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WARD WHITT,** AT&T Bell Laboratories

Abstract

This paper is a sequel to our previous paper investigating when arrivals see time
averages (ASTA) in a stochastic model; i.e., when the steady-state distribution of an
embedded sequence, obtained by observing a continuous-time stochastic process
just prior to the points (arrivals) of an associated point process, coincides with the
steady-state distribution of the observed process. The relation between the two
distributions was also characterized when ASTA does not hold. These results were
obtained using the conditional intensity of the point process given the present state
of the observed process (assumed to be well defined) and basic properties of
Riemann-Stieltjes integrals. Here similar results are obtained using the stochastic
intensity associated with the martingale theory of point processes, as in Brémaud
(1981). In the martingale framework, the ASTA result is almost an immediate
consequence of the definition of a stochastic intensity. In a stationary framework, the
results characterize the Palm distribution, but stationarity is not assumed here.
Watanabe’s (1964) martingale characterization of a Poisson process is also applied to
establish a general version of anti-PASTA.: if the points of the point process are
appropriately generated by the observed process and the observed process is Markov
with left-continuous sample paths, then ASTA implies that the point process must be
Poisson.

EMBEDDED PROCESSES; PALM MEASURE; PASTA; QUEUES, CUSTOMER AVERAGES AND
TIME AVERAGES; THE ARRIVAL THEOREM, POINT PROCESSES; STOCHASTIC INTENSITY

1. Introduction

The purpose of this paper is to extend and complement Melamed and Whitt (1990),
hereafter referred to as MW, where it is shown that (not necessarily Poisson) arrivals see
time averages (ASTA) in a stochastic model under a lack of bias assumption (LBA); see
Definitions 1 and 3 below. This LBA condition generalizes the lack of anticipation
assumption (LAA) in Wolff (1982) and a related condition in K6nig and Schmidt (1980)
(see Theorem 1.6.6 of Franken et al. (1981)), and is in fact necessary and sufficient for
ASTA given that a conditional intensity or stochastic intensity exists for the point
process. In MW we used basic properties of Riemann-Stieltjes integrals; here we use
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basic properties of the martingale theory of point processes, as in Brémaud (1981) and
Varaiya and Walrand (1981). As noted in MW, closely related work has been done by
Brémaud (1989), Konig et al. (1989), Serfozo (1989a,b) and Stidham and El Taha
(1989). (Our work was done independently.)

Our model consists of two stochastic processes X={X(¢):1=0} and N=
{N(¢#):t = 0} defined on a common probability space (Q, &, P). The process X, which
is intended to represent the state or a partial description of the state of some system such
as a queue or a network of queues, takes values in a complete separable metric space E
endowed with its Borel o-field. The process N is a simple stochastic point process on
[0, =), i.e., it has non-decreasing sample paths with values in the non-negative integers
and jumps of size 1. We assume that the sample paths of X and N have left and right
limits at all £ (all z > O for left limits). We also assume that N(0) =0, N(t) = o0 as t — oo
w.p.l and that there exists ¢, such that 0 <E[N(¢f)] <o for all t>1t,, Of most
importance, we assume that the sample paths of X are left-continuous, while the sample
paths of N are right-continuous. Let

(1.1) T,=inf(t>0:N(t)=n}, nzx=l.
Here is the basic problem: assuming that
(1.2) X({t)=X(w0) ast—o and X(T,)=X(w0) asn— oo,

where = denotes convergence in distribution or weak convergence, as in Billingsley
(1968), we want to know when

(1.3 X(o0) £ X(c0),

where = means equality in distribution. ASTA is said to hold when (1.3) holds. Of

course, ASTA is something of a misnomer, because N need not be an arrival process and

averages have not been considered yet. However, we consider averages below in a

generalization of (1.2) and (1.3). We use the suggestive ASTA terminology because of the

many applications and long history in queueing theory; see MW for further discussion.
As in MW, we focus on the expectations of averages, in particular,

t N
£| [} xove| £| ¥ xan]
(14)  Vi)y=—"% * and W()=—2%2_——= 120,
f r(s)ds EIN@]
0

