
IEOR 6711: Stochastic Models I

Fall 2013, Professor Whitt

Class Lecture Notes: Tuesday, October 29.

Markov Chains

The Contraction approach to π = πP

The limit for aperiodic irreducible finite-state DTMC’s.

There is a nice simple limit for aperiodic irreducible finite-state Markov chains. For any
initial probability vector u ≡ (u1, . . . , um), the probability vector at time n is

P (Xn = j) = (uPn)j =
m∑

i=1

uiP
n
i,j .

The key limiting result is

Theorem 0.1 If P is the transition matrix of an aperiodic irreducible finite-state Markov
chain with transition matrix P , then, for any initial probability vector u,

uPn → π as n →∞ ,

where the limiting probability vector π is the unique stationary probability vector, i.e., the
unique solution to the fixed-point equation

π = πP or πj =
m∑

i=1

πiPi,j for all j ,

where πj ≥ 0 for all j and
∑

j πj = 1.

Note the conditions: Of course, irreducibility is essential. And aperiodicity is essential to get
full convergence, as opposed to convergence of averages, or convergence through appropriate
subsequences. The method of proof here is designed to apply to finite-state chains. The
proof extends to infinite-state chains under the condition that there is some state j such that
Pi,j ≥ ε > 0 for all states i, or P k

i,j ≥ ε > 0 for some k. This is a strong extra condition saying
that there is a state j such that there is a probability of at least ε > 0 of going to j in one step
(or in k steps, as a weaker version of the same condition), from any other state. With that
extra condition, we not only get convergence, we get convergence quickly, geometrically fast.
We actually provide a proof without this condition, but we do not get such quick convergence
unless the condition holds.

The Contraction Proof.

One way to prove this result and others is to apply renewal theory. That is done in the
Ross textbook. An alternative way to prove the theorem is to consider the transition matrix



P as an operator on the space of all probability vectors, here taken to be of dimension m,
corresponding to there being m states. An operator on a space maps the space into itself. If
u is a probability vector, then P maps u into the probability vector uP , corresponding to the
probability vector starting with u and then taking one step according to P , i.e.,

(uP )j =
m∑

i=1

uiPi,j for all j .

We want the underlying space to be a complete metric space and the operator to be a contrac-
tion map. Then we can apply the Banach fixed-point theorem, also called the Banach-Picard
fixed-point theorem or the contraction fixed-point theorem; see pages 220-221 from the blue
Rudin book, Principles of Mathematical Analysis, posted on line.

The proof can be done in two steps:

step 1.
In the first step, you prove that some power of P has all positive entries (using the assump-

tion that P is an m×m transition matrix of an irreducible aperiodic Markov chain).

Example 0.1 We remark at the outset that the worst case has P1,2 = P2,3 = · · · = Pm−1,m =
1, while Pm,1 > 0, Pm,2 > 0 and Pm,j = 0 for all j ≥ 3. Note that, for this example, P k

1,1 > 0 for
k = m, k = 2m, k = 2m−1, k = 3m, k = 3m−1, k = 3m−2, k = 4m, k = 4m−1, k = 4m−2,
k = 4m−3, and so forth. In this example, we have P k

1,1 > 0 for k = (m−2)m, but P k
1,1 = 0 for

k = (m− 2)m + 1, but then we have P k
1,1 > 0 for all k ≥ (m− 1)m− (m− 2) = m2 − 2m + 2.

Lemma 0.1 For any states i and j 6= i, P k
i,j > 0 for some k, with 1 ≤ k ≤ m− 1.

Proof. We use the fact that the chain is irreducible. Let Si,k be the set of states reachable
from state i in at most k steps, with Si,0 ≡ {i}. By the irreducibility, the sets Si,k have to be
strictly increasing in k for every k until Si,k = {1, 2, . . . ,m}, the full state space. Otherwise,
the DTMC would not be irreducible. Since there are only m − 1 other states, all these other
states have to be reached in at most m−1 steps. If the increase is by more than a single state,
then the number k will be strictly less than m− 1. Hence, indeed, for any states i and j 6= i,
P k

i,j > 0 for some k, with 1 ≤ k ≤ m− 1. But, in general, the value k depends on the states i
and j.

As a corollary to the last conclusion, we deduce the following:

Corollary 0.1 For any state i, there necessarily is a k ≤ m such that P k
i,i > 0.

Proof. To start, there must be some j such that Pi,j > 0. Then, by the reasoning above,
P l

j,i > 0 for some l ≤ m− 1. But then P l+1
i,i > Pi,jP

l
j,i > 0. Finally, since l ≤ m− 1, necessarily

l + 1 ≤ m.
Now we apply the aperiodicity to obtain a further result.

Lemma 0.2 There exists a constant n0 such that P k
i,i > 0 for all k ≥ n0.

Proof. We have shown above that P k
i,i > 0 for some k with 1 ≤ k ≤ m. Since the chain is

aperiodic, there necessarily exist constants k1 and k2 such that the greatest common divisor of
k1 and k2, gcd(k1, k2), is 1, and P k1

i,i > 0 and P k2
i,i > 0. But then P k

i,i > 0 for all k ≥ k1k2. This

2



last step follows from the Euclidean algorithm for elementary diophantine linear equations; see
Bezout’s identity; i.e., we seek integers a and b such that

ak1 + bk2 = k1k2 + j

for each j ≥ 1. It thus suffices to find integers a and b such that

ak1 + bk2 = j,

which is possible for all j because gcd(k1, k2) = 1.
We can do better in this last step, but the reasoning is somewhat complicated. We have

the following sharper result from Section 2.4 of Seneta, Non-negative Matrices and Markov
Chains, second edition, Springer, 1981, in particular from Theorem 2.9 on page 58.

