
IEOR 6711: Stochastic Models I

Second Midterm Exam, Chapters 3-4, November 18, 2012

SOLUTIONS

Justify your answers; show your work.

1. Forecasting the Weather (12 points)

Consider the following probability model of the weather over successive days. First, suppose
that on each day we can specify if the weather is rainy or dry. Suppose that the probability
that it will be rainy on any given day is a function of the weather on the previous two days.
If it was rainy both yesterday and today, then the probability that it will be rainy tomorrow
is 0.7. If it was dry yesterday, but rainy today, then the probability that it will be rainy
tomorrow is 0.5. If it was rainy yesterday, but dry today, then the probability that it will be
rainy tomorrow is 0.4. If it was dry both yesterday and today, then the probability that it will
be rainy tomorrow is 0.2. Let Xn be the weather on day n.

(a) (2 points) Calculate the conditional probability that it rains tomorrow but is dry on
the next two days, given that it rained both yesterday and today.

—————————————————————————

P (Xn+1 = R,Xn+2 = D,Xn+3 = D|Xn−1 = R,Xn = R) = P (Xn+1 = R|Xn−1 = R,Xn = R)

×P (Xn+2 = D|Xn = R,Xn+1 = R) × P (Xn+3 = D|Xn+1 = R,Xn+2 = D)

= (0.7)(0.3)(0.6) = 0.126

—————————————————————————

(b) (5 points) Is the stochastic process {Xn : n ≥ 0} a Markov chain? Why or why not? If
not, construct an alternative finite-state stochastic process that is a Markov chain.

—————————————————————————
No, the stochastic process {Xn : n ≥ 0} is not a Markov chain. It fails to have the Markov

property. The probability of a future event, e.g., the weather tomorrow, conditional on present
and past states does not depend only on the present state.

We now develop a DTMC. We let the state be (Xn−1,Xn), combining the states of Xn on
days n− 1 and n. Thus there are four states instead of two. The DTMC then transitions from
the state (Xn−1,Xn) to the state (Xn,Xn+1). Note that part of the new stat is determined by
the previous state. The model is the transition matrix

P =

1 ≡ RR
2 ≡ DR
3 ≡ RD
4 ≡ DD









0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8









,

where the columns are labeled in the same way, and the same order, as the rows.

—————————————————————————



(c) (5 points) With your Markov chain model in part (b), calculate the long-run proportion
of days that are rainy.

—————————————————————————
We solve π = πP with the 4 × 4 transition matrix in part (b). That gives the limiting

probability
lim

n→∞
{P (((Xn−1,Xn) = j)},

where j is one of the four states. To get the desired long-run probability we must add π(R,R) +
π(D,R) = π(R,R) +π(R,D). (Equality holds because we can look at either the limit of (Xn−1,Xn)
and sum over the possible values of Xn−1 to get the marginal distribution of Xn or the limit of
(Xn,Xn+1) and sum over the possible values of Xn+1 to get the marginal distribution of Xn.)

When solving π = πP , we get the equations:

0.7π1 + 0.5π2 = π1

0.4π3 + 0.2π4 = π2

0.3π1 + 0.5π2 = π3

0.6π3 + 0.8π4 = π4

π1 + π2 + π3 + π4 = 1

From equation 1, we get π1 = (5/3)π2. Then, using this in equation 3, we get π3 = 0.3(5/3)π2+
0.5π2 = π2. Hence, π2 = π3 From equation 4, we get π4 = 3π3. Combining the last two
equations, we get π4 = 3π2.

From the final equation, we then get π2 = 3/20. Thus,

π ≡ (π1, π2, π3, π4) = (5/20, 3/20, 3/20, 9/20).

Thus the long run proportion of days that are rainy is

π1 + π2 = π1 + π3 =
8

20
=

2

5
.

—————————————————————————

2. Back and Forth to Campus (18 points)

Professor Prhab Hubilliti lives at the bottom of the hill on the corner of 117th Street and
7th Avenue. Going each way - up hill to to teach his class at Columbia or down hill back home
- Prhab either runs or walks. Going up the hill, Prhab either walks at 2 miles per hour or
runs at 4 miles per hour. Going down the hill, Prhab either walks at 3 miles per hour or runs
at 6 miles per hour. In each direction, he always runs the entire way or walks the entire way.
Since Prhab often works late into the night, he often gets up late, and has to run up hill to
get to his class. On any given day, Prhab runs up hill with probability 3/4 and walks up hill
with probability 1/4. On the other hand, Prab is less likely to run going back home. On any
given day, he runs down hill with probability 1/3 and walks down hill with probability 2/3.
The distance in each direction is 1 mile.

