4) is equivalent to

f(x) ≤ c2F
c(x) for all x. (6)

Given (6), we can integrate both sides over the interval [t,∞) to get

E[X]fe(t) =
∫ ∞

t
f(x) dx ≤ c2

∫ ∞

t
F c(x) dx = c2E[X]F c

e (t), (7)

which is equivalent to the second inequality in (5). The same reasoning applies to the first
inequalities.

The proof of Theorem 4.1 in Chapter 9 uses coupling. We construct the delayed renewal
process and the ordinary renewal process on the same space by thinning a common Poisson
process with the upper bound rate λ2. (See §9.3 for this step.) We make the delayed renewal
process be the equilibrium renewal process, so it satisfies the limit to be established as an
equality. We discussed how this construction is a common way to simulate a nonhomogeneous
Poisson process. In that setting, we generate the nonhomogeneous Poisson process by sim-
ulating the ordinary Poisson process and then thinning it to construct the nonhomogeneous
Poisson process.

With this construction of the two renewal processes, after some random time, these two de-
layed renewal processes have a common point. We then couple the two processes by redefining
the renewal process after this common point to coincide with the equilibrium renewal process.
This leaves the distribution of each of the two processes unchanged (as a process by itself), but
of course the construction introduces a special form of dependence between the two processes,
which will not concern us. Then further calculations yield the limit in (3).

The remaining details are given on pages 420-424. In particular, care is needed to properly
establish (9.3.5) on p. 424.
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7 Summary

In summary we have the following key concepts:

• Blackwell’s renewal theorem, Theorems 3.4.1 and 3.5.1 (iii),

• lattice and non-lattice probability distributions, p. 109,

• stochastic order, failure-rate stochastic order (hazard-rate stochastic order), Chapter 9,

• delayed renewal process, equilibrium renewal process, Section 3.5,

• stationary point processes, Section 3.8,

• age, residual lifetime, stationary-excess cdf or equilibrium residual-lifetime cdf Fe,

• coupling.
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