
IEOR 6711: Stochastic Models I

SOLUTIONS to First Midterm Exam, October 10, 2010

Justify your answers; show your work.

1. Exponential Random Variables (23 points)

Let X1 and X2 be independent exponential random variables with means E[X1] ≡ 1/λ1

and E[X2] ≡ 1/λ2. Let

M1 ≡ min {X1, X2} and M2 ≡ max {X1, X2}.

Compute and derive the following quantities:

(a) P (M1 > t, M1 = X1),

————————————————————————
We start out establishing basic properties of exponential distribution, as on the concise

summary page.

P (M1 > t, M1 = X1) =
∫ ∞

t
fX1(x)F c

2 (x) dx

=
∫ ∞

t
λ1e

−λ1xe−λ2x dx

=
(
e−(λ1+λ2)t

)(
λ1

λ1 + λ2

)

= P (M1 > t)P (M1 = X1), (1)

showing independence of the two marginal distributions in the last line.

————————————————————————

(b) P (M1 > t|M1 = X1),

————————————————————————
By part (a), P (M1 > t|M1 = X1) = P (M1 > t) = e−(λ1+λ2)t.

————————————————————————

(c) V ar(M1 + M2),

————————————————————————
Since M1 + M2 = X1 + X2, V ar(M1 + M2) = λ−2

1 + λ−2
2 .

————————————————————————

(d) P (M1 > t1, M2 > t2).

————————————————————————
There are two cases. The main case is t1 < t2. If t1 ≥ t2, then

P (M1 > t1, M2 > t2) = P (M1 > t1) = e−(λ1+λ2)t1 .

Hence, assume that t1 < t2. It is convenient to rewrite, getting

P (M1 > t1,M2 > t2) = P (M1 > t1)− P (M1 > t1,M2 ≤ t2).



Then

P (M1 > t1,M2 ≤ t2) = P (t1 < X1 < t2)P (t1 < X2 < t2)
= (e−λ1t1 − e−λ1t2)(e−λ2t1 − e−λ2t2)

so that

P (M1 > t1,M2 > t2) = e−(λ1+λ2)t1 − (e−λ1t1 − e−λ1t2)(e−λ2t1 − e−λ2t2)
= e−λ1t1−λ2t2 + e−λ1t2−λ2t1 − e−λ1t2−λ2t2 .

————————————————————————

(e) Now suppose that λ1 = λ2 = λ. Compute the probability density function (pdf) of
X1 −X2.

————————————————————————
This is a basic exercise is convolution. When λ1 = λ2 = λ the pdf of X1 − X2 is the

symmetric bilateral exponential distribution f(x) = (λ/2)e−λ|x| on the entire real line. In
detail, for x > 0,

fX1−X2(x) =
∫ ∞

x
fX1(y)fX2(y − x) dy =

λ

2
e−λx.

The reasoning is essentially the same for x < 0.

————————————————————————

2. Characteristic Functions and Cauchy Random Variables. (24 points)

For a random variable Y with pdf fY (x), let φY (θ) be its characteristic function (cf),
defined by

φY (θ) ≡ E
[
eiθY

]
=

∫ +∞

−∞
eiθxfY (x) dx ,

where i ≡ √−1. We review two properties of cf’s: (i) When the cf φY is an integrable function,
the pdf fY can be recovered from the cf by the inversion formula

fY (x) =
1
2π

∫ +∞

−∞
e−iθxφY (θ) dθ . (2)

(ii) If E[|Y |k] < ∞, then φY has a continuous kth derivative given by

φ
(k)
Y (θ) =

∫ +∞

−∞
(ix)keixθfY (x) dx.

(a) In the setting of Problem 1 (e), compute the cf of X1 −X2.

————————————————————————
By elementary calculations,

φX1(θ) =
λ

λ− iθ
and φ−X2(θ) =

λ

λ + iθ
.

Hence

φ(X1−X2)(θ) = φX1(θ)φ−X2(θ) =
λ2

λ2 + θ2
.
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————————————————————————

(b) Suppose that Y is a Cauchy random variable (centered at 0) with positive scale param-
eter σ; i.e., suppose that Y has pdf

fY (x) ≡ σ

π(σ2 + x2)
, −∞ < x < +∞ . (3)

Show that Y has cf φY (θ) = e−σ|θ|. (Hint: Use parts 1 (e) and 2 (a) with (2).)