(a) (6 points) What is the long-run proportion of Prhab’s total travel time going to and
from campus that he spends going up hill to campus?

—————————————————————————
The main idea is to exploit renewal theory. Successive round trips can be considered the

i.i.d. renewals. In more detail, we can regard this as an alternating renewal process, based
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on the sequence {(Un,Dn);n ≥ 1} of i.i.d. random vectors of nonnegative random variables,
where Un is the time to go uphill and Dn is the time to go uphill on the nth trip. In this case,
Un and Dn are independent as well. The cycles are Xn = Un + Dn. Let each cycle start with
an uphill trip and end with a downhill trip.

However, the analysis can be quite simple for this problem. The idea is to apply the simple
renewal reward theory from §3.6 of Ross. Indeed, this problem is a minor variation of the
truck driver problem in the lecture notes of October 4.

Let U equal the time to go up and let D equal the time to go down. Use the renewal reward
formula

Long run average reward =
average reward per cycle

average length of cycle

=
E[U ]

E[U ] + E[D]
=

(5/16)

(5/16) + (5/18)
=

18

34
=

9

17
≈ 0.529

To elaborate, actual calculation requires care. we need to use the formula D = RT ,
i.e., “distance equals rate multiplied by time.” Hence, T = D/R. Since here D = 1, the time
is simply the reciprocal of the speed. hence

E[U ] =

(

3

4
×

1

4

)

+

(

1

4
×

1

2

)

=
5

16
hour

Similarly, E[D] = 5/18.

—————————————————————————

(b) (6 points) What is the long-run proportion of Prhab’s total travel time going to and
from campus that he spends walking up hill to campus?

—————————————————————————
The general approach is the same. The mean cycle length is the same, but now there is a

reward only if he is walking up hill.

Long run average reward =
average reward per cycle

average length of cycle

=
E[U ; walking]

E[TU ] + E[TD]
=

(1/8)

(5/16) + (5/18)
=

36

170
=

18

85
≈ 0.21

—————————————————————————

(c) (6 points) Suppose that Prhab’s sister in India happens to call him (at a time that can
be taken to be at random, independent of his travel schedule, which Prhab has been following
for a long time) while he is going up hill to campus. If he talks to her throughout the rest of
his trip uphill, ending the call at his usual destination, and if his mode of travel is unaltered
by the phone call, then what is the expected length of the phone call?

—————————————————————————
There are two parts to this problem: (i) determining what the answer should be and (ii)

proving that the answer is correct. The second part is much harder than the first, because the
time between renewals is lattice in this example.

But determining the answer is not hard. We can create a renewal process out of the
successive trips uphill, ignoring the trips downhill and the times spent on campus. An interval
between renewals is a time to go uphill. If the time to go up hill U has cdf F , then the
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remaining time during the phone call has cdf Fe, the stationary forward excess. (Recall the
lecture notes of October 11 for more on the excess.) The cdf is Fe because the system is viewed
as being in steady state, i.e., in equilibrium, since the call is assumed to be “at a time that
can be taken to be at random, independent of his travel schedule. See Theorem 3.5.2.

Since U has a two-point distribution, this F and Fe are very similar to the distribution of
Xn in problem 1. Let X and Xe be random variables with cdf’s F and Fe, respectively. A fast
answer follows from the formula

E[Xk
e ] =

E[Xk+1]

(k + 1)E[X]
, k ≥ 1,

which we only need to consider for k = 1. First, E[TU ] = 5/16 from part (a). Second,

E[T 2
U ] =

(

3

4
×

1

16

)

+

(

1

4
×

1

4

)

=
7

64
.

Hence we have

E[Xe] =
E[X2]

(2)E[X]
=

(7/64)

2(5/16)
=

7

40
hours = 10.5 minutes.

But it is not so hard to first calculate the pdf fe(x) = F c(x)/E[X1], and then calculate its
mean.

more careful analysis.

To justify that the length of the call is distributed according to Fe, we can reason more
carefully. It is directly defined as a conditional distribution. Let X(t) = 1 if Prhab is walking
up hill during his travel time, and let X(t) = 0 if he is walking down hill. Let L(t) be the
remaining length of the call at time t. Let U(t) be the remaining length of the uphill trip
during the cycle in progress at time t. (If Prhab is going down hill at time t, then U(t) = 0.)

P (L(t) > x) = P (X(t) = 1, U(t) > x|X(t) = 1) =
P (X(t) = 1, U(t) > x)

P (X(t) = 1)
.