where fis a bounded measurable real-valued function on E and r(¢t) = E[v(¢)], where v is
the stochastic intensity of N, which will be defined in Section 2. (The notation is chosen
to suggest that V(¢) might be an average related to the Virtual waiting time in a queue,
while W(t) might be an average related to the actual Waiting time per customer.)
Usually, r(¢) in (1.4) will be independent of ¢ so that V(¢) will reduce to a simple time
average, but we include weighted time averages to permit treating non-stationary
processes (e.g., periodic processes), as in Section 3 of Wolff (1982). Our main result
relates V() and W(t) given that N has a stochastic intensity v with respect to (X, N). Let
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Cov(Y}, Y;) be the covariance between Y; and Y,, i.e., Cov(Y,, Y,)=E(Y,Y,)—
E(Y)E(Y)).

Theorem 1. Suppose that N has a stochastic intensity v with respect to (X, N) with
E[v(t)] =r(t)< o and

E[J:v(s)ds]=f‘r(s)ds<oo, t=0.
0
If f is continuous, then

[ ELrxewenas [ covtaxisy, visyas
0 =P(@)+=2 )

fo ‘ r(s)ds fo t r(s)ds

Corollary 1. If, in addition, V(t)— V(c0), W(t)— W(w) and t=" [§ r(s)ds — r(co)
as t— oo, then

w(t)=

re)[W(w) ~ Pleo)] = lim ¢~ [ Cov AX(s), v(s)lds.

Definition 1. The lack of bias assumption (LBA) holds for f(X) and N if

lim " J; * Cov[AX(s)), v(s)]ds = 0.

Corollary 2. Suppose that r(c0)>0 under the assumptions of Corollary 1. Then
W (o0) = V() if and only if LBA holds for f(X) and N.

Of course, in a stationary framework Cov[X(¢), v(¢)] will be independent of ¢, in
which case Theorem 1 and its corollaries simplify.

Corollary 3. If, in addition to the assumptions of Theorem 1, the distribution of
[f(X(2)), v(2)] is independent of t, then
E[fXOWO] _ Cov[ fAX()), v(1)]

vl O T Epay

W(t) =

which is independent of t.

To obtain the desired (1.3) from Corollary 2, we assume that r(t) is independent of ¢
and

(1.5) V(t)— V(00) = E[f(X(0))] and W (t)— W(w0)= E[f(X(0))] ast— oo

for a large class of functions f; in particular, for all bounded continuous real-valued f,
because expectations of these functions determine distributions; see p. 9 of Billingsley
(1968). Corollary 2 establishes what we consider to be the most interesting part of (1.3).

Similarly, if we are interested in limiting averages, as in Wolff (1982), then we consider
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t

| mxersyas
0

fo ‘ r(s)ds

with the hope of showing that V(¢)— V(c0) w.p.1 as t — oo if and only if W(t)— W (o)
w.p.1 as t — oo, in which case V(o0) = W(x). (Asin (1.4), r(¢) is included in V(¢) to treat
non-stationary processes; see Section 3 of Wolff (1982).) We establish conditions for
V(c0) = W(o0), which we regard as the most interesting part, by establishing Theorem 1
and its corollaries. To obtain V(c0) = W(c0) from Corollary 2, we assume that

L6) V()= and W@O=INO]"' $ AXT)] 120,
k=1

(1.7 V(t)— V()= V() and W(t)— W(w)= W(0) ast— .

Note that V(¢t) = EV(¢), but in general we do not have W(t) = EW(¢). It suffices to
have both the numerators and the denominators in W(¢) and W(t) converge after
dividing by ¢.

As noted in MW, there are many sufficient conditions for (1.5) and (1.7), such as
stationarity plus ergodicity. In a stationary framework, as in K6nig and Schmidt (1980)
and Franken et al. (1981), X(c0) and X(o0) have the one-dimensional marginal distribu-
tions associated with the underlying measure P and the associated Palm measure P°,
respectively. In this context, Corollary 3 above describes the marginal distribution of
X(o0) even when (1.3) does not hold; i.e., Corollary 3 establishes the covariance formula
in (8) of MW and Papangelou’s formula in Brémaud (1989), i.e.,

E[fX@)v)] Cov[AX()), v(®)]
——=E[f(X .
Epv@)] Lo+ E[v(@)]

As noted in MW, (1.8) holds for all measurable real-valued ffor which the expectations
are well defined if it holds for all bounded continuous real-valued f, by standard limiting
arguments; see pp. 7-9 of Billingsley (1968).

