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ON ARRIVALS THAT SEE TIME AVERAGES

BENJAMIN MELAMED

NEC Research Institute, Princeton, New Jersey
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(Received June 1988; revision received March 1989; accepted April 1989)

We investigate when Arrivals See Time Averages (ASTA) in a stochastic model; i.e., when the stationary distribution of
an embedded sequence, obtained by observing a continuous-time stochastic process just prior to the points (arrivals) of
an associated point process, coincides with the stationary distribution of the observed process. We also characterize the
relation between the two distributions when ASTA does not hold. We introduce a Lack of Bias Assumption (LBA) which
stipulates that, at any time, the conditional intensity of the point process, given the present state of the observed process,
be independent of the state of the observed process. We show that LBA, without the Poisson assumption, is necessary
and sufficient for ASTA in a stationary process framework. Consequently, LBA covers known examples of non-Poisson
ASTA, such as certain flows in open Jackson queueing networks, as well as the familiar Poisson case (PASTA). We also
establish results to cover the case in which the process is observed just after the points, e.g., when departures see time
averages. Finally, we obtain a new proof of the Arrival Theorem for product-form queueing networks.

For the M/G/1 queue, it is well known that both
the limiting distribution of the queue length just
prior to an arrival (the arrival-stationary distribution)
and the limiting distribution of the queue length just
after a departure (the departure-stationary distribu-
tion) coincide with the limiting distribution of the
queue length at an arbitrary time (the time-stationary
distribution). We want to determine when such useful
relations hold in a general stochastic model.

The ASTA Property

Consider a continuous-time stochastic process X =
{X(¢): t = 0} that takes values in a general space, and
a stochastic point process on the interval [0, «), char-
acterized by the counting process N = {N(¢): t = 0}
or, equivalently, the sequence of successive points
(T n=0};ie, N¢)=supin=0: T, < t}, t = 0}
where 7, = 0 without there being a Oth point. We
think of X as representing the state or a partial descrip-
tion of the state of some system. Often X will be
Markov, but it need not be. The point process N might
represent outside observers totally independent of X;
it might represent external arrivals to an open system
with state X, or it might represent something else, such
as the flow from one queue to another in a queueing
network partially described by X.

Assuming that
X(t) = X(©) ast— o©
and (1)
X(T,) = X(®) asn— o

where = denotes convergence in distribution or weak
convergence, as in Billingsley (1968), we want to know
when

X(o0) = X(e0) 2)

where 2 denotes equality in distribution. Alterna-
tively, assuming that X(c) is the unique stationary
distribution of {X(¢): ¢t = 0} and X () is the unique
stationary distribution of {X(7,): n = 1}, we want to
know when (2) holds. (Then the distribution of X(c0)
is called the Palm distribution.) More generally, we
want to relate the two distributions, so that if we know
one, then we can calculate the other.

When (2) holds in either of these situations, we say
that Arrivals See Time Averages (ASTA). Averages
have not been considered yet, but they will be in (3)-
(6). The ASTA problem has a long history in queueing
theory; see Descloux (1967), Franken, Konig, Arndt
and Schmidt (1981), Cooper (1990) and Wolff (1982,
1989). Hence, even though the points 7, need not be
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interpreted as arrivals, we still use the suggestive ASTA
terminology.

We assume that the sample paths of X are lefi-
continuous, so that X(T,) coincides with the state just
prior to the nth arrival. (When we later assume that
the sample paths of X have limits from the left, this is
just a convention to interpret X(7),) as the left limit
X(T,—).) For external arrivals, the left continuity
ensures that an arrival does not see itself. For flows
from one queue to another in a queueing network, X
may represent all queues except the originating queue,
so that again the left continuity ensures that the
observing customer does not see itself. (We also show
how to treat the full network, that is, we give a new
proof of the Arrival Theorem for product-form
queueing networks.) When we consider departures
(Section 4), we assume that the sample paths of X are
right-continuous instead of left-continuous, again to
ensure that a departing customer does not see itself.

Wolff’s PASTA Property

Our approach is based on limiting averages, as in
Wolff (1982, 1989). This approach has the advantage
of not directly requiring a Markov, stationary or mar-
tingale structure. Under a Lack of Anticipation
Assumption (LAA), that is, {N(t + u) — N(t): u = 0}
is independent of {X(s): 0 < s < ¢} for all ¢, Wolff
showed that Poisson Arrivals See Time Averages
(PASTA), in the sense of limiting averages. (As
acknowledged by Wolff, LAA and part of the theorem
were contributed to Wolff’s original work by Whitt
1979.)

Wolff considered the w.p.1 (with probability one)
limits of averages of real-valued functions of X,
that is

V(t) Et"ff[X(s)]ds, t>0

and (3)
N(t)

W@)=[NOT™ 1; SIX(T0), >0

provided that N(¢) > 0, with W (¢t) = 0 when N(¢) =
0, where f'is 2 bounded measurable real-valued func-
tion on the state space of X. In particular, Wolff
assumed that f'is an indicator function of some meas-
urable subset B; i.e., f(x) = 15(x), where 15(x) = 1 if
X € B and 0 otherwise. The notation is chosen to
suggest a queueing application in which V(¢) is the
average virtual waiting time over the interval [0, ¢],
while W(t) is the average actual waiting time per
customer among the arrivals in [0, ¢].
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Leaving out minor technical regularity conditions,
here is Wolff’s main result (proved using martingale
theory).

Theorem 1. (Wolff’s PASTA Theorem). Suppose
that N is Poisson, LAA holds, = 15 for some B and
the sample paths of f(X) are lefi-continuous. Then
V(t) — V() wp.d as t — o if and only if W(t) —
W () w.p.1 as t — oo, in which case V() = W ().

For the arrival averages, it may seem more natural
to consider

Wo=n"' X fIX(T)], n=1 (4)
k=1

instead of W (¢) in (3), but it is easy to see that these
are equivalent. Since &V is Poisson with finite intensity,
say A\, t7'N(t) = X\ w.p.l as t — o, so that W, —
W () w.p.l as n — o if and only if W (t) - W(w)
w.p.1 as t — . Hence, limits for W(¢) as t — o and
W, as n — o are equivalent.

A discrete-time analog of Theorem 1, in which
intervals between points have a geometric distribution
instead of an exponential distribution, also follows by
the same argument, as observed by Halfin (1983). (For
new work on discrete time, see Georgiadis (1987) and
Makowski, Melamed and Whitt (1989).)

An Elementary Proof

Our first purpose in this paper is to obtain a more
elementary proof of Theorem 1, which does not
require relatively complicated stochastic process the-
ory (e.g., martingales). We obtain an elementary proof
of PASTA in Section 2 by focusing on what we
consider to be the issue of primary practical interest,
the equality of V() and W (), while freely assuming
the existence of all desired limits. Instead of V(¢) and
W(t) in (3), we focus on related quantities involving
expectations. In particular we consider

7(t) EE(t“ L f[X(s)]ds), >0

and ()
N(t)
W(f)E(E[N(Z)])’1E<k§f[X(Tk)]), 1>0.

We establish conditions under which V(1) — V()
as t — o if and only if W(t) — W(ew) as t — oo, in
which case V() = (). This is related to Theorem
1 when we also have V(t) — V() and W(t) — W ()
w.p.1 as t — oo, where V(o) and W(w) are constants,
as can be established by regenerative structure (for
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example, Chapters V, VI and XI of Asmussen 1987
and Glynn and Whitt 1987) or stationarity and ergod-
icity (e.g., Theorem 1.5.5 of Franken et al.). Under
extra regularity conditions (e.g., uniform integrability,
p. 32 of Billingsley), these w.p.1 limits plus ¢ ™' N(¢)
— X\ w.p.l imply that V(t) — V() = V() and
W(t) — W (%) = W(w) as t — . Hence, we will have
established what we regard as the most interesting part
of Theorem 1 by showing that V(o) = ().