But we want to consider the system in equilibrium. The stochastic process {X(t) : t ≥ 0} is a
regenerative process, as in §3.7 and the lecture notes of November 13. Let {Xe(t) : t ≥ 0} be
the equilibrium or stationary version. Introduce e subscripts everywhere. Then we get

P (Le(t) > x) = P (Xe(t) = 1, Ue(t) > x|Xe(t) = 1) =
P (Xe(t) = 1, Ue(t) > x)

P (Xe(t) = 1)
.

However,

P (Xe(t) = 1) =
E[U ]

E[U ] + E[D]
(1)

and

P (Xe(t) = 1, Ue(t) > x) =
E[U ]F c

e (x)

E[U ] + E[D]
. (2)

That is, the stationary version Xe requires starting in state 1 with probability p ≡ E[U ]/(E[U ]+
E[D]) and starting in state 0 otherwise. In addition, it requires that, given that we start in
state 1, the length of time we remain there is distributed as Ue. Similarly, given that we start
in state 0, the length of time we remain there is distributed as De. Since X is not a Markov
process, we must initialize more than just the possible values of X(0).
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We can justify equations (1) and (2) by applying the renewal reward theorem. The sta-
tionary probabilities must coincide with the average reward per cycle divided by the average
length of a cycle, for an appropriately defined reward function. Let the reward at time t be 1
is X(t) = 1 and U(t) > x. Then

P (Xe(t) = 1, Ue(t) > x) =
ave reward per cycle

ave cycle length

=
E[(U1 − x)+]

E[X1]
==

∫∞
x

P (U1 > y) dy

E[X1]

=

(

E[U1]

E[X1]

)

F c
e (x) =

E[U1]F
c
e (x)

E[U1] + E[D1]

as given in (2).

The reasoning could be more straightforward for nonlattice distributions. Then we could
apply Theorem VI.1.2 on p. 170 of Asmussen (2003). Or we could regard this as a simple semi-
Markov process and apply Theorem 4.8.4 in Ross, which is very similar. Ti apply Asmussen,
we let the regenerative process be the vector process {(X(t), U(t),D(t)) : t ≥ 0}, where X(t)
and U(t) are defined as above, while D(t) is the length of the remaining downhill trip in the
cycle in progress at time t. Note that this process also is a regenerative process, but it also
is a Markov process. We now can apply Theorem VI.1.2 on p. 170 of Asmussen (2003). It
gives the stationary version of the expectation of any function of the regenerative process. Let
f(X(t), U(t),D(t)) = 1 if X(t) = 1 and U(t) > x. Then the theorem states that

P (Xe(t) = 1, Ue(t) > x) = Ee[f(X(t), U(t),D(t))]

=
1

E[X1]
E[

∫ X1

0
f(X(t), U(t),D(t)) dt] =

E[(U1 − x)+]

E[X1]

=

∫∞
x

P (U1 > y) dy

E[X1]
=

(

E[U1]

E[X1]

)

F c
e (x) =

E[U1]F
c
e (x)

E[U1] + E[D1]

The righthand side of the second line expresses the expected value of an integral over the first
cycle, stating at the beginning of a renewal cycle. This justifies the more difficult step above.
There is no issue with

P (Xe(t) = 1) =
E[U1]

E[U1] + E[D1]
,

which can be obtained in the same way.

—————————————————————————

3. Random Walk on a Graph (30 points)
Consider the graph shown in the figure above. There are 7 nodes, labelled with capital

letters and 8 arcs connecting some of the nodes. On each arc is a numerical weight specified by
the letter w with two subscripts, one for each node the arc connects. Consider a random walk
on this graph, where we move randomly from node to node, always going to a neighbor, via a
connecting arc. Let each move be to one of the current node’s neighbors, with a probability
proportional to the weight on the connecting arc. Thus the probability of going from node C
to node A in one step is wAC/(wAC +wBC +wCD), while the probability of moving from node
C to node B in one step is wBC/(wAC + wBC + wCD). Let Xn be the node occupied by the
random walk on the nth step.

The scoring is 5 points for each of the 6 parts.
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A

B

C

D

G

E

F

Random Walk on a Graph

wAB

wAC

wDG

wFG

wEF

wBC

wCD

wDE

(a) Prove or disprove: The stochastic process {Xn : n ≥ 0} is a time reversible irreducible
discrete-time Markov chain.

—————————————————————————
Yes, the stochastic process {Xn : n ≥ 0} is a time reversible irreducible discrete-time

Markov chain. The process is a Markov chain, because the transition probabilities depend
only on the present state and not the past. Since the graph is connected, the DTMC is
irreducible. The chain can get from any state to any other state in some finite number of
moves.