A significant feature of our results here and in MW is that we may have ASTA without
the point process N being Poisson. (Applications to queueing networks are discussed in
MW.) However, the Poisson property is quite closely linked to ASTA, so that many
examples of ASTA involve Poisson processes. In fact, in certain situations, there is anti-
PASTA; i.e.,, ASTA implies that the arrival process must be Poisson; see Miyazawa
(1982), Konig et al. (1983), Section 2.10 of Walrand (1988) and Green and Melamed
(1990). In Section 3, we obtain a general anti-PASTA result with a revealing proof. A key
condition for our anti-PASTA result is that X be Markov with left-continuous sample
paths. (This condition is not satisfied by the examples of non-Poisson ASTA in MW.)

(1.8) E[f(X(c0))] =

2. Stochastic intensities

We work with the martingale theory of stochastic point processes, as in Brémaud
(1981), to which we refer for background. Let {&,: ¢ = 0} be the internal history of
(X, N), i.e., #, is the sub-o-field of # generated by {[X(s), N(s)] : 0 = s = ¢}. Since the
sample paths of X are left-continuous, f(X) is adapted to &, (f(X(¢)) is #,-measurable)
for all ¢ and all measurable f. If, in addition, U(t)= f(X(¢)) has left-continuous sample
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paths with probability 1, then Uis & ,-predictable; see p. 9 of Brémaud (1981). For what
follows, it is vital that U be predictable, so that we always assume that U has lefi-
continuous sample paths. If X is a pure jump process, then U has this desired property
for any measurable f. However, to treat more general cases, we assume that f is also
continuous. Since expectations of bounded continuous real-valued functions determine
distributions (p. 9 of Billingsley (1968)), we obtain the desired (1.3) from only consider-
ing these special functions.

The key to our results is the definition of a stochastic intensity; see p. 27 of Brémaud
(1981). (For definitions of the terms progressive and predictable, see pp. 288 and 8 of
Brémaud (1981).)

Definition 2. The stochastic point process N has a stochastic intensity v=
{v(t):t =z 0} (also called a (P, F,)-intensity) if v is a non-negative & -progressive process
such that for all t

@.1) f Ys)ds <o wp.l
0

and for all non-negative F ,-predictable processes C={C(t): t = 0}
@.2) E [ fo C(s)dN(s)] -E [ fo C(s)v(s)ds] .

If v is also predictable, which can always be achieved, then v is essentially unique; see
pp. 30-31 of Brémaud (1981). Let N(t, t + u) = N(¢t + u) — N(¢) for t, u > 0. Parallel-
ing (16) of MW, we often also have

2.3) v(t)=li}rox u~'E[N(t, t +u)|#,] wp.l,

but (2.3) does not hold automatically; see p. 28 of Brémaud (1981).

Proof of Theorem 1. Apply Definition 2 to characterize the expectations in the
expressions for V(t) and W(¢) in (1.4); e.g., by appropriate choice of C, we see that

E[ fo ' U(s)dN(s)]_ fo "E[U(s)v(s)lds

E[ fo 'dN(s)] - fo " Elv(s)lds

Under the stationarity condition ((15) of MW)

(2.4) W(t) =

(2.5) [X(0), N(t, t +u)] < [X(t +h),N(t +h, t +h +u))]

for all positive ¢, ¥ and /4, we have E[v(¢)] and Cov[U(¢), v(¢)] are independent of ¢ and
we obtain Corollary 3 to Theorem 1. However, the stochastic intensity v(¢) here is not
the same as the conditional intensity u(¢) in (16) of MW, even assuming (2.3) and (2.5)
above, because u(¢) is the intensity conditional on only X(¢), whereas v(¢) is the intensity
conditional on &, i.e., the entire past of X and N. Since u(¢) is a coarsening of v(¢) (X is
adapted to &#,), we can now define u(t) by
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(2.6) u(®)=Ep@)| X))
and conclude that E[u(¢)] = E[v(¢)] and
2.7 E[U@V()] = E[UME )| X()]] = E[U(t)u(2)].