To obtain the initial desired ASTA result (2), we
freely assume the two weak convergence limits in (1)
plus

V(t) - V() = E(f[X()])
and (6)
W(t) — W() = E(f[X()]) as—

for a large class of functions f. Hence, when we estab-
lish 7() = W() for sufficiently many measurable
functions f, we also establish (2); in particular, we
work with all bounded continuous real-valued f,
because these functions determine the distributions
(see p. 9 of Billingsley).

Eliminating the Poisson Assumption

Wolff starts by assuming that the point process NV is a
Poisson process. However, it is known that certain
non-Poisson arrivals also see time averages. For exam-
ple, consider a stationary open Jackson Markovian
queueing network with queue set .#” in which queues
1 and 2 belong to a cycle; that is, with positive prob-
ability customers who visit queue 1 will also visit
queue 2 and vice versa. The process of arrivals to
queue 2 from queue 1 is not Poisson, but these arrivals
see time averages in the subnetwork .#" — {1} if they
observe just before transit (see, Melamed 1979a, b,
1982 and Walrand 1988). Similarly, the same cus-
tomers see time averages in the subnetwork ./ — {2}
if they observe immediately after transit. An example
of non-Poisson arrivals seeing time averages cited by
Wolff (1982, p. 228) is the M/M/1 queue with feed-
back, where the arrival does not see itself (see Burke
1976 and Disney, Konig and Schmidt 1984). It can
be regarded as the limit of the example in which %" =
{1, 2}, queue 2 is an infinite-server with individual
service rate p and all departures from queue 2 are
routed to queue 1; then let u — oo. By the same device
(adding the extra queue), customers that move from
queue 1 to queue 2 see time averages in the full open
Jackson network if they do not count themselves,
which is an example of the Arrival Theorem (see
Theorem 3.12 of Kelly 1979, Lavenberg and Reiser

1980, Sevcik and Mitrani 1981 and Sections 1.7, 2.10
and 4.4 of Walrand).

A second purpose of this paper is to determine more
precisely when ASTA holds. First, we show that Theo-
rem 1 is valid without assuming that N is Poisson
(Section 2). This does not mean that something close
to Poisson is not needed, but that what is needed is
already embodied in LAA. In fact, in a stationary
process framework, Konig and Schmidt (1980a, Sec-
tion 7) had previously shown that the Poisson prop-
erty did not need to be assumed directly. However,
these generalizations of Theorem 1 do not cover the
queueing network example above. We go further and
give sufficient conditions for ASTA that are weaker
than LAA, and contain the queueing network example
as a special case (Examples 3 and 4 in Section 5).
Indeed, we provide necessary and sufficient conditions
for ASTA (Theorems 3 and 4). In Section 5 we
also show how the Arrival Theorem for product-
form queueing networks can be established in this
framework.

The Left-Continuity Assumption

We also point out and eliminate a slightly restrictive
assumption in Wolff’s analysis. As indicated in Theo-
rem 1, Wolff assumes that the stochastic process

U@) = f1X(0)] ™

with fthe indicator function of an arbitrary measura-
ble B in the state space of X is left-continuous w.p.1.
Since the indicator function is not continuous, this
assumption implicitly puts requirements on the sam-
ple paths of X. Of course, there is no problem if X is
a pure-jump process, but there could be otherwise.
For example, the conditions of Theorem 1 are not
satisfied when X is reflected Brownian motion on the
positive real line with negative drift (which has contin-
uous sample paths and an exponential stationary
distribution), N is a Poisson process independent
of X, and B is any nontrivial measurable subset,
because the sample paths of U(¢) cannot be made left-
continuous. The reason is that the sample paths will
not have left limits at every ¢. Yet, the conclusion of
Theorem 1 is obviously true in this case.

We eliminate this difficulty by assuming that the
sample paths of X are left-continuous, which requires
a topology on the state space of X, and that the
function fin (3)-(7) and Theorem 1 is continuous;
then the sample paths of U are indeed left-continuous.
Even though we typically do not work directly with
indicator functions, we are able to establish the desired
results because expectations of bounded continuous



real-valued functions determine distributions. Hence,
we obtain 7(e) = () for all measurable f for which
the expectations are well defined, and thus (2).

If we want to consider only a single function f, then
it suffices for U in (7) to have left-continuous sample
paths, which could hold without f being continuous
or X being a pure-jump process with left-continuous
sample paths.

The Covariance Formula

The ASTA problem has a remarkably simple resolu-
tion, as a consequence of a fundamental relation
between X (o) and X (o), which we call the covariance
formula. It turns out that in a stationary framework

Elu@)f(X(1))]

EL R = =H

cov[u(t), f(X(1))]
Efp(1)]

= E[f(X()] + ®)

where f is an arbitrary measurable real-valued func-
tion such that the expectations in (8) are well defined,
w(t) is the conditional intensity of a jump in (point
from) the counting process N at time ¢ given the
current state X(¢), and cov[Y,, Y,] is the covariance
between Y, and Y>, i.e., cov[Y;, Y,] = E(Y,, Y,) —
(EY )(EY;) (see (19) and Section 3). Given (8), it is
immediate that E[ f(X())] = E[f(X(e))] if and only
if the random variables u(¢) and f[X(¢)] are uncorre-
lated. In turn, this lack of correlation holds for all
bounded measurable f if and only if (2) holds. This
motivated us to call the lack of correlation property
the Lack of Bias Assumption (LBA); see Definitions 2
and 3.

Given that (8) is so important and simple (except
for the meaning of u), it is surprising that it was not
noticed before. In fact, (8) is just an expression for the
one-dimensional distribution associated with the Palm
measure, as in Franken et al. (1981), but this expres-
sion has evidently not been noticed before. However,
at the same time that we discovered (8), variants of
(8) were discovered independently by Brémaud (1989)
and Stidham and El-Taha (1989). In fact, Brémaud
notes that in the standard stationary framework,
which is stronger than we require, a variant of (8) is a
consequence of a result by Papangelou (1972) and
thus he calls his variant of (8) Papangelou’s formula.
We discuss this further in Section 7. We point
out that Papangelou did not actually state this
consequence of his theorem. Moreover, (8) is not
identical to the corresponding statement in Brémaud
(1989).
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The Rest of this Paper

In Section 1, we define the model precisely. In Section
2, we present sufficient conditions for ASTA in terms
of a Weak Lack of Anticipation Assumption (WLAA).
In Section 3, we present necessary and sufficient con-
ditions for ASTA in a stationary process framework,
using the conditional intensity notion and LBA. In
Section 4, we investigate when departures see time
averages, by exploiting time reversal. In Section 5, we
give several examples from queueing, including open
and closed Jackson networks, for which we give a new
proof of the Arrival Theorem. In Section 6, we extend
our ASTA results to conditional probabilities, paral-
leling the recent conditional PASTA results of van
Doorn and Regterschot (1988) and Georgiadis (1987).
We conclude in Section 7 with an additional discus-
sion of the literature.

1. PRELIMINARIES

1.1. Properties of the Stochastic Processes

Consider two stochastic processes X and N defined on
a common underlying probability space (Q, &, P).
The process X, which is intended to partially describe
the state of some system, is assumed to take values in
some complete separable metric space E, endowed
with the Borel o-field (generated by the open subsets;
the specific metric is not important). The process N,
which is intended to represent an arrival process of
some sort, is a stochastic point process on [0, ), and
so, has nondecreasing sample paths with values in the
nonnegative integers. We assume that there exists #,
such that

0< E[N(t)] <o forallt> . )

We further assume that the sample paths of X and N
have left and right limits at all ¢ (all £ > O for left
limits). Of particular importance, we assume that the
sample paths of X are left-continuous, while the sample
paths of N are right-continuous. Thus, N can be
regarded as a random element of the function space
D = Dg|0, ), where R indicates that the functions
are real-valued, while X can be regarded as a random
element of D = Dg[0, o) after stipulating that the
functions be left-continuous instead of right-continu-
ous. This stipulation does not significantly alter the
theory (see Chapter 3 of Billingsley 1968, Section 2 of
Whitt 1980 and Chapter 3 of Ethier and Kurtz 1986).
It is not essential that processes X and N have sample
paths in D; it is a convenient regularity condition to
avoid pathologies.
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Let T, be the epoch of the nth point (arrival) in N,
with the convention that T, = 0, and let N(s, 1) =
N(t) — N(s) for 0 < s < ¢. Since the sample paths of
N are integer-valued and in D, the sample paths of N
have only finitely many jumps in finite time; that is,
N is nonexplosive.

