
IEOR 6711: Stochastic Models I

SOLUTIONS to First Midterm Exam, 2013

There are five questions, each with multiple parts.

Justify your answers; show your work.

2. Random Hats (15 points)

At a party n people each come wearing a hat. When they leave, a random hat is assigned
to each person, with each hat being equally likely.

(a) What is the expected number of people who leave with the same hat they had when
they arrived?

(b) What is the variance of the number of people who leave with the same hat they had
when they arrived?

———————————————————————-
This is the matching problem; see Example 1.3(A) and 1.5(F). Let Xi = 1 if the ith person

gets his own hat. Then, for any i and j with i 6= j,

P (Xi = 1) =
1
n

and P (Xi = 1, Xj = 1) = P (Xj = 1|Xi = 1)P (Xi = 1) =
1

n− 1
1
n

=
1

n(n− 1)
,

so that
V ar(Xi) =

n− 1
n2

and Cov(Xi, Xj) =
1

n(n− 1)
− 1

n2
=

1
n2(n− 1)

Let X ≡ X1 + · · ·+ Xn. Then

E[X] = nE[X1] = 1 and V ar(X) = nV ar(X1) + 2
(

n!
2!(n− 2)!

)
Cov(Xi, Xj) = 1.

See pages 10-11.

———————————————————————-

(c) Suppose that this hat-matching experiment is repeated in independent experiments
with larger and larger groups, with n people in the nth experiment for all n ≥ 2. Let N be
the number of times among all these experiments that two designated people (assumed to be
present in all experiments) both get their own hat back. What is P (N < ∞) and why?

———————————————————————-
We have observed that in the experiment with n people,

P (Xi = 1, Xj = 1) =
1

n(n− 1)
.

Since ∞∑

n=2

1
n(n− 1)

< ∞,

we conclude that P (N < ∞) = 1 by the Borel-Cantelli lemma on p. 4.



However, in this case we can actually compute the mean. Note that

E[N ] =
∞∑

n=2

1
n(n− 1)

=
∞∑

n=2

(
1

n− 1
− 1

n

)
= 1 < ∞.

Since E[N ] < ∞, necessarily P (N < ∞) = 1.

———————————————————————-

3. Variance Formulas (20 points)

At a party n people each come wearing a hat. When they leave, a random hat is assigned
to each person, with each hat being equally likely.

(a) Let X and Y be two real-valued random variables. Assume that E[X2] < 1. Prove or
disprove:

V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ]),

where V ar(X|Y ) is defined by

V ar(X|Y ) ≡ E[(X − E[X|Y ])2|Y ].

———————————————————————-
This is the conditional variance formula; see Exercise 1.22 (answer in the back on p.

477. Care is needed here. It is good to write out E[V ar(X|Y )] and V ar(E[X|Y ]) and add
them. When we do this, we see that each contains the term E[(E[X|Y ])2]. But in the sum
these terms cancel.

———————————————————————-

(b) Let {N(t) : t ≥ 0} be a Poisson process with rate λ. Let {Xn : n ≥ 1} be a sequence of
independent random variables, each distributed as X, where E[X2] < ∞. Prove or disprove:

V ar




N(t)∑

i=1

Xi


 = λtV ar(X).

———————————————————————-
This is false. The correct statement should be

V ar




N(t)∑

i=1

Xi


 = λtE[X2].

We can apply the conditional variance formula in part (a), conditioning on N(t), to get

V ar




N(t)∑

i=1

Xi


 = E[N(t)]V ar(X) + V ar(N(t)E[X]) = λt(V ar(X) + E[X]2) = λtE[X2].

———————————————————————-

3. The New Six (6) Subway Line. (20 points)

A new subway line has been added to the West Side for the convenience of Columbia
students. It has six stations. There are stations at 86th street (station 1), 96th street (station
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2), 106th street (station 3), 116th street (station 4), 126th street (station 5) and 136th street
(station 6).

We consider only the northbound subway. A northbound subway arrives at station 1 every
10 minutes. The travel time between successive stations is constant, equal to 2 minutes.
Suppose that the subway stations and the subway trains have unlimited capacity and that the
time to load and unload passengers can be ignored. Suppose that the subway runs continuous,
day and night.