Hence, under the stationarity condition (2.5), Theorem 1 is essentially equivalent to
Theorem 3 of MW; i.e., Theorem 3 of MW holds if u(¢) is defined, not by (16) and (17) in
MW, but by (2.6) here, assuming the existence of the stochastic intensity v. Even with
this modification, evidently neither theorem completely contains the other; Theorem 3
of MW requires the existence of the conditional intensity u(¢) as defined by (16) and (17)
there, whereas Theorem 1 here requires the existence of the stochastic intensity v(¢)
defined by Definition 1. Theorem 1 here evidently tends to be more general, but
Theorem 3 of MW is more elementary.

Paralleling Corollary 1 to Theorem 3 of MW, we now indicate how to establish ASTA,
i.e., (1.3) in Section 1.

Definition 3. LBA holds for X and N if LBA holds for U and N (Definition 1) for all
bounded continuous real-valued f.

Corollary 4. Suppose that, in addition to the conditions of Corollary 2, (1.2) and (1.5)
hold for all bounded continuous real-valued f. Then X(x) <X (o0) if and only if LBA
holds for X and N.

Proof. Theorem 1 plus the conditions establish that E(f[X(w)]) = E(f[X(c0)]) for
all bounded continuous real-valued f. The desired (1.3) holds because expectations of
these functions determine distributions; see p. 9 of Billingsley (1968). If LBA does not
hold, then the distributions obviously must be different.

3. ASTA as a characterization of a point process

In general, ASTA need not imply much about N, because N could be independent of
X. However, under appropriate conditions, we have anti-PASTA: ASTA implies that N
is Poisson. The following result (essentially the same as Theorem 4 of MW) is a first step.

Theorem 2. Suppose that N has a stochastic intensity v as in Theorem 1 and
u(t)=E[v(t)| X(8)]. Then Cov[ f(X(2)), u(t)] = O for all bounded continuous real-valued
fifand only ifu(t)=E[u(t)] w.p.1. fort = 0.

Proof. Suppose that

G.1) E[fIXO)u@®)] = E[/IXONE[1(1)]

for all bounded continuous real-valued f. Then, by taking limits (pp. 7-9 of Billingsley
(1968)), (3.1) is valid for all bounded measurable f, so that E[u(t)] is a version of the
conditional expectation E[u(f)|X(¢)]. Since E[u(t)| X(¢)] =u(t), we have u(t)=
E[u(t)] w.p.1. The other direction is trivial.
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Corollary. If the stationarity condition (2.5) holds in addition to the assumptions of
Theorem 2, then the following are equivalent:

(@) Cov[f(X(2)), u(t)]=0,t =0, for all bounded continuous real-valued f,

(ii) LBA holds for X and N,

(iii) ASTA holds in the form of (1.3), i.e., X(0) < X(c0);

(iv) u@)=E[p0)] w.p.1,t = 0;

(v) u(t) is independent of X(t), t = 0.

As indicated above, if N is independent of X, then Theorem 2 says nothing; but if the
evolution of N beyond ¢ (i.e., the process {N(¢,t + u): u =0} depends on the past
{N(s):s <t} of Nonly through the present state X(¢) of X, then we can conclude that N
is Poisson by applying Watanabe’s (1964) martingale characterization of a Poisson
process; see p. 25 of Brémaud (1981). Let {#7 : ¢ = 0} and {#7 : ¢t = 0} be the separate
internal histories of X and N, respectively. Of course, these are sub-o-fields of the
internal history of (X, N), which we have denoted by {#,: ¢ = 0}. Since the sample
paths of N are right-continuous, while the sample paths of X are left-continuous, we
cannot expect to have #V C F¥, because a jump at ¢ registers in ¥ but not in FY.
However, we can expect to have #V_ C # for all ¢, where #7_ is the o-field generated
by {N(s) : s <t}. For example, we have #Y_ C # for all t whenever the occurrence of a
jump in N at ¢ can be identified from the two values X(¢ — ) and X (¢ + ) for all ¢.