To establish reversibility, it suffices to show that the detailed or local balance conditions
hold, i.e.,

πiPi,j = πjPj,i for all i and j.

This is done in Proposition 4.7.1 in the book.

—————————————————————————

(b) Starting from node A, what is the expected number of steps required to return to node
A?

—————————————————————————
Since the DTMC is irreducible and has a finite state space, there necessarily is a uniques

solutuion to the equation π = πP . Let TA be the number of steps to return to state A for the
first time. We have

E[TA] =
1

πA
,

where

πA =

∑

j wA,j
∑

i

∑

j wi,j
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where i and j are understood to run over the nodes, and the value is 0 where no arc exists, as
given in Proposition 4.7.1

—————————————————————————

(c) Prove that your answer in part (b) is correct. (You may quote theorems without proof
as part of your proof.)

—————————————————————————
From parts (a) and (b), we have determined πA. Since the DTMC is aperiodic, we have

Pn
i,j → πj as n → ∞.

for any i and j, which in turn implies that

1

n

(

n
∑

k=1

P k
i,j

)

→ πj as n → ∞.

(This limit of averages also holds in periodic chains.) Let N(n) be the number of visits to state
A in the first n steps. Since successive visits to state A are renewals, the process {N(t) : t ≥ 0}
is a renewal process. By the elementary renewal theorem

E[N(t)]

t
→

1

E[TA]
as t → ∞.

However, letting j denote state A, we have

E[N(n)] =

n
∑

k=1

Pn
i,j

Hence, we have πj = πA = 1/E[TA], which implies the result in part (b).

—————————————————————————

(d) Give an expression for the expected number of visits to node G, starting in node A,
before going to either node B or node F .

—————————————————————————
We use the theory of absorbing Markov chains. To do so, we make states B and F absorbing

states and let the rest of the states be transient states. If we reorder the states so that the
transient states appear first, then we can write the transition matrix in block matrix form as

P =

(

I 0
R Q

)

,

where I is an identity matrix (1’s on the diagonal and 0’s elsewhere) and 0 (zero) is a matrix
of zeros. In this case, I would be 2× 2, R is 5× 2 and Q is 5× 5). The matrix Q describes the
probabilities of motion among the transient states, while the matrix R gives the probabilities
of absorption in one step (going from one of the transient states to one of the absorbing states
in a single step).

The answer is then NA,G, the entry of the matrix N from the row corresponding to transient
state A and the column corresponding to transient state G.

—————————————————————————
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(e) Prove that your answer in part (d) is correct. (You may quote theorems without proof
as part of your proof.)

—————————————————————————
As in the lecture notes of October 23, first suppose that we want to calculate the expected

number of times the chain spends in transient state j starting in transient state i. Let Ti,j be
the total number times and let Ni,j ≡ E[Ti,j ] be the expected number of times. It is convenient
to write

Ti,j = T
(0)
i,j + T

(1)
i,j + T

(2)
i,j + T

(3)
i,j + T

(4)
i,j + T

(5)
i,j + · · ·

where T
(k)
i,j is the number of times at the kth transition. Clearly, T

(k)
i,j is a random variable

that is either 1 (if the chain is in transient state j on the kth transition) or 0 (otherwise). By

definition, we say that T
(0)
i,j = 1 if i = j, but = 0 otherwise. Since these random variables

assume only the values 0 and 1, we have

Ni,j ≡ E[Ti,j ] = E[T
(0)
i,j + T

(1)
i,j + T

(2)
i,j + T

(3)
i,j + T

(4)
i,j + T

(5)
i,j + · · ·]

= E[T
(0)
i,j ] + E[T

(1)
i,j ] + E[T

(2)
i,j ] + E[T

(3)
i,j ] + E[T

(4)
i,j ] + E[T

(5)
i,j ] + · · ·

= P (T
(0)
i,j = 1) + P (T

(1)
i,j = 1) + P (T

(2)
i,j = 1) + P (T

(3)
i,j = 1) + P (T

(4)
i,j = 1) + · · ·

= Q0
i,j + Q1

i,j + Q2
i,j + Q3

i,j + Q4
i,j + Q5

i,j + · · ·

To summarize,

Ni,j ≡ Q
(0)
i,j + Q

(1)
i,j + Q

(2)
i,j + Q

(3)
i,j + · · · .