As in Wolff, we will actually work, not directly with
X, but with an associated real-valued stochastic pro-
cess U= {U(t): t = 0}. Let f be a bounded measurable
real-valued function on E and let U(¢) = f[X(#)].
Since the sample paths of X are in D, U is jointly
measurable in 7 and w € Q, so that it can be integrated
without losing measurability. As in Wolff, we require
that U be lefi-continuous with right limits, which holds
by virtue of our assumptions about X provided that
f is continuous. (For pure-jump processes, f need
not be continuous.) As noted in the Introduction, we
can establish the desired (2) by considering only
bounded continuous real-valued f; see the corollary to
Theorem 2.

1.2. Stochastic and Riemann-Stieltjes Integrals

Much of our analysis depends on the representation
of the random sum in the numerator of W(¢) in (5)
as a stochastic integral. However, since N is a point
process with nondecreasing sample paths, we do not
need an elaborate theory of stochastic integrals as in
Chapter 2 of Chung and Williams (1983). Instead, we
can regard the stochastic integral as a Riemann-—
Stieltjes integral for each sample path, that is

N(t)

% U

=J; U(s)dN(s)
Clim ¥ U<IZ> <kt,@—%—125> wp.l.  (10)

n—% g—0 n

We use the sample-path properties of U and N,
in particular, the left-continuity of U and the right-
continuity of N, to interpret this stochastic integral as
a proper Riemann-Stieltjes integral for each sample
path (see Chapter 9 of Apostol 1957, especially
p. 200). In (10) the subintervals in the partition of
[0, ¢] do not need to be evenly spaced, so long as the
width of the largest interval goes to zero in the limit.
Moreover, for the Riemann-Stieltjes integral to
be well defined, in the kth term of the nth sum in
(10), we can evaluate U anywhere in the closed interval
[kt/n, (k + 1)t/n]. However, for our probabilistic
analysis, it is important to use the left endpoint (or

the right endpoint when we reverse the left and right
continuity properties of X and N to treat departures).

Remark 1. For the Riemann-Stieltjes integral to be
well defined, it suffices for U to have w.p.1 no discon-
tinuities from the right (left) where N has its right (left)
discontinuities; that is, limits from the left and right
are not actually needed. If, with positive probability,
U and N have common discontinuities from the left
or if they have common discontinuities from the right,
then there can be difficulties (see p. 212 of Apostol).

Since U is bounded (because f is bounded),
E[N()] < by T9), and

5 A

(sup |U(s)|>N(l)<oo w.p.1 (11)
o=<s=<t

we can apply the Lebesgue dominated convergence
theorem to conclude that the expectation of the limit
is the limit of the expectations, that is

N(@)
E< % U(Tk))

_ kt kt (k+ 1)t
}11—1'13°/<20E|: <”> <n, n >] (12)

2. SUFFICIENT CONDITIONS FOR ASTA

In this section we present a sufficient condition for
ASTA. We weaken LAA, but not as much as we do
later, so that this section primarily constitutes an
elementary proof of PASTA.

Definition 1. The Weak Lack of Anticipation
Assumption (WLAA) holds (for U and N) if there
exists up, > 0 such that U(¢r) and N(t, t + u) are
uncorrelated for all 1 = 0 and 0 < u < u,.

Note that WLAA is weaker than LAA in three ways:
First, we replace the entire past {U(s): 0 < s < ¢} by
the present U(t); second, we replace the entire future
{N(t + u) — N(t): u = 0} by a small increment
N(t + u) — N(t); and third, we replace independence
by lack of correlation. Obviously LAA implies
WLAA, but not conversely. The WLAA condition is
closely related to an independence condition intro-
duced by Konig and Schmidt (1980a); see Theorem
1.6.6 of Franken et al. We discuss this further in
Section 7.



We will show that WLAA is sufficient for ASTA
under additional weak stationary moment assump-
tions. Note that, not only is WLAA weaker than LAA,
but also N is not directly assumed to be Poisson. We
use the definitions of ¥(¢) and W(¢) in (5) and &
in (9).

Theorem 2. Suppose that WLAA holds and at least
one of a or b holds:

a. E[U(t)] is independent of t;

b. there exists positive uy such that E[N(t, t + u)]
=Aufort=0and0 < u < up.

Then V(t) = W(t) for all t > 1, so that V(i) —
V() as t — o if and only if W(t) — W(®) as t — =,
in which case V() = W(®).

Proof. By (12) and WLAA

N(1)
E< % U(Tk)>

-t e 25

If @ holds, so that E[U()] = E [U (0)] for all ¢, then
N(t)
E( 2 U(Tk)> E[UO)]lim kz [ <’;t (kw:Z 1);)}

= E[UO)]E[N()]
so that

W(t) = E[U0)] = ¢ J{: E[U(s)] ds

= V(@) fort>t,.

If, instead, » holds, so that E[N(¢, t + u)] = Au for
t=0and 0 < u < u, then

= _ . E[N(O,1/n)]"< [ (kt)]()
E<2 U(T")>‘31 “/n) kZoE n) \n

=2 f E[U(s)] ds

so that again W (¢) = V(¢) for t > t,.

Remark 2. The natural sufficient condition to obtain
condition a in Theorem 2 for all bounded measurable
fis for X to be stationary, while the natural sufficient
condition to obtain condition 4 is for N to be station-
ary (see below). Of course, N Poisson implies b, but
any stationary point process will do. The need for
something like a Poisson process is already contained
in WLAA.

We say that U (and similarly for X) is (strictly)
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stationary if the finite-dimensional distributions are
independent of time, i.e., if

[U), ..., U]

Z1U@ +h), ..., Ut + h)] (13)

for all positive integers k, all k-tuples of positive time
points (4, ..., &) and all positive 4. We say that the
point process N is stationary if its increments N(s, t)
are stationary, i.e., if

[NGsi, 8), ...y N(Sk, t)]

ZING +h 6+ h), . N(se+ h, te+ )] (14)

for all positive integers k, all pairs of positive k-tuples
(1, ..., 8)and (¢, ..., &) with s; < ¢; for all i, and
for all positive 4. Obviously, for Theorem 2, station-
arity of U implies that E[U(z)] is independent of ¢. Of
course, E[U(¢)] being independent of ¢ for sufficiently
many f (for example, all bounded continuous f)
implies that the distribution of X(¢) is independent of
t, but that is still weaker than stationarity of the full
process X, as defined by (13). Similarly, stationarity
of N implies that E[N(¢, t + u)] is independent of ¢
for all u. Under (9), if N is stationary, then necessarily
E[N(t, t + u)] = A\u for some X for all # and u.

Remark 3. In applications, WLAA is not substantially
easier to verify than LAA because it is not much easier
to work with a small future increment N(¢, ¢ + u) than
the entire future; see the examples in Section 5. We
obtain a more useful condition in Section 3 by replac-
ing the small increment N(¢, ¢ + u) with an intensity
at time ¢. In this direction, note that Theorem 2 is still
valid if we replace WLAA by an asymptotic lack of
correlation condition, in particular

lim nZl E[ (kl>N<E, (k+ 1y ”’)}
n—w p—g n n n

—lim Y E[ (kl>]E[N<E, (k+ L) 1”)].
n—® p—q n n n

The following corollary shows how Theorem 2
enables us to treat the ASTA problem we formulated
at the outset.

Corollary. Suppose that (1) holds; (6) holds for all
bounded continuous real-valued functions f, and at
least one of a or b holds:

a. the distribution of X(t) is independent of t;

b. there exists a positive uy such that E[N(t, t + u)]
=ufort=0and0 < u<u.
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If WLAA holds for all bounded continuous real-
valued f, then (2) holds, i.e., X(0) £ X(o).