Theorem 0.2 For all k ≥ m2 − 2m + 2, P k
i,j > 0 for all i and j.

In closing this part, we observe that the bound above on the number of steps required to
get a completely positive power of P depends on the number m of states. Indeed, it essentially
grows with the square of m. Note that m2 − 2m + 2 ≤ m2 for all m ≥ 1,

step 2.
In the second step, you assume that at least one column of P has all positive elements.

(By step 1, that will necessarily occur after at most m2 steps.)
We then want to show that P , regarded as an operator, is a contraction map, assuming

that at least one column of P has all positive elements. That implies that there exists a unique
fixed point and that there is convergence to that fixed point at a geometric rate: For any initial
probability vector u ≡ (u1, . . . , um),

d(uP k, π) ≤ ckd(u, π) for all k ,

for the metric d. That yields a geometric rate of convergence. In Markov-chain theory we speak
of geometric ergodicity. There is a literature on this topic, primarily focusing on DTMC’s with
infinitely many states.

Finding the appropriate norm on Rm.
The space we will be looking at is a subset of Rm, containing all probability measures and

their differences. We will use a distance defined via a standard norm. That means that the
distance is

d(x, y) ≡ ||x− y|| ,

where || · || is the norm. We will consider a standard norm on Rm; the question is which one.
Some norms do not work, but one does.

Consider the transition matrix:

P =




0.95 0.01 0.01 0.01 0.01 0.01
0.95 0.01 0.01 0.01 0.01 0.01
0.95 0.01 0.01 0.01 0.01 0.01
0.01 0.95 0.01 0.01 0.01 0.01
0.01 0.95 0.01 0.01 0.01 0.01
0.01 0.95 0.01 0.01 0.01 0.01



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and the two probability vectors:

u = (1/3, 1/3, 1/3, 0, 0, 0)

and
v = (0, 0, 0, 1/3, 1/3, 1/3) .

Then consider the probability vectors uP and vP . We want to have

||uP − vP || ≤ c||u− v|| ,

where 0 ≤ c < 1, for some norm || · ||; then the desired distance is d(u, v) ≡ ||u− v||.
Look at the two vectors we get when we apply P to u and v:

uP = (0.95, 0.01, 0.01, 0.01, 0.01, 0.01)

and
vP = (0.01, 0.95, 0.01, 0.01, 0.01, 0.01) .

There are three natural norms to consider on Rm: the l∞, l2 and l1 norms:

||x||∞ ≡ max {|xi|} ,

||x||2 ≡
√√√√

(
m∑

i=1

|xi|2
)

,

||x||1 ≡
m∑

i=1

|xi| . (1)

It is not difficult to see that

||u− v||∞ = 1/3 ,

||u− v||2 =
√

6/9 =
√

2/3 < 1 ,

||u− v||1 = 2 (2)

and It is not difficult to see that

||uP − vP ||∞ = 0.94 ,

||uP − vP ||2 =
√

2× (0.94)2 = 1.329 ,

||uP − vP ||1 = 2× 0.94 = 1.88 . (3)

By this example, we prove that the norms ||x||∞ and ||x||2 do not work. However, it turns
out that the norm ||x||1 does work.

Theorem 0.3 Let P be a m×m Markov-chain transition matrix associated with an irreducible
Markov chain. Assume that Pi,1 ≥ ε > 0 for all i, 1 ≤ i ≤ m. Then

||uP − vP ||1 ≤ (1− ε)||u− v||1 .
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Proof. Note that

||uP − vP ||1 =
m∑

j=1

|
m∑

i=1

uiPi,j −
m∑

i=1

viPi,j | .

Now write
Pi,1 ≡ ε + Qi,1 and Pi,j ≡ Qi,j for j 6= i , for all i .

Then Q is a nonnegative m×m matrix with row sums 1− ε. Now observe that

m∑

j=1

|
m∑

i=1

uiPi,j −
m∑

i=1

viPi,j | = |
m∑

i=1

ui(ε + Qi,1)−
m∑

i=1

vi(ε + Qi,1)|+
m∑

j=2

|
m∑

i=1

uiQi,j −
m∑

i=1

viQi,j |

= |
m∑

i=1

uiQi,1 −
m∑

i=1

viQi,1|+
m∑

j=2

|
m∑

i=1

uiQi,j −
m∑

i=1

viQi,j |

=
m∑

j=1

|
m∑

i=1

uiQi,j −
m∑

i=1

viQi,j |

≤
m∑

j=1

m∑

i=1

|ui − vi|Qi,j =
m∑

i=1

m∑

j=1

|ui − vi|Qi,j = (1− ε)||u− v||1 .(4)

with the equality in the second line holding because the epsilon terms can be dropped out,
using

m∑

i=1

(ui − vi) = 0 ,

because u and v are probability vectors, summing to 1.
We remark that we would obtain a stronger contraction property if we applied the above

reasoning to all m columns. We would strengthen the assumption in the theorem to: Assume
that, for each column j, Pi,j ≥ εj ≥ 0 for all i, 1 ≤ i ≤ m, with εj > 0 for at least one j. We
would then use the reasoning above to obtain the stronger conclusion:

||uP − vP ||1 ≤ c||u− v||1 ,

where

c = (1−
m∑

j=1

εj) < 1.

It is not difficult to see that we must have
∑m

j=1 εj < 1.

5