In matrix form, we have

N = Q(0) + Q(1) + Q(2) + Q(3) + · · ·

= I + Q + Q2 + Q3 + · · ·

where the identity matrix I here has the same dimension m as Q. (Since Q is the submatrix
corresponding to the transient states, Qn → 0 as n → ∞, where here 0 is understood to be a
matrix of zeros.)

Multiplying by (I−Q) on both sides, we get a simple formula, because there is cancellation
on the righthand side. In particular, we get

(I − Q) ∗ N = I ,

so that, multiplying on the left by the inverse (I − Q)−1, which can be shown to exist, yields

N = (I − Q)−1

We can be a little more careful and write

Nn ≡ I + Q + Q2 + Q3 + · · · + Qn .

Then the cancelation yields
(I − Q)Nn = I − Qn+1 .

We use the fact that Q is the part of P corresponding to the transient states, so that Qn

converges to a matrix of zeros as n → ∞. (We invoke the proposition that Qn → 0 as n → ∞.)
Hence, (I − Q)Nn → I as n → ∞. That in turn implies, by a theorem from linear algebra,
that

(I − Q)N = I ,
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which in turn implies that both N and I − Q are nonsingular, and thus invertible, yielding
N = (I − Q)−1, as stated above.

—————————————————————————

(f) Give an expression for the probability of going to B before going to node F , starting in
node A.

—————————————————————————
We use BA,B, where B is the matrix B = NR for the matrices R and N above, i.e., BA,B

is the entry from the row corresponding to transient state A and the column corresponding to
absorbing state B in the 5 × 2 matrix B.

4. A Renewal Process (52 points)

Let {N(t) : t ≥ 0} be a renewal process with times between renewals Xn having probability
distribution

P (Xn = 5) ≡
1

3
≡ 1 − P (Xn = 2).

Let Sn ≡ X1 + · · · + Xn, n ≥ 1, with S0 ≡ 0 (but there is no renewal at time 0). Let
m(t) ≡ E[N(t)] and Y (t) ≡ SN(t)+1 − t, t ≥ 0.

The scoring on Problem 4 is 4 points for each correct answer. Thus the maxi-
mum score is 13 × 4 = 52. Thus the maximum score on the entire test is 112.

(a) What is m(4)?

—————————————————————————
Since

m(t) =

∞
∑

n=1

P (Sn ≤ t),

P (S1 ≤ 4) = P (X1 ≤ 4) = P (X1 = 2) = 2/3, P (S2 ≤ 4) = P (X1 +X2 ≤ 4) = P (X1 = 2,X2 =
2) = (2/3)2 and P (Sn ≤ 4) = 0 for all n ≥ 3,

m(4) =
2

3
+

4

9
=

10

9
.

—————————————————————————

(b) Prove or disprove:

lim
t→∞

m(t)/t =
1

3
as t → ∞.

(You may quote a theorem without proof as part of your proof.)

—————————————————————————
From the definition above, E[Xn] = 3. By the elementary renewal theorem, Theorem 3.3.4

of Ross, the limit holds, as stated.

—————————————————————————

(c) Prove or disprove:

lim
t→∞

m(t + a) − m(t) =
a

3
as t → ∞ for all a > 0.

(You may quote a theorem without proof as part of your proof.)
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—————————————————————————
The obvious candidate theorem is Blackwell’s renewal theorem, but it does not apply in

the form above because the distribution is lattice with period 1. Thus, the correct answer
here is simply “No.” You could observe that a positive statement would hold if we let t → ∞
through an appropriate subsequence. That is, you could prove the lattice version of Blackwell’s
theorem, but that is not being asked for here. The lattice problem is looked at in more detail
in part (e) below.

What is asked for, though, is a proof that the answer is no. So, we do not stop, but give a
counterexample. Here is one:In particular,

m(t + a) − m(t) = 0 for a = 0.1 and t = k + 0.1 ≥ 1,

where k is an integer, because there are no points in intervals of the form [k + 0.1, k + 0.2] for
an integer k. On the other hand, by the lattice version of Blackwell’s theorem, Theorem 3.4.1
(ii),

m(t + a) − m(t) →
1

3
> 0 for a = 0.2 and t = k − 0.1 ≥ 1,

because the left side becomes the expected number of renewals at kd = d where d = 1 is the
period of the lattice distribution. Thus, there are subsequences of time points {tk : k ≥ 1} with
tk → ∞ with different limits. We have exhibited one subsequence with limit 0 and another
with limit 1/3. As a consequence, we have proved that the limit does not hold. (Note that
Blackwell’s theorem does not actually state that directly.)

—————————————————————————

(d) Prove or disprove:

P (XN(t)+1 > x) ≥ P (X1 > x) for all t > 0 and x ≥ 0.