————————————————————————
Given the answers to parts 1 (e) and 2 (a), we can directly apply the inversion formula,

as suggested. This is a standard “duality” for characteristic functions. See Section XV.2 of
Feller, vol. II. These are examples 7 and 8 in Table 1 on p. 503. By the inversion formula

fY (x) =
1
2π

∫ +∞

−∞
e−iθxφY (θ) dθ

=
1
2π

∫ +∞

−∞
e−iθxe−σ|θ| dθ

=
1

σπ

∫ +∞

−∞
e−iθx σ

2
e−σ|θ| dθ

=
(

1
σπ

)(
σ2

σ2 + (−x)2

)

=
σ

π(σ2 + x2)
,

where the fourth line follows from part (a). Notice that the integral has the same form with
−x here playing the role of θ in part (a).

————————————————————————

(c) What does Property (ii) above and part (b) imply about E[|Y |]?
————————————————————————
This question applies basic calculus or real analysis. The absolute value appearing in the cf

implies that the cf is not differentiable. Thus, by the theorem quoted previously, the mean of
|Y |, E[|Y |], must not be finite. It is not difficult to see that the mean must be infinite directly,
because

x2fY (x) → σ/π as x → ±∞.

Hence, xfY (x) = O(1/x), so that we must have

∫ ∞

0
xfY (x) dx =

∫ 0

−∞
|x|fY (x) dx = ∞.

————————————————————————

(d) Suppose that Y1, Y2, . . . are i.i.d. random variables with the Cauchy pdf in (3) and let
Ȳn ≡ (Y1 + · · ·+ Yn)/n for n ≥ 1. Use part (c) to describe the asymptotic behavior of Ȳn and√

nȲn as n →∞.

————————————————————————
From part (c), we know that the standard LLN does not apply: The SLLN requires that

the random variables being added have finite mean. Hence, we do not have Ȳn ⇒ E[Y ] = 0
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as n → ∞. (In particular, the mean of Y does not exist and so is not actually 0, despite the
symmetry. Hence, Ȳn does not converge to any constant as n →∞.) In fact, we can say much
more: Using the cf, we immediately see that the average Ȳn has a distribution independent of
n, i.e., is the same as Y1:

φȲn
(θ) = φY (θ/n)n = (e−σ|θ/n|)n = e−σ|θ| = φY (θ).

Hence, trivially, the average Ȳn converges in distribution to the original Cauchy law, i.e.,

Ȳn ⇒ Y1 as n →∞.

As a consequence, the limit exists (in distribution), but the limit has a nondegenerate dis-
tribution. Since, Ȳn ⇒ Y1, it follows that

√
nȲn diverges. In particular, we do not have the

conventional central limit theorem holding here.

————————————————————————

3. More exponential random variables. (28 points)

Let {Yn : n ≥ 1} be a sequence of i.i.d. (independent and identically distributed) exponen-
tial random variables, each having mean 1. For n ≥ 4, let Xn = 1 if Yn = max {Yn, Yn−1, Yn−2, Yn−3};
otherwise, let Xn = 0. Also let X1 = X2 = X3 = 0. For n ≥ 1, let Zn = n2 if Yn2 =
max {Y1, Y2, . . . , Yn2−1, Yn2}.

(a) (2 points) Determine the mean and variance of Xn, and the covariance cov(Xn, Xn+1)
for n ≥ 4.

————————————————————————
Since the distribution is continuous, the probability of any multiple values (ties) is zero. The

ordering of the vector (Y1, . . . , Yn) can be represented as a random permutation of the vector
(1, 2, . . . , n), where k denotes the kth smallest. For example, for n = 3, if Y2 > Y3 > Y1, then the
outcome is (1, 3, 2). The key property is that all n! permutations are equally likely. There are
(n− 1)! permutations with the maximum element in the right place. Each one is equally likely
to be the maximum. Hence, E[Xn] = E[X2

n] = 1/4, so that V ar(Xn) = 1/4− (1/4)2 = 3/16.
The random variables Xn and Xn+1 are dependent. We see that we have XnXn+1 = 1

if and only if among 5 consecutive Yi (i = n − 3, . . . n + 1), Yn+1 is the maximum, and then
Yn is the second largest. The first event happens with probability 1/5. The second event,
conditional on the first, happens with probability 1/4. Hence

E[XnXn+1] = (1/5)× (1/4) = 1/20.

so that

cov(Xn, Xn+1) = E[XnXn+1]− E[Xn]E[Xn+1] =
(

1
20

)
−

(
1
4

)2

= −1/80.