Before stating our anti-PASTA result (Theorem 5 below), we state a preliminary result
which applies to non-stationary processes and clearly shows the role ASTA plays in anti-
PASTA.

Proposition 3. Suppose that N has a stochastic intensity v(t) with respect to F,=
F N as in Theorem 1, u(t) = E[v(t)| X(¢)] as in (2.6) and the following four conditions
hold:

(i) PINt)—N(t—-)=1)=0,t>0,

(i) FY_C F¥,1>0,

(i) Ev(0)| #71= ED(®) | XO1=p() w.p.1,1>0,

@iv) p@)=E[u@)] w.p.1,t>0.

Then v(t)= E[v(t)] w.p.1 for t >0 and N is a (P, #)-Poisson process with (possibly
time-dependent) intensity E[u(t)] = E[v(t)]}, t = 0.

Proof. Since v is a stochastic intensity of N with respect to #,, v is adapted to &#,.
Hence, v(t)=E[v(t)|#,] w.p.l, t>0. By conditions (i) and (ii), E[v(t)|#,]=
E[v(®t)|#¥] w.p.l, t=0. Combining conditions (i)-(iii), we see that v(t)=
E[v@)| X(©)]=u(t) w.p.l, t>0. Given this, condition (iv) implies that v(¢)=
E[u(t)]=E[v(t)] w.p.1, t > 0. Since v is assumed to be a stochastic intensity with
respect to &, for which E[[{ v(s)ds]<oo (see Theorem 1), N(t)— [§ v(s)ds is an
& -martingale, by the integration theorem, p. 27 of Brémaud (1981). Since v(t) =
E[v(t)]w.p.1,t >0, Nisa (P, #,)-Poisson process with intensity E[v(¢)] by Watanabe’s
(1964) theorem, p. 25 of Brémaud (1981). Since #Y C #,, E[v(t)| F¥]1=E[v(?)] is a
stochastic intensity of N with respect to #7; see p. 32 of Brémaud (1981). Hence, N is
also a (P, #Y)-Poisson process with intensity E[v(t)].
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Remark 3.1. Condition (i) is 2 minor regularity condition, which we usually expect
to hold; see Proposition 4 below. The standard way to obtain conditions (ii) and (iii) is to
have

3.2) N@t+)—-NE—-)=glX(¢t—-)Xt+)], t=0,

for some {0, 1}-valued measurable function g (an indicator function) with X Markov.
By Theorem 2, condition (iv) is nearly equivalent to LBA for X and N and thus ASTA; it
is equivalent under the stationarity condition (2.5).

Proposition 4. Under the stationarity condition (2.5), P(N(t) —N(t —)=1)=0 for
all't.

Proof. Note that
P(N(t)—N(t —)>¢e)=1lm PNt —n~',t+n"")>¢)

= lim P(N(0, 2/n)>¢) by(2.5)
n—o

= lim ¢~ 'E[N(0, 2/n)] by Markov’s inequality
n—+-w

= lim (en) 'E[N(0,2)] =0 by (2.5).
n—ow

Finally, we combine Propositions 3 and 4 and Remark 3.1 to obtain our basic
anti-PASTA result.

Theorem 5 (anti-PASTA). Suppose that N has a stochastic intensity v with respect to
F, as in Theorem 1. Also suppose that (2.5), (2.6) and (3.2) hold. If, in addition, X is
Markov and ASTA holds, then N is a (P, #V)-Poisson process with constant intensity
E[v(0)].

Proof. By Proposition 4, condition (i) of Proposition 3 is satisfied. Since X is
Markov, has left-continuous sample paths and (3.2) holds, conditions (ii) and (iii) of
Proposition 3 hold. By the Corollary to Theorem 2, ASTA implies that condition (iv) of
Proposition 3 holds with E[v(t)] = E[v(0)] for all ¢.

Remark 3.2. For the case in which X is a continuous-time Markov chain and (3.2)
holds, there are many closely related results; see Melamed (1982), Section 2.10 of
Walrand (1988), Green and Melamed (1990) and Serfozo (1989a); an additional result is
Wolff (1990).
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