—————————————————————————
Here and below, let F be the cdf of Xn. The assertion is correct for any cdf F , not just

the special one we have. The random variable XN(t)+1 is the lifetime at t. This problem was
in Section 2.1 of the lecture notes of October 11.

A simple proof is obtained by conditioning upon the last renewal prior to time t. First,

P (XN(t)+1 > x|SN(t) = t − s) = 1 if s > x.

Second, for s ≤ x, we also condition on N(t) + 1 and then uncondition, getting

P (XN(t)+1 > x|SN(t) = t − s,N(t) + 1 = n) = P (Xn > x|Xn > s)

=
1 − F (x)

1 − F (s)
≥ 1 − F (x).

Unconditioning on n, we get (still for s ≤ x),

P (XN(t)+1 > x|SN(t) = t − s) ≥ 1 − F (x).

Combining the above two results, we have

P (XN(t)+1 > x|SN(t) = t − s) ≥ 1 − F (x)

for all x and s. But now unconditioning on SN(t), we get the desired result, as stated above.
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In general, there is some issue about the meaning of the conditional probability P (XN(t)+1 >
x|SN(t) = t − s) because the conditioning event may have probability 0. Note that there is
no issue in this problem because SN(t) can take only finitely many values, since each Xn can
take only two values. Hence only some values t − s need be considered. More generally, the
conditional probability can easily be defined assuming that Xn has a pdf and conditioning
upon N(t) = n. If we condition upon N(t) = n, then SN(t) = Sn has a density, defined by
convolution, given the pdf of X1. So the conditional probability is well defined in the usual
elementary way. More generally, we have a regular conditional probability, which is covered in
measure-theoretic probability.

—————————————————————————

(e) Let un ≡ P (N(n + 0.5) − N(n − 0.5) = 1), n ≥ 1, and u0 ≡ 1 (without there being a
renewal at 0). Give explicit expressions for uj , 1 ≤ j ≤ 9.

—————————————————————————
Note that we are now looking at a discrete analog of renewal theory, with the sequence

{un;n ≥ 0}. From the distribution of Xn, we easily derive the following explicit expressions:

u0 ≡ 1 (by definition), u1 = 0, u2 = 2/3, u3 = 0, u4 = (2/3)2 = 4/9,

u5 = 1/3, u6 = (2/3)3 = 8/27, u7 = (2/3) × (1/3) + (1/3) × (2/3) = 4/9,

u8 = (2/3)4 = 16/81, u9 = 3 × (2/3)2 × (1/3) = 4/9.

—————————————————————————

(f) Does the limit of un as n → ∞ exist? Why or why not? If the limit exists, what is its
value?

—————————————————————————
Yes, the limit exists, by virtue of the lattice version of Blackwell’s theorem, Theorem 3.4.1

(ii) on p. 110. Here the period is d = 1 because that is the greatest common divisor of 2 and
5, the possible values of Xn. Hence,

un →
1

E[X1]
=

1

3
as n → ∞.

—————————————————————————

(g) Derive the generating function û(z) ≡
∑∞

n=0 unzn of the sequence {un : n ≥ 0} in (e).

—————————————————————————
We derive the generating function just as in the derivation of the Pollaczek-Khintchine

transform for the M/G/1 queue; see the lecture notes for November 1 and the textbook. We
can do that by developing a recursion for un for n ≥ 5. In particular, we have

un =
2

3
un−2 +

1

3
un−5, n ≥ 5.

We have already calculated the explicit expression for the initial terms up to u9 in part (e)
above. [As an aside, note that we can compute un for any n numerically directly from this
recursion, given the initial values from part (e).]

But we want the generating function. We now multiply both sides by zn and then add over
all n such that n ≥ 5. Then, if we multiply by zn and add over n ≥ 5 in the recursion, then

11



we get on the left

∞
∑

n=5

unzn = û(z) −

4
∑

n=0

unzn = û(z) − u0z
0 − u2z

2 − u4z
4 = û(z) − 1 −

2z2

3
−

4z4

9
.

Reasoning similarly, the righthand side becomes

∞
∑

n=5

(

2

3
un−2 +

1

3
un−5

)

zn =
2z2

3
[û(z) −

2
∑

n=0

unzn] +
z5

3
[û(z)]

=
2z2

3
[û(z) − u0z

0 − u2z
2] +

z5

3
[û(z)].