For 1 ≤ i ≤ 5, customers arrive at station i to use the northbound subway according to a
Poisson process with rate λi per minute. Suppose that each customer entering station i gets
off at station j with probability Pi,j , independently of all other customers, where Pi,j > 0 if
and only if j > i and

6∑

j=i+1

Pi,j = 1 for all i, 1 ≤ i ≤ 5.

———————————————————————-
We remark that this problem is a minor modification and elaboration of assigned homework

exercise 2.14.

———————————————————————-

(a) Give an expression for the expected number of customers to get on the subway (neces-
sarily going north) at each visit to station i.

———————————————————————-
Let Ni(t) be the number of customers that arrive at station i in the interval [0, t], where

the initial time 0 is chosen to be an instant at which the subway arrives at station i. Since the
subway arrives at each station every 10 minutes, we want

E[Ni(10)] = 10λi.

———————————————————————-

(b) Give an expression for the probability generating function of the number of customers
to get on the subway at each visit to station i.

———————————————————————-
Let Ni be the number that get on the subway at each visit to station i. It is Poisson with

mean mi = 10λi. Hence,

P (Ni = k) =
mk

i e
−mi

k!
where mi = 10λi

and the probability generating function is

P̂Ni(z) = E[zNi ] =
∞∑

k=0

zkP (Ni = k) = e10λi(z−1).

———————————————————————-

(c) Give an expression for the expected value of the sum of the waiting times of all customers
to get on the subway at each visit to station i.

———————————————————————-
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This is a minor variant of Example 2.3(A) on p. 68. Let S be the sum of all the waiting
times. We exploit the conditional-uniform property, discussed in §2.3. We condition on
Ni and then uncondition. We use the fact that, conditional on Ni = k, the k arrival times are
distributed as the order statistics of k i.i.d. random variables, each uniformly distributed over
the interval [0, 10]. Hence,

E[S|Ni = k] = 5k

so that

E[S] =
∞∑

k=0

E[S|Ni = k]P (Ni = k) =
∞∑

k=0

5kP (Ni = k) = 5E[Ni] = 50λi

———————————————————————-

(d) Suppose that 8 customers get on the subway at station 1 at one specified time. What
is the probability that exactly 3 of these customers had to wait more than 4 minutes before
getting on the subway?

———————————————————————-
Let A be the event in question. We again exploit the conditional uniform property. Con-

ditional on 8 arrivals, each can be regarded as arriving according to i.i.d. uniform variables in
[0, 10]. The probability that each has to wait more than 4 minutes is p = 0.6. The probability
that 3 have to wait more than 4 minutes is then binomial:

P (A) =
(

8!
3!5!

)
p3(1− p)5 =

(
8!

3!5!

)
(0.6)3(0.4)5.

(no need to go further in the calculation)

———————————————————————-

(e) Give an expression for the probability that the number of customers getting off the
northbound subway at a visit to station 4 is exactly j.

———————————————————————-
Let Di be the number of departures (getting off the subway) at each visit to station i, By

the independent thinning and the independent superposition of Poisson processes,
D4 has a Poisson distribution with mean

δ4 ≡ E[D4] = 10λ1P1,4 + 10λ2P2,4 + 10λ3P3,4,

Hence,

P (D4 = j) =
δj
4e
−δ4

j!

for δ4 defined above.
To elaborate, the numbers Ni,j to get on at station i with destination j are independent

Poisson variables by independent thinning. Then the sum of independent Poisson variables is
Poisson.

———————————————————————-

(f) Give an expression for the probability that, simultaneously, the number of customers
getting off the northbound subway at a visit to station 4 is j and the number getting off at
the next stop, at station 5, is k.
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———————————————————————-
Again, by the independent thinning and the independent superposition of Poisson processes,

D4 and D5 are independent Poisson random variables. (The variables Ni,j and Nl,k are
independent for all i and l if j 6= k.) Hence,

P (D4 = j, D5 = k) = P (D4 = j)P (D5 = k)

=

(
δj
4e
−δ4

j!

)(
δk
5e−δ5

k!