Proof. The conditions of Theorem 2 are satisfied for
every bounded continuous real-valued f. (We need
the continuity to make the sample paths of U left-
continuous.) Hence, E(f[X()]) = E(f[X(®)]) for
each bounded continuous real-valued f, which implies
the conclusion because expectations of these functions
determine the distributions; see p. 9 of Billingsley.

Remark 4. To establish WLAA for all bounded con-
tinuous f we typically show that X(¢) and N(:,
¢t + u) are independent, but note that we can have
two dependent random variables Y and Z such that
f(Y) and Z are uncorrelated for all measurable f. For
example, let (Y, Z) = (1, 0), (1, 2), (0, 1) and (2,1)
each with probability Y%, so that E[f(Y)Z] =
E[f(Y)]E[Z] = E[f(Y)] for all measurable f, but ¥
and Z are dependent. To convert this into an example
in our setting, let X(¢) = Y and let N be a doubly
stochastic Poisson process with intensity Z for all
t = 0. Then, for any bounded measurable real-
valued f

E[f(X(£)N(, t + u)]
= E[f(N)lu = E[f(XW)IEIN(, t + u)]

so that WLAA holds, but N(z, ¢ + u) is not independent
of X(¢).

Remark 5. Note that the proof of Theorem 2 and the
corollary do not require that N be a point process. The
key Riemann-Stieltjes integral representation (10) is
valid if the sample paths of N are of bounded variation
on every bounded interval. We thus have an imme-
diate extension of PASTA to LASTA: Lévy Processes
(that is, processes with stationary independent incre-
ments) See Time Averages, provided that the sample
paths are locally of bounded variation and WLAA
holds. Examples of such Lévy processes are compound
Poisson processes and the gamma process (see pp. 69—
72 of Prabhu 1980). As with PASTA, it is not neces-
sary to directly assume the Lévy property; it is typically
what is needed to satisfy WLAA.

3. NECESSARY AND SUFFICIENT CONDITIONS
FOR ASTA IN A STATIONARY FRAMEWORK

In this section, we obtain necessary and sufficient
conditions for ASTA, primarily by replacing the future
increment N(t, ¢t + u) in WLAA by a condi-
tional intensity. We assume that X and N are jointly

stationary in the sense that
[X(t), N, t + u)]
Z X+ h), Nt + h t + b+ u)] (15)

for all positive ¢, ¥ and A, which of course is weaker
than joint stationarity in the sense of (13) and (14).
As a consequence, V(¢) in (5) is independent of ¢, so
that trivially V() — V(o) as t — . We will provide
conditions under which W(¢) in (5) is also independ-
ent of ¢ (so that trivially W(¢) — W(e) as t — ) and
V() = W().

Mathematically, the stationarity condition (15) is
quite strong as a sufficient condition, but in many
applications there is asymptotic stationarity, so that
P(0) and W () are the same as if (15) held. Thus,
showing () = () under (15) is the key to more
general statements. It is not difficult to extend the
results in this section to a nonstationary setting in the
spirit of Section 2, so that even (15) is not essential.
Indeed, this is done in Melamed and Whitt (1990),
but (15) makes the discussion easier to follow.

Let X be the intensity of N, A\ = E[N(0, 1)], which
is finite by (9), and let u(¢) be the conditional intensity
of N at ¢ given X(¢), defined by

u(t) = li)i’l(‘)l uT E[N(t, t + u)| X(1)]. (16)

Note that our stationarity assumption (15) implies
that u(z) £ (0) for all £ > 0. The mode of convergence
in (16) is w.p.1 with respect to the distribution of X(¢).

We assume that the limit in (16) exists as a proper
random variable and that the limit and expectation
are interchangeable

Elu(®)]= li?g E[w EN@t t+u)| XOIl=X  (17)

Even though (16) and (17) are natural, they constitute
restrictions. By Theorem 5.4 of Billingsley, given (16),
(17) is equivalent to the family of random variables
{Y.} = u E[N(, t + u)| X(¢)]} indexed by u being
uniformly integrable as u — 0, for which many suffi-
cient conditions are known. For example, it suffices
to have Y, less than or equal to, or stochastically less
than or equal to, a random variable Y with E[Y] <
for 0 < u < uy. The conditions (16) and (17) are fairly
easy to verify when X(¢) = g(Z(t)) for a pure-jump
Markov process Z and the point process N counts
designated jumps in Z, as can be seen from the
queueing examples in Section 5. The more technical
approaches in Melamed and Whitt (1990) and
Brémaud (1989) avoid the need to justify (16) and
(17) by incorporating the conditions in the model
framework. At any rate, (16) and (17) are technical



conditions that we are prepared to assume, in the
same spirit as (1) and (6).

As in (8), we characterize the difference (o) —
V() in terms of the covariance of U(t) and u(t)

Cov[U(2), n(1)]
= E[U(u()] — E[U@)]IE[u(2)). (18)

Definition 2. The Lack of Bias Assumption (LBA)
holds for U and N if U(t) and u(¢) are uncorrelated,
i.e., if Cov[U(¢), u(t)] =0

Theorem 3. Suppose that X and N are jointly station-
ary in the sense of (15) and that the conditional inten-
sity u(t) is well defined, satisfying (16) and (17). Then
both V(t) and W(t) are independent of t and

W(t) — V(t) = \"'Cov[U(0), u(0)], t=0 (19)

so that W(w) = V() if and only if LBA holds for U
and N. Moreover, (19) remains valid for all measurable
[fprovided that the expectations are well defined.

Proof. First, assuming that f’is continuous, we have

E[l“ fo Us) dN(s):'
-E[hmt ! 2 U( ’)N(;l Gk + I)Z)J by (10)

k + l)t)] by (12)

i kt

Bl
. n t

= lim (;)E[U(O)N(O, Z)] by (15)

= lim (?)E[U(O)E[N(O, é) X(O)H

by conditioning on X(0)
= E[U(O) lim <g)E[N<O, %) X(O)]]

by (16) and (17)
= E[U(0)u(0)] by (16).

(In the second to last step, the convergence and uni-
form integrability in (16) and (17) are not altered by
multiplying by the bounded random variable U(0).)
Hence, by (5)

W(t) = (t/EIN@DELU®@)p@)]
and (20)
V(t) = E[U@)].

Since E[N(t)] = Mt = E[u(2)]t, (19) follows from (20).
Finally, to obtain (19) for all measurable f for which
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the expectations are well defined, extend by taking
limits; see pp. 7-9 of Billingsley.

Remark 6. Under (6) the expressions for W (¢)in (19)
and (20) are equivalent to the covariance formula (8).
As noted before (6), a sufficient condition for (6) is
stationarity and ergodicity.

Remark 7. ASTA says that sampling at the points of
N is the same as sampling uniformly over time, i.e.,
W (o) = V(). The LBA condition identifies the crit-
ical lack of bias in the sampling procedure for ASTA
to be valid, hence the name. More generally, for
f = 1p, if the likelihood of a point in N at time ¢
is positively correlated with X(¢) being in the set B,
then it is intuitively reasonable that arrivals will
find the process X in the set B excessively often, i.e.,
W(®) = V(); the negatively correlated case is anal-
ogous. This reasoning makes the zero-correlation con-
dition (LBA) intuitively obvious. Feldman et al.
(1981) also express this issue in terms of measurement.

We will apply Theorem 3 to treat the ASTA prob-
lem formulated at the outset. To do this, we use a
modification of Definition 2.

Definition 3. The Lack of Bias Assumption (LBA)
holds for X and N if LBA holds for U and N (Defini-
tion 2) for all bounded continuous real-valued f.

Corollary 1. Suppose that (1) holds; (6) holds for all
bounded continuous real-valued functions f, X and N
are jointly stationary in the sense of (15); and the
conditional intensity u(t) is well defined, satisfying
(16) and (17). Then (2) holds, i.e., X() £ X(w) if and
only if LBA holds for X and N.