Hence, we have

û(z) − u0z
0 − u2z

2 − u4z
4 =

2z2

3
[û(z) − u0z

0 − u2z
2] +

z5

3
[û(z)]

or, inserting the known uk and recalling that z0 = 1, we have

û(z) − 1 −
2

3
z2 −

4

9
z4 =

2z2

3
[û(z) − 1 −

2

3
z2] +

z5

3
[û(z)].

Now, solving for û(z), we get

û(z) =
1

1 − 2z2

3 − z5

3

.

—————————————————————————

(h) How could you use the generating function û(z) in part (g) to compute un for any n?

—————————————————————————
We now can calculate un for any n ≥ 0 by numerically inverting the generating function.

Let G−1 be the operator mapping the generating function into its inverse. Then we have

un = G−1(û(z))

for û(z) given explicitly above. We thus have an explicit formula for un:

un = G−1

(

1

1 − 2z2

3 − z5

3

)

.

We can compute the inverse numerically by applying a numerical inversion algorithm for
generating functions An algorithm based on the Fourier-series method is similar to the algo-
rithm for Laplace transforms. See J. Abate and WW, “Numerical Inversion of Probability
Generating Functions,” Operations Research Letters, vol. 12, No. 4, 1992, pp. 245-251. But,
as noted above, we could numerically solve the recursion in part (g) too.

Let û(k)(z0) be the kth derivative of û(z) with respect to the variable z, evaluated at z = z0.
Note that û(0) = u0 and

û(k)(0) = k!uk, k ≥ 1.

Hence any numerical algorithm for computing derivatives could be used to calculate un.

—————————————————————————
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(i) Give an expression for P (Y (t) > 4) in terms of un, where Y (t) is the excess, defined at
the outset.

—————————————————————————
It is easily seen that we can have Y (t) > 4 if and only if there is a point at ⌊t⌋, or if t < 1,

where ⌊t⌋ is the “floor” function, giving the greatest integer less than or equal to t, and the
next interval is of length 5. Thus,

P (Y (t) > 4) =
u⌊t⌋

3
,

where un is defined as in part (e) above.

—————————————————————————

(j) Set up a renewal equation for P (Y (t) > 4), solve it, and relate your answer to part (i).

—————————————————————————
The excess has special structure because the Xn has a two-point distribution. Note that

P (Y (t) > x) = 0 for all x ≥ 5.
Let F be the cdf of Xn. As in §3 of the lecture notes for October 11, we derive the renewal

equation for P (Y (t) > x). Let F be the cdf of Xn. Then

P4(t) ≡ P (Y (t) > 4) = P (Y (t) > 4,X1 > t) + P (Y (t) > 4,X1 ≤ t)

= P (X1 > t + 4) +

∫ t

0
P4(t − s) dF (s)

But note that P (X1 > t + 4) = 0 unless t + 4 < 5, i.e., unless 0 ≤ t < 1.
So far, we have an equation with the desired P4(t) on both sides, so this is not the desired

end result. We now solve the renewal equation, getting

P4(t) ≡ P (Y (t) > 4) = P (X1 > t + 4) +

∫ t

0
P (X1 > t + 4 − s) dm(s)

= F c(t + 4) +

∫ t

0
F c(t + 4 − s) dm(s),

where F c(x) ≡ 1 − F (x),

m(t) =
∞
∑

n=1

P (Sn ≤ t) and P (Sn ≤ t) =

∫ t

0
P (Sn−1 ≤ t − s) dF (s), n ≥ 2,

with P (S1 ≤ x) = P (X1 ≤ x) = F (x). Thus, we have given an expression for m(t) in terms
of F and then an expression for P4(t) ≡ P (Y (t) > 4) in terms of F c and m(t) (and thus F ).
This is valid for any F , and thus for our specific F .

But now we look at what we have more closely. Observe that, for our specific F , F c(t+4) =
0 if t ≥ 1 and F c(t + 4) = 1/3 for 0 ≤ t < 1. Moreover, since Xn is integer-valued, we have

m(t) =

⌊t⌋
∑

k=1

uk

for the uk in part (e). Hence, from the solution of the renewal equation, we get an alternative
derivation of the formula in part (i):

P (Y (t) > 4) =
u⌊t⌋

3
,
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where un is defined as in part (e) above.

Remark. You could observe that

P (Y (t) > 4) = P (Y (⌊t⌋) > 4) for all t > 0,

because renewals can only occur at integer times. You could then observe that pj ≡ P (Y (j) >
4) satisfies the same recursion as uj in part (g) above. By looking ath the initial values, you
then see that

pj = uj/3, j ≥ 0.