)

where δ4 is given in the previous part and

δ5 ≡ E[D5] = 10λ1P1,5 + 10λ2P2,5 + 10λ3P3,5 + 10λ4P4,5.

———————————————————————-

(g) Suppose that λi = 12 − 2i for all i, 1 ≤ i ≤ 5, Pi,j = 1/(6 − i) for all i and j with
j > i (1 ≤ i ≤ 5 and 2 ≤ j ≤ 6). Determine a convenient accurate approximation for the
probability that the number of customers getting off the northbound subway at one specified
visit to station 6 is greater than 130? Is that probability more than 1/20? Why is your
approximation justified?

———————————————————————-
We are interested in D6. Under these extra assumptions E[D6] = 100. Since the variance

equals the mean, we have V ar(D6) = 100 and
√

V ar(D6) = 10. Hence, we use a normal
approximation:

P (D6 > 130) = P

(
D6 − E[D6]√

V ar(D6)
>

130− E[D6]√
V ar(D6)

)

≈ P

(
N(0, 1) >

130− E[D6]√
V ar(D6)

)

= P

(
N(0, 1) >

130− 100]√
100

)

= P

(
N(0, 1) >

30
10

)
≈ P (N(0, 1) > 3.0) ≈ 0.0013

For the final numerical details, we only need to know that P (N(0, 1) > 3.0) < 0.05. Everybody
should know that without calculating. The approximation is justified by the central limit
theorem. It applies because a Poisson random variable with mean nm can be written as the
sum of n i.i.d. Poisson random variables, each of mean m.

———————————————————————-

4. modes of convergence (15 points)

Consider a sequence of real-valued random variables {Xn : n ≥ 1}.
(a) Define convergence of Xn to a random variable X in (i) mean square, (ii) in probability

and (iii) with probability 1.

———————————————————————-
The modes of convergence are discussed in the lecture notes of Thursday, September 5.
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(i) E[|Xn −X|2] → 0 as n →∞
(ii) For all ε > 0, P (|Xn −X| > ε) → 0 as n →∞
(iii) P (limn→∞Xn = X) ≡ P ({ω ∈ Ω : limn→∞Xn(ω) = X(ω)}) = 1,
where Ω is the underlying sample space and ω is an element in the space Ω. In the

above definitions we assume that the notion of convergence for a sequence of real numbers is
understood.

———————————————————————-

(b) Prove or disprove: Convergence of Xn to a random variable X in mean square implies
convergence of Xn to a random variable X in probability.

———————————————————————-
This conclusion is valid. It can be proved by Markov’s inequality, Lemma 1.7.1 on p. 39.

For any ε and n,

P (|Xn −X| > ε) ≤ E[|Xn −X|2]
ε2

→ 0 as n →∞.

by the mean-square convergence.

———————————————————————-

(c) Prove or disprove: Convergence of Xn to a random variable X in mean square implies
convergence of Xn to a random variable X with probability 1.

———————————————————————-
This conclusion is not valid. See Counterexample 2 on page 4 of the notes for September

5. Such examples are harder to construct than it might seem.

———————————————————————-

5. peaks (15 points)

Let {Xn : n ≥ 1} be a sequence of i.i.d. random variables with a continuous cdf F . We say
that a peak occurs at time n if Xn−1 < Xn > Xn+1. Let Nn be the number of peaks among
the first n variables. Prove or disprove:

Nn

n
→ 1

3
as n →∞ with probability 1.

———————————————————————-
This is homework exercise 1.37, assigned in the first homework. See the written solutions.

We break up the random variables into three groups and apply the SLLN to each group and
then combine the results to get the overall result. In particular, we let Yn = 1 if Xn is a peak
and Yn = 0 otherwise. Since Xn has a continuous cdf, P (Yn = 1) = 1/3. Then we look at
the three sequences {Y3n−2 : n ≥ 1}, {Y3n−1 : n ≥ 1} and {Y3n : n ≥ 1}. Since the random
variables in each sequence are i.i.d. and bounded, the SLLN applies to each sequence. We
then combine the limits to get the result. We use: If an → a and bn → b as n → ∞, then
an + bn → a + b as n →∞ for sequences of real numbers.

———————————————————————-
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