The successive Xn are slightly negatively correlated (consistent with intuition).

————————————————————————

(b) (2 points) Determine the mean and variance of Zn, and the covariance cov(Zn, Zn+1).

————————————————————————

E[Zn] = n2(1/n2) = 1 and E[Z2
n] = n4(1/n2) = n2,
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so that
V ar(Zn) = E[Z2

n]− (E[Zn])2 = n2 − 1.

Given Zn+1 = 1, we know that Y(n+1)2 is the largest of the first (n + 1)2 values of Yj .
However, the remaining ((n + 1)2 − 1)! permutations of the remaining integers are equally
likely. Hence,

P (Zn = 1|Zn+1 = 1) = P (Zn = 1),

so that Zn and Zn+1 are independent. Finally, independence implies that the variables are
uncorrelated. Hence, cov(Zn, Zn+1) = 0.

————————————————————————

(c) (6 points) For n ≥ 1, Let X̄n = (X1 + · · · + Xn)/n. Prove or disprove: X̄n converges
w.p.1 (with probability one) to a finite limit c. If the limit exists, then identify the constant c.

————————————————————————
This is a minor variant of Problem 1.37 in the first homework. We exploit the fact that

the sequence of random variables {X4k : k ≥ 1} ≡ X4, X8, X12, . . . are i.i.d. with P (X4k =
1) = 1/4! = 1/24 = 1 − P (X4k = 0). Similarly, the sequences {X4k+1; k ≥ 1} ≡ X5, X9, . . .,
{X4k+2 : k ≥ 1} ≡ X6, X10, X14, . . . and {X4k+3 : k ≥ 1} ≡ X7, X11, X15, . . . are each i.i.d.
with the same distribution. Hence, the strong law of large numbers (SLLN) applies to each
of these subsequences separately. That in turn implies that the SLLN holds for the entire
sequence, with c = 1/4. More generally, this example is a special case of m-dependence, a
form of weak dependence.

————————————————————————

(d) (6 points) In the setting of part (c), Prove or disprove: There exists a finite constant c
such that E(X̄n − c)2 → 0 as n →∞. If the limit exists, then identify the constant c.

————————————————————————
The limit does exist with c = 1/4, which is E[Xn]. In this case,

E(X̄n − c)2 = V ar(X̄n) =
1
n2




n∑

j=1

n∑

k=1

Cov(Xj , Xk)




=
1
n2


O(1) +

n∑

j=1

(V ar(Xj) + 6Cov(Xj , Xj+1))




=
1
n2

(
n

(
3
16

)
+ 6n

(−1
80

)
+ O(1)

)

→ 0 as n →∞,

where O(1) is the negligible error caused by the end effects.

————————————————————————

(e) (6 points) For n ≥ 1, let Z̄n = (Z1 + · · ·+ Zn)/n. Prove or disprove: Z̄n converge w.p.1
to a finite limit c. If the limit exists, then identify the constant c.

————————————————————————
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Here we apply the Borel-Cantelli lemma to show that P (Zn 6= 0 i.o.) = 0. That follows
because ∞∑

n=1

P (Zn 6= 0) =
∞∑

n=1

P (Zn = n2) =
∞∑

n=1

(1/n2) < ∞.

Whenever, the events {Zn 6= 0} occur only finitely often, Z̄n → 0. Hence, we have Z̄n → 0
w.p.1.

————————————————————————

(f) (6 points) In the setting of part (e), Prove or disprove: There exists a finite constant c
such that E(Z̄n − c)2 → 0 as n →∞. If the limit exists, then identify the constant c.