Proof. The proof of Theorem 3 applies for every
bounded continuous real-valued /. As in the corollary
to Theorem 2, expectations of these functions deter-
mine the distributions.

As noted in Remark 6, (19) usefully characterizes
the difference () — () even when LBA does not
hold. For example, (19) is useful for making stochastic
comparisons between the two stationary random ele-
ments X() and X(). We say that X() is stochasti-
cally less than or equal to X (), and write X(c) <
X(o0), if E(f[X()]) < E(f[X(0)]) for all nondecreas-
ing real-valued functions f, where the state space E is
endowed with a closed partial order (see Kamae,
Krengel and O’Brien 1977). (A partial order < is
closed if x < y when x, < y, for all n, x, — x and
Yn—>yasn— »,)

To make stochastic comparisons, we assume that
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the conditional intensity u(¢) can be represented as a
measurable function of X(0).

Remark 8. The conditional expectation E[N(¢, t +
u)| X(t)] can always be regarded as a measurable
function of X(¢) (see p. 299 of Chung 1974), and thus,
so can the limit in (16) through any sequence u, | 0.
Given that the limit in (16) is the same for any such
sequence, we then have u(f) = g[X(¢)] for some
measurable g.

We say that u(¢) is a nondecreasing (nonincreasing)
function of X(¢) w.p.1 if there exists a nondecreasing
(nonincreasing) function g such that u(z) = g[X(¢)]
w.p.1. We say that a random vector Z = (Z,, ..., Z,)
in R" is associated if Cov[f[Z], g[Z]] = 0 for all
nondecreasing bounded measurable real-valued func-
tions f'and g on R” (see p. 29 of Barlow and Proschan
1975).

Corollary 2. Suppose, in addition to the conditions of
Corollary 1, that thde state-space E has a closed partial
order. Then X() < = X() if and only if

Cov[/IX(®)], p()] = (<) 0 @1

for all nondecreasing bounded measurable real-valued
functions f. In particular, (21) holds with = (<) 0 when
the conditional intensity u(t) is a nondecreasing (non-
increasing) function of X(t) w.p.1 and X(t) is either a
real-valued random variable or an associated random
vector in R".

Proof. Let f'in the definition of U be nondecreasing.
Then W(w) — V() = 0 on the left side of (19)
expresses the stochastic order conclusion.

Remark 9. To see how Corollary 2 can be applied
when X(¢) is a random vector, consider a k-class
queueing system (k = 1) in which class 1 arrives
according to a renewal process. Let X(t) = [Z(¢),
—A(t)], where Z(t) is the number of customers (or
just class-1 customers) in the system and A(¢) is the
age of the interarrival time for class 1 at time ¢, that
is, the elapsed time since the last class-1 arrival. We
expect that A(¢) becomes smaller as Z(¢) increases;
for example, A(¢) might be stochastically decreasing
in Z(t), that is, P(A(t) > u| Z(t) = s) is decreasing in
s for all u, which implies that X is associated (see
p. 143 of Barlow and Proschan). Assuming that the
class-1 interarrival-time distribution has a cdf G(¢)
with a density g(¢), the conditional intensity is

u(t) = g(a)/[1 — G(a)]
when
X(@) = (z, —a). (22)

Obviously u(f) is a nondecreasing (nonincreasing)
function of X(¢) if and only if the cdf G is DFR (IFR),
i.e., has decreasing (increasing) failure rate. Corollary
2 to Theorem 3 thus provides a basis for new stochastic
comparisons in the spirit of Konig and Schmidt
(1980b), Chapter 4 of Franken et al., Whitt (1983)
and Niu (1984). Since DFR implies NWUE and IFR
implies NBUE, the rough example here is consistent
with previous results, for example, (4.3.12) on p. 116
of Franken et al.

We conclude this section by giving alternate char-
acterizations of LBA for X and N (Definition 3).

Theorem 4. Suppose that X and N are jointly station-
ary in the sense of (15), and the conditional intensity
w(t) in (16) is well defined, satisfying (17). Then the
Jfollowing are equivalent :

i. LBA for X and N;

ii. ASTA, i.e., X(») £ X(c);

iii. u(it)=E[u@)]=Axwp.l;

iv. u(t) is independent of X(t).

Proof. Given Corollary 1 to Theorem 3, it suffices to
show that 1 implies iii. Suppose that LBA holds for X
and N, so that

E[fIX(O]n®)] = EL/TX@O)]IA (23)

for all bounded continuous real-valued f. Then, by
taking limits (pp. 7-9 of Billingsley), (23) is valid for
all bounded measurable real-valued f, so that A\ is a
version of the conditional expectation E[u(t)] X(t)]
(see p. 297 of Chung). However, E[u(t)| X(¢)] = n(t)
so that u(¢) = A w.p.1.

Remark 10. By Theorem 4, LBA holds for X and N
(Definition 3) if and only if u(¢) in (16) is independent
of X(¢). In contrast, independence of u(¢) and U(¢) =
fIX()] for one fis strictly stronger than LBA for U
and N (Definition 2). Similarly, independence of U
and N(¢, t + u) is strictly stronger than WLAA (Defi-
nition 1), as noted in Remark 4.

4. DEPARTURES AND TIME REVERSAL

In queueing, it is also of interest to consider when
departures see time averages. Of course, formally, this
is already covered by Sections 1-4 because the point
process N can represent departures as well as arrivals,
but to obtain useful results for departures from queues,
we typically must look at X just affer the departures,
so as not to include the departing customer.

When X is a process on the nonnegative integers
that move up and down in unit jumps, we can use an



upcrossing and downcrossing argument to relate the
stationary distribution after departures to the station-
ary distribution prior to arrivals, for example, see
p. 112, Franken et al. However, we want to treat more
general processes.

We obtain useful results for departures by assuming
that the sample paths of X and U are right-continuous,
while the sample paths of N are lefi-continuous. We
refer to these as the reverse continuity conditions.
Given these reverse continuity conditions, we can
obtain results paralleling those of Sections 1-4 simply
by reversing time. The time-reversed processes have
the original continuity properties of the processes in
Sections 1-4. The time-reversed conditions turn out
to be reasonable in the contexts of reversibility and
quasireversibility (see Kelly and Walrand).

To illustrate, we first state the analogs of Definition
1 and Theorem 2 in Section 2, omitting the easy
proof.

Definition 4. The Reverse Weak Lack of Anticipation
Assumption (Reverse WLAA) holds (for U and N)
if these exists #, > 0 such that U(¢) and N(t — u, t)
are uncorrelated for all t = 0 and 0 < u < u,
witht —u=0.

As before, let ¢, be defined by (9).

Theorem 5. Suppose that the reverse continuity con-
ditions hold for U and N, Reverse WLAA holds, and
at least one of a or b holds:

a. E[U(t)] is independent of t;

b. there exists positive u, such that E[N(t — u, t)]
=Aufort=0and0<u<u,witht—u=0.

Then V(t) = W(t) for all t > t,, so that V(t) —
V() as t — o if and only if W(t) — W(®) as t — ,
in which case V(%) = W(w).

We next state the analogs of Definition 2 and Theo-
rem 3 in Section 3. Paralleling (15), we assume that X
and N are jointly stationary in the sense that

[X(@), Nt — u, 1)]

Z XU+ h), X +h — u, ¢ + )] (24)
for all positive ¢, u and & with ¢ — u = 0. Paralleling
(16), let 11(2) be the reverse conditional intensity of N
at ¢ given X(¢), defined by

a)=limu"E[N(t—u,t)| X(t)], t>0. (25)
ul0
Asin (17), we assume that the expectation of the limit

in (25) is the limit of the expectations. Notice that
a(t) is precisely the conditional intensity of the left-
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continuous version of N at ¢ given X(¢) in reverse
time. (See Section 1.7 of Kelly for related notions for
Markov processes.)

Definition 5. The Reverse Lack of Bias Assumption
(Reverse LBA) holds for U and N if U(¢) and 4(¢) are
uncorrelated.