—————————————————————————

(k) Let NG(t) be a new counting process obtained by letting X1 be distributed according
to the cdf G while the other random variables Xn for n ≥ 2 remain unchanged. Let mG(t) ≡
E[NG(t)]. Exhibit all cdf’s G such that mG(t) = t/3, t ≥ 0.

—————————————————————————
This part and the final two below concern the equilibrium renewal process, as treated in

§3.5 of Ross, see especially Theorem 3.5.2; also see the lecture notes of October 18. There is
one and only one such cdf G, namely G = Fe, where

Fe(x) ≡
1

E[X]

∫ x

0
P (X1 > s) ds

= (x/3)1[0,2](x) + [(2/3) + (1/9)(x − 2)]1[2,5](x) + 1[5,∞)(x),

where 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. That is, Fe has density fe ≡ F c(x)/E[X1],
where fe(t) = 1/3, 0 ≤ t ≤ 2, and fe(t) = 1/9, 2 ≤ t ≤ 5.

To see that there is only one such cdf G (in general), note that the Laplace transform
m̂G(s) ≡

∫∞
0 e−stmG(t) dt can be represented as

m̂G(s) =
ĝ(s)

s(1 − f̂(s)
,

which equals 1/E[X]s2, the Laplace transform of t/E[X], if and only if ĝ(s) = f̂e(s) = (1 −
f̂(s))/sE[X].

—————————————————————————

(l) Prove or disprove: There exists a cdf G (with G(t) → 1 as t → ∞) such that the
stochastic process {NG(t); t ≥ 0} has stationary increments.

—————————————————————————
If the stochastic process {NG(t) : t ≥ 0} has stationary increments, then mG(t) = ct.

Thus, necessarily it must be the stationary renewal process with G = Fe, by part (k), because
we have mG(t)/t → 1/E[X1] by the generalization of the elementary renewal theory, so the
constant c must be c = 1/E[X1]. Hence, there is at most one cdf G that will work: Fe.

It remains to show that the delayed renewal process with initial cdf G = Fe has stationary
increments. As in Ross, we observe that the increment NG(t+u)−NG(t) may be interpreted as
the number of renewals in an interval of length u starting with the time until the first renewal
of YG(t). Thus we will show that, when G = Fe, that distribution is independent of the time
t. Hence, the stochastic process {Ne(t) : t ≥ 0} has stationary increments.
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Thus, we show that the distribution of YG(t) is independent of t. From part (e), we have

Px(t) ≡ P (Y (t) > x) = F c(t + x) +

∫ t

0
F c(t + x − s) dm(s).

for the ordinary renewal process. If we instead consider the delayed renewal process, where X1

has cdf G, then we obtain instead

Px(t) ≡ P (YG(t) > x) = Gc(t + x) +

∫ t

0
F c(t + x − s) dm(s).

If we then let G = Fe, we have m(t) = t/E[X1] and

Px(t) ≡ P (YFe
(t) > x) = F c

e (t + x) +
1

E[X1]

∫ t

0
F c(t + x − s) ds

= F c
e (t + x) + F c

e (x) − F c
e (t + x) = F c

e (x),

as shown on p. 132 of Ross. In particular, note that P (YFe
(t) > x) is independent of t. Hence,

the stochastic process {Ne(t) : t ≥ 0} has stationary increments.

—————————————————————————

(m) Prove or disprove: There exists a cdf G (with G(t) → 1 as t → ∞) such that the
stochastic process {NG(t); t ≥ 0} has stationary and independent increments.

—————————————————————————
No such cdf G exists. To prove it, we could first note by parts (k) and (l), that there is

only one cdf G, namely, Fe, such that the process {NG(t); t ≥ 0} has stationary increments.
We consider that cdf G = Fe that yields stationary increments. Then, for any t ≥ 0, 1 >
P (NG(t + 0.3) − NG(t) > 0) > 0, independent of t. Then observe that

P (NG(t + 0.6) − NG(t + 0.3) > 0|NG(t + 0.3) − NG(t) > 0) = 0

while
P (NG(t + 0.6) − NG(t + 0.3) = 0) = P (NG(t + 0.3) − NG(t) = 0) > 0.

Hence the increments over the intervals (t, t + 0.3] and (t + 0.3, t + 0.6] cannot be independent.

An alternative proof could be based on the theorem that the only counting process with
both unit jumps and stationary and independent increments is the Poisson process, and the
present process is not a Poisson process. That theorem is the definition given in the Wikipedia
entry for a Poisson process. But we did not cover that theorem. It is not one of the definitions
in Chapter 2 of Ross. A counterexample is the best way to disprove.

—————————————————————————
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