————————————————————————
There does not exist a constant c such that there is convergence in the mean-squared (in

L2). Note that
E(Z̄n − c)2 = V ar(Z̄n) + (c−E[Zn])2,

so that suffices to consider c = E[Z̄n] = 1 and it suffices to focus on V ar(Z̄n). However,

V ar(Z̄n) =
1
n2

n∑

k=1

V ar(Zk) =
1
n2

n∑

k=1

(k2 − 1)

=
1
n2

(
n(n + 1)(2n + 1)

6
− n)

)

→ ∞ as n →∞,

being of order O(n). Indeed, V ar(Z̄n)/n → 1/3 as n →∞ by the reasoning above.

————————————————————————

4. The Columbia Space Company (25 points)

Columbia University has decided to start the Columbia Space Company, which will launch
satellites from its planned Manhattanville launch site beginning in 2013, referred to henceforth
as time 0. Allowing for steady growth, the Columbia Space Company plans to launch satellites
at an increasing rate, beginning at time t = 0. Specifically, they anticipate that they will
launch satellites according to a nonhomogeneous Poisson process with rate λ(t) = 2t satellites
per year for t ≥ 0. Suppose that the successive times satellites stay up in space are independent
random variables, each exponentially distributed with mean 2 years.

(a) What is the probability (according to this model) that no satellites will actually be
launched during the first three years (between times t = 0 and t = 3)?

————————————————————————
Let N(t) count the number of satellite launches in the interval [0, t]. The stochastic process

N ≡ {N(t) : t ≥ 0} is directly a nonhomogeneous Poisson process, as in Section 2.4.

P (N(3) = 0) =
e−m(3)m(3)0

0!
= e−m(3),

where

m(t) ≡
∫ t

0
λ(u) du =

∫ t

0
2u du = t2. (4)

Hence, m(3) = 32 = 9 and the answer is e−9.
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————————————————————————

(b) What is the probability that precisely 7 satellites will be launched during the second
year (between times t = 1 and t = 2)?

————————————————————————

P (N(2)−N(1) = 7) =
e−m(1,2)m(1, 2)7

7!
,

where m(s, t) ≡ m(t)−m(s) for

m(t) ≡
∫ t

0
λ(u) du =

∫ t

0
2u du = t2. (5)

Hence, m(1, 2) = 22 − 12 = 3. The final answer is thus

P (N(2)−N(1) = 7) =
e−337

7!
.

————————————————————————

(b) Let S(t) be the number of satellites in space at time t. Give an expression for the
probability distribution of S(6)?

————————————————————————
This part is an application of the infinite-server queue, i.e., the Mt/GI/∞ model, as in the

“physics” paper or Chapter 2 of Ross. We know that S(t) has a Poisson distribution for each
t, where the mean function is

m(t) =
∫ t

0
λ(u)Gc(t− u) du =

∫ t

0
2ue−(1/2)(t−u) du, t ≥ 0.

Hence,

P (S(6) = k) =
e−m(6)m(6)k

k!
,

where

m(6) =
∫ 6

0
2ue−(1/2)(6−u) du. (6)

————————————————————————

(c) Let R(t) be the number of satellites that have been launched and have returned to earth
in [0, t]. Give an expression for the joint probability P (S(6) = 7, R(6) = 8).

————————————————————————
From Theorem 1 of the physics paper (and the Poisson random measure representation

there), we know that S(6) and R(6) are independent random variables with means E[S(6)] =
m(6) given in (6) above and

E[R(t)] =
∫ t

0
λ(u)G(t− u) du for t = 6.

However, we know that S(6) + R(6) = N(6), the total number of satellites launched in [0, 6].
Since E[N(6)] = 62 = 36, by the reasoning in parts (a) and (b), we can write E[R(t)] =
36−E[S(t)]. Finally, we have

P (S(6) = 7, R(6) = 8) =

(
e−E[S(6)]E[S(6)]7

7!

)(
e−E[R(6)]E[R(6)]8

8!

)
,
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using the formulas for the means already given.

————————————————————————

(d) Give an expression for the covariance Cov(S(6), S(8)).

————————————————————————
This is explained by Theorem 2 and Figure 3 in the physics paper. From the Poisson

measure representation, this covariance coincides with the variance of the number of points in
a region bounded by two vertical lines and one 45 degree line, which in turn coincides with the
mean number in that region. As a consequence,

Cov(S(6), S(8)) =
∫ 6

0
λ(u)Gc(8− u) du =

∫ 6

0
2ue−(1/2)(8−u) du.

————————————————————————
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