Theorem 6. Suppose that the reverse continuity con-
ditions hold for U and N; X and N are jointly station-
ary in the sense of (24); and the conditional intensity
a(t) is well defined, satisfying (25) and the analog of
(17). Then W(t) is independent of t and

W () = V() = A Cov[U(2), A(2)] (26)

5o that W(eo) = V() if and only if Reverse LBA holds
for U and N.

Again, the proof is immediate by time reversal.

5. EXAMPLES IN QUEUEING

We will illustrate the concepts in the previous sections
through examples in queueing.

Example 1. To show that there is a significant differ-
ence between WLAA and LBA, and that we can have
LBA and ASTA without N being Poisson, consider a
standard M/M/1 queue with arrival rate A and traffic
intensity p, where 0 < p < 1. Let X, (¢) represent the
number of customers in the system at time ¢, assuming
that an arrival inaugurates a busy cycle at 1 = 0.
Modify each sample path of X,(¢) by repeating each
busy cycle exactly once more. Formally, let B, be the
epoch of the beginning of the nth busy cycle associated
with X, (when there is an arrival to an empty system),
with B, = 0, and let X(¢) be defined by

X2B,+t)=XB,+ B,.; +t)=X\(B,+1)
forO<t<B,.,— B, forn=0. (27)

Finally, take the stationary version of X. Let N be the
arrival process associated with X; i.e., arrivals occur
when there are jumps up in X. For this example, it is
obvious that N is not Poisson and that LAA does not
hold. Furthermore, it is not difficult to show that
WLAA does not hold either (see an unpublished ap-
pendix), but LBA and ASTA do hold. In particular,
u(t) is well defined via (16) and u(¢) = A w.p.1, where
A is the arrival rate. Apply Theorems 3 and 4.

Example 2. An elementary queueing example in
which ASTA holds when the arrival process is non-
Poisson was given on p. 863 of Konig, Miyazawa and
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Schmidt (1983). Let X () be the time-stationary num-
ber of customers in the standard GI/M/1 queue with
traffic intensity p and interarrival-time cdf A (x) having
mean A~' and the property that the smallest positive
root of the equation

o= j; exp(—=Ap~'x(1 — o)) dA(x) (28)

is equal to p < 1. As a consequence, X(%) has the
geometric stationary distribution of an M/M/1 queue,
even through 4(x) need not be exponential. More-
over, the stationary variable X(e) obtained by consid-
ering the embedded process at arrival epochs (or de-
parture epochs) has the same geometric distribution.
For this example, LBA for the arrivals and reverse
LBA for the departures necessarily hold because
ASTA holds, but LBA for the arrivals does not seem
easy to establish directly. This illustrates that LBA and
the covariance formula (8) are not panaceas. However,
we show that it is not difficult to establish reverse LBA
for the departures, using the exponential service times.
Foranyn =0

lim u'E[N(t — u, t)| X(¢) = n]

ul0

=lim u 'P(N(t — u, t) = 1| X(@) = n) (29)

ul0

where

P(N(t — u, ) = 1| X(@¢) = n)
=P(N(z—u,t)= 1, X(t)=n)

PX(t)=n)
_P(N(@t—u,t)=1,X(t—u)=n+1)
= P(X(1)=n) +o(u)
with
PNt—u,t)=1,Xt—u)y=n+1)
P(X(¢) = n)
PX@t—u)=n+1)P(N(t—u,t)
=1|X(t—u)=n+1)
P(X(t)=n)
=pP(N(t—u,t)=1|X(t—u)=n+1) (30)

so that
lim u'E[N(t — u, t)| X(t) = n]
ul0
=plimu'E[Nt—u,t)| X(t—u)=n+1]
ul0

=\ (31)

Alternatively, proceeding forward in time, we can
apply (8) or, equivalently, (19) to calculate E[ f(X())]

when the point process N is the departure process.
Note that the state embedded at departures but
excluding the departing customer is X(7,) — 1. In
particular, since u(f) = A\p~! on {X(¢) > 0} and O
otherwise

E[f(X(=) = 1)]

_ Ele@)f(X(@) = D]
Efu(?)]

= E[f(X(t) — 1)| X(¢) > 0] by form of u(?)
= FE[f(X(t))] by geometric distribution. (32)

by (8)

Example 3. We will discuss the example of non-
Poisson ASTA mentioned in the Introduction. Con-
sider a stationary open Jackson network of multiserver
queues with queue set .7 = {1, 2, ..., m} and two
distinguished queues, say 1 and 2, which participate
in a cycle (that is, with positive probability customers
can go from queue 1 to queue 2 and vice versa). Let
Z=(Z,...,7Z,) bethe full state of the (Markovian)
network, i.e., the vector representing the number
of customers at each queue, and let Z; be the state of
W — {i}. Let T, be the epochs of the traffic stream on
arc (1, 2), that is, the epochs when customers move
from queue 1 to queue 2. It is known that the point
process N with epochs 7, is not Poisson (see Melamed
1979a, b or Section 4.11 of Walrand). Nevertheless,
customers observing states Z,(7,—) (that is, customers
recording the state of .#" — {1} just prior to entering
queue 2) do see time averages in .#" — {1}.

To fit this into our framework, we let X(¢) = Z,(t-),
so that X is a partial description of the state of
the network and X has left-continuous paths. If we
were considering external arrivals, then we could let
X(t) = Z(t—) and X would represent the full state of
the network, but now we want to exclude queue 1
from the observed process.

Let 5(¢) be the intensity of V at ¢ given the full state
Z(t—), defined as in (16) by

n(t) = li?‘)l u'E[N(@, t + w)| Z(t-)]. (33)
It is elementary that
n(t)=q(Z(t=), Z(t—) —e: + &)

= u, rpymin{s,;, Z,(t—)} (34)

where g(-, -) is the transition rate function of the
Markov process Z, e; is the ith unit vector, u, is the
service rate of an individual server at queue i, s; is the
number of servers at queue #, and r;; is the probability
of routing from queue i to queue .



Notice that 5(¢) in (34) is a function of only Z,(1—).
Since the stationary distribution of Z(¢) in this
network is product form, Z,(z—) is independent of
Z,(t=) = X(¢). Hence

u(t)= li?g u 'E[N(t t+u)| X(2)]
=lig)1 u'E[E[N(@t,t+u)| Z(t—)]| X(@)]

=E[n(t)| X(@)]= E[n(1)] (35)

so that u(z) is constant. Thus, ASTA and LBA for X
and N hold by virtue of Theorem 4.

We will consider what the customers flowing from
queue 1 to queue 2 see in the subnetwork ./ — {2}
just after entering queue 2. To fit this into our frame-
work, let X(¢) = Z,(¢+) and let N have left-continuous
paths. Instead of (33), we let

7(t) = lim u'E[N@ — u, t)| Z(t+)]. (36)
ul0
To compute 7(z), we use the fact that the transition

function §(-, -) for the reversed process associated
with Z satisfies

w(x)q(x, y) = w(¥)4(y, x) (37)

where x, y € R™ and = is the equilibrium distribution
of Z (see p. 28 of Kelly or p. 63 of Walrand). Then

7(t) = G(Z(t+) — e + ey, Z(t)) (38)
and
g(x — e, + e, X)

7r(x)

= g(x,x—e +e
7r(x—e,+e2)q( 1 2)

_ w(x) m(x—e)
r(x—e)w(x—e +e)

q(x,x—e +e)

0, pa(p+1)

6,
= X 2==— (2 + Dr 39
Itn(Xl) 9, Ml( l) 12 02#2( 2 ) 12 ( )

where u;(x;) = min{s;, x;}u; is the service rate at queue
i when there are x; customers at queue i, and 6 = (6,
..., 0,) is the unique solution to the traffic rate
equations

6 =X+ 6R (40)

with A = (A, ..., \,,) the vector of external arrival
rates and R = (r;;) the routing matrix. From (38) and
(39), we conclude that

ﬁ(z)={(01/02)(22(l+)+ Duariy ifZo(t+)+1<s,
(01/02)52M2712 lez(l+)+ 1 =55,

(41)
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Since 7(¢) depends on Z(t+). only through Z,(t+),
7(t) is independent of Z,(t) = X(t), so that reverse
LBA holds and departures see time averages by virtue
of Theorem 6.

By a minor modification of the arguments above,
we can also treat the entire network to obtain the
Arrival Theorem, but it is important to remember that
the Arrival Theorem is not quite ASTA as we have
defined it, because in the Arrival Theorem the cus-
tomer going from queue 1 to queue 2 should not see
itself, whereas our convention is to regard the process
X as having left-continuous paths. The first way to
treat the entire network is to augment the network by
inserting an infinite-server queue with high service
rate on the path from queue 1 to queue 2. If we
consider arrivals, then we consider the customers flow-
ing from the new queue to queue 2 and in the analysis
delete the new queue. First, by the previous argument,
the arrivals to queue 2 from the new queue see time
averages in the original network (we delete the extra
queue), independent of the service rate at the new
queue. Second, as we increase the service rate at the
new queue, the arrival times at queue 2 from the new
queue approach the departure times from queue 1 of
those customers going to queue 2. This argument is
intuitively clear, but leaves a continuity proof, which
can be made rigorous.

The second way to treat the entire network is to
directly apply (8). For this purpose, we consider func-
tions f of the form f(x,, 1) = f;(x;)£(%1). Let Z()
have the stationary distribution of Z(7,—). Then

E[f(Z(=)]

_E0)f(Z=-))]
E[n(1)]

=E[H1 riomin{s,, Z,(t—)} /\(Z, (Z_))]E[fZ(Zl(Z_))]
0,112

u187 ' min{s,, n} fi(n)

ﬁMs

- P(Zy(t=) = mE[f(Z:(t-))]
= glfn(n)P(Zn (t=)=n—=DE[L(Zi(t-))]

= E[f(Z,(t=)+ DIELA(Z1(-)] (42)

using the known form for the stationary distribution
of Z,(t—), as in (39), which in turn implies the Arrival
Theorem. (Expectations of functions of this form
determine the distribution of the vector Z(¢—).)
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Example 4. Consider a stationary closed Jackson net-
work that has a fixed number K of customers circu-
lating in it. Let Z<(¢) represent the full state of the
closed network and let Z¢(«) have the stationary
distribution of Z¢(7T,—) where T, are the transition
epochs from queue 1 to queue 2. Let Z{(z) and
Z¢(¢) be defined for Z<(¢) just as for Z(¢) in Example
3. It is known that arrivals at queue 2 do not see time
averages in .+ — {1} just prior to arrival (nor in .#" —
{2} just after arrival). Notice that Z{(z—) is no longer
independent of Z§(z—) because the sum of all the
components is K. Thus, conditioning on Z{(¢—) gives
some information about Z(t—); evidently w(¢) and
U(t) are correlated.

However, as in Example 3, it is easy to obtain the
Arrival Theorem for closed networks from (8). The
argument is a minor modification of (42). To see this,
let Z°(t) denote the process Z(¢) in the open network
of Example 3 corresponding to the closed network
with population K. The process Z° can be constructed
from Z¢ by treating one queue in the closed model as
an entrance-exit queue, i.e., by inserting an external
Poisson process to this queue and letting all internal
arrivals leave the network (see pp. 1914, 1932 of Whitt
1984). The key fact is that the (stationary) distribution
of Z¢(t—) for the closed network can be expressed as
the conditional distribution of Z°(t—) for the open
network given that the sum of the components of
Z°(t—)is K.

For notational simplicity, we assume that m = 2.
For the closed network, let E[-]x denote the expecta-
tion operator given a total population of K. Then

Consequently, Z () with population X is distributed
as Z¢(t) + e, with population K — 1, which is the
Arrival Theorem for closed Jackson networks. (Simi-
lar results hold for more general product-form net-
works, e.g., see Sections 1.7, 1.9, 1.10, 4.3, 4.4 and
4.11 of Walrand.)

6. CONDITIONAL ASTA

PASTA has been generalized to conditional probabil-
ities by Van Doorn and Regterschot (1988), which
is useful for treating a stochastic process in a ran-
dom environment. (Related results were obtained by
Georgiadis 1987.) In this section, we indicate how to
generalize our ASTA results along the same lines. To
a large extent, nothing new is required.

Augment the framework in Section 1 with a new
process Z = {Z(t): t = 0} on the underlying probability
space (2, %, P) having the same sample path proper-
ties as X. We are interested in conditional probabilities
of the form P(X(¢t) € A| Z(t) € B), where B typically
contains a single point. Paralleling (3), the two aver-
ages are

fbf[X(S)a Z(S)] dS

O = ez ds
and (44)
W) = Jo f1X(s), Z(s)] dN(s)

J6glZ(s)] dN(s)

_ ElOAZ @)k _ Elwromings,, Z{E=NA(ZIE=)A(Z5=)k

E[f(Z(®))]k = E[n(t)]k -

Elu romin{s,, Z5(t—)}1x

_ X5 w67 mings,, n}fi(n) (K — mP(Z(t=) = n)P(Z3(t=) = K — n)

Sier w07 min{s,, n}P(Z5(t—) = n)P(Z3(t~) = K — n)

K i (K — nP(Zi(t—) =n— DP(Z3(t=) = K — n)

K, P(Z(t—) = n— DP(Z3(t—) = K — n)

K3 fim+ DAK — 1 — n)P(Z(t—) = n)P(Z3(t—) = K — 1 — n)

P(Zi(t=) + Z3(t—) = K — 1)

= E[f(Z5(t=) + DAZ§E=)]k-1.

(43)




where f and g are bounded measurable real-valued
functions. However, paralleling (5), we actually treat

E[[b f1X(s), Z(s)] ds]
E[[6 glZ(s)] ds]

and (45)

E[[o [TX(s5), Z(s)] dN(s)]
E[[6glZ(s)] dN(s)] ~

Paralleling (7), let

V() =

() =

U,t) = fIX(@), Z(t)], t=0
and (46)

\

Ua(t) = g[Z(1)], t=0.

As before, we require that U,;(¢) and U,(¢) have left-
continuous sample paths, which can be obtained in
general by restricting attention to continuous f'and g.
Recall that ¢, is defined in (9).

Theorem 7. Suppose that WLAA holds for both pairs
(U, N) and (U,, N) and that at least one of a or b
holds:

a. E[U,(t)] and E[U,(t)] are independent of t;

b. there exists a positive u, such that E[N(t, t + u)]
=Aufort=0and0 < u < u.

Then V*(t) = W*(¢) for all t > t,, so that V*(t) —
V*() as t — o if and only if W*(t) — W*() as
t — oo, in which case V*(c0) = W*(o).

Proof. It suffices to apply the proof of Theorem 2 to
the numerators and denominators of V*(¢) and W*(¢)
in (45) separately, after dividing both by ¢ in 7*(¢)
and E[N(¢)] in W*(2).

The following is the generalization of the corollary
to Theorem 2.

Corollary. Suppose that

a. (X@),Z@1))= (X (), Z(*)) as t — o and (X(T,),
Z(T,)) = (X(), Z(«)) as n— oo

b. V*(t) — V*o) = E[f[X(®), Z(=)]/
E[g[Z()]] and W*(t) — W*(») = E[f[X(®),
Z()]1/E[g[Z()]] as t — = for all bounded contin-
uous real-valued f and g with E[g[Z()]] > 0 and
E[g[Z()]] > 0.

Suppose that at least one of ¢ or d holds:

¢. the distribution of (X(t), Z(t)) is independent
of t;

d. there exists a positive u, such that E[N(t, t + u)]
=Aufort=0and0 < u < u.
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If WLAA holds for both pairs (U,, N) and (U,, N)
for all bounded continuous real-valued f and g, then

P(X() € A| Z() € B) = P(X(») € 4| Z(») € B)

for all B such that P(Z(») € B) > 0 and P(Z(«) € B)
>0.

In fact, the corollary to Theorem 7 can be obtained
directly from the corollary to Theorem 2 by interpret-
ing the new process (X, Z) as the old process X. Then
fIX@), Z(t)] and g[Z(t)] are just two candidate
bounded continuous real-valued functions of (X(z),
Z(1)). Given (X(), Z()) £ (X(»), Z()), it is im-
mediate that the conditional distributions are equal.
Similarly, Theorem 3 can be extended by simply
replacing X by (X, Z) in (15)-(18).

7. DISCUSSION OF THE LITERATURE

There are at least three approaches to the ASTA
problem besides the limiting average approach used
here, depending on the stochastic process theory to be
applied.

7.1. Markov Processes and the Arrival Theorem

The first approach applies when X is a continuous-
time Markov chain or a pure-jump Markov process
and N is a point process generated by a subset of the
jumps, as occurs with the flows in product-form
queueing networks (see Kelly 1979, Melamed 1979a,
b, 1982, Lavenberg and Reiser 1980, Sevcik and
Mitrani 1981, Whittle 1986, Disney and Kiessler
1987, Walrand 1988 and Serfozo 1989a, b). An ad-
vantage of this approach is that the quantities of
interest usually can be calculated explicitly. A major
result within this Markov framework is the Arrival
Theorem for product-form Markov queueing net-
works. It is significant that the Arrival Theorem can
be regarded as a special case of the ASTA results, as
illustrated in Examples 3 and 4 of Section 5. Indeed,
the original motivation for this work was to find a
common framework for PASTA and the Arrival
Theorem. When we remove the queue from which a
customer comes, the Arrival Theorem is a direct con-
sequence of ASTA (but not PASTA, as we noted at
the outset). When we consider the entire network, the
Arrival Theorem is a consequence of (8). In Section 5
we only considered open and closed Jackson networks,
but essentially the same analysis applies to more gen-
eral product-form networks (Section 4.4 of Walrand).
Our results provide another useful perspective on the
Arrival Theorem, but we do not claim that they
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simplify the proof; for example, the Markov chain
proofs in Serfozo and Walrand are already quite short.

7.2. Stationary Processes and the Kénig-Schmidt
Independence Condition

The second alternative approach applies when {X(¢):
t = 0} and {X(T,): n = 1} are stationary processes
related by the Palm theory (see Miyazawa 1977, Konig
and Schmidt 1980a, b, 1989, Franken et al. 1981,
Baccelli and Brémaud 1987, Ko6nig, Schmidt and Van
Doorn 1989, and Brémaud 1989, 1990). In particular,
in the stationary process framework, the model con-
sidered here is a process with embedded marked point
process (PMP) (p. 44 of Franken et al.). In the full
stationary process framework, stronger results than
Theorem 1 were established. First, it was established
that if NV is an exogenous Poisson arrival process, or
any Poisson process such that future arrivals (the
process {N(t + u) — N(t): u = 0}) are independent of
the state X(¢) for all ¢, then in great generality the
arrival-stationary distribution of X(7,) coincides with
the time-stationary distribution of X(¢); see Sec-
tions 1.4-1.6 and 4.1 of Franken et al. In fact, in The-
orem 1.6.6 there, which is based on Konig and
Schmidt (1980a), it is shown that the Poisson property
is not needed. They showed that for ASTA it suffices
to have T, (the forward residual time until the next
point in N) be independent of the current state X(0).

This Konig-Schmidt independence condition is
closed related to the WLAA introduced in Section 2.
However, even in a stationary framework, neither
implies the other and both suffer from the defect of
considering the future behavior of N over an interval
instead of at a point. If we strengthened WLAA to
require independence of U(t) and N(¢, t + u) for all t,
u = 0, then WLAA would imply that U(z) is inde-
pendent of the interval to the next point in N after ¢.
However, lack of correlation is strictly weaker than
independence (see Remark 4). Konig, Schmidt and
Van Doorn give several examples showing that ASTA
can hold without the Konig-Schmidt independence
condition. Further extensions have been provided
after our paper: Brémaud (1990) presents a necessary
and sufficient condition for ASTA which can be
thought of as the infinitesimal limit of the Konig—
Schmidt independence conditions. It is also similar to
Section 3. Konig and Schmidt (1989) present a closely
related necessary and sufficient condition for ASTA,
which exploits certain families of regular subsets of
the state space of X(¢), as on p. 48 of Franken et al.
(1981).

A PASTA result in a stationary framework with an

instantaneous proof was communicated much earlier
by Strauch (1970), but there are two difficulties with
Strauch’s result. First, his condition that the condi-
tional distribution of the current state X(¢) given the
history {N(s): s < t} of the Poisson process be inde-
pendent of whether a point occurs at time ¢ is not
entirely obvious; it might be considered no less ob-
vious than the desired conclusion itself. Second,
Strauch does not justify working with conditional
probabilities in which the conditioning event has
probability zero; in fact, the Palm theory associated
with stationary processes justifies this analysis, as is
shown in Franken et al.

7.3. Martingales and the Stochastic Intensity

The third approach is based on the Martingale theory
of point processes, as contained in Brémaud (1981)
and Varaiya and Walrand (1981); this is the approach
of Wolff (1982). It has the disadvantage of being rather
technical, but the basic concepts get immediately to
the heart of the issue. In particular, the conditional
intensity u in (8) is easily made precise using the
stochastic intensity, say », associated with the Martin-
gale theory; just let u(z) = E[v(t)] X()]. We give
alternative proofs (of not entirely equivalent theo-
rems) in this framework in Melamed and Whitt
(1990). We also establish an anti-PASTA result there;
that is, we show that ASTA implies that N must be
Poisson in a certain Markov setting (see Miyazawa
1982, Konig, Miyazawa and Schmidt 1983 and Green
and Melamed 1990). (Obviously the non-Poisson
ASTA examples do not satisfy these conditions.)

Finally, martingales provide a natural way to relate
the w.p.1 limits of the averages in (3) as well as the
limits of the expectations in (6); see Georgiadis (1987)
and Makowski et al. (1989).

7.4. Variants of the Covariance Formula

Brémaud (1989) derived a variant of the covariance
formula (8) by applying a theorem of Papangelou
(1972). Papangelou’s theorem relates the stochastic
intensity in the martingale theory of point processes
as in Brémaud (1981) to the Palm measure in the
stationary theory of point processes as in Franken et
al. (1981); see pp. 24-26 of Baccelli and Brémaud
(1987) and Brémaud (1989). Given a simple station-
ary point process N with respect to a measure P,
Papangelou’s theorem states that the associated Palm
measure P° is absolutely continuous with respect to P
if and only if NV has a stochastic intensity v, in which
case the Radon-Nikodym derivative dP°/dP is just
(v(¢)/E[»(t)])dt. Formula (8), modified by having »



instead of u, is a consequence of this result, although
this evidently was not appreciated before Brémaud
(1989). In this stationary-Martingale framework we
can define u by u(t) = E[v»(¢t)] X(¢)] so that (8) is
equivalent to the same statement with »(¢) in place of
u(t). (This step is discussed further in Melamed and
Whitt 1990.)

Note that the strong equivalence P = P° holds if
and only if »(t) = E[v(¢)] w.p.1, which in turn holds
if and only if P is Poisson, by Watanabe’s (1964)
theorem (p. 25 of Brémaud 1981). The reason we get
interesting results for non-Poisson processes is that
we consider the special functions f(x(0)) where {x(¢):
t = 0} is the sample path. We have shown that
u(t) = E[u(t)] w.p.1 is equivalent to LBA and ASTA
(Theorem 4).

It is significant that (8) also can be obtained by a
sample-path argument. Paralleling the elegant treat-
ment of L = AW by sample-path methods in Stidham
(1974), Stidham and El-Taha independently derived
a version of (8) as well as other conservation laws. The
approaches in Brémaud (1989) and Stidham and
El-Taha are both appealing because they enable us to
treat L = A\W and ASTA in a common framework.
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