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Abstract 

We establish a heavy-traffic asymptotic expansion (in powers of one minus the traffic intensity) for the asymptotic 
decay rates of queue-length and workload tail probabilities in stable infinite-capacity multichannel queues. The specific 
model has multiple independent heterogeneous servers, each with i.i.d, service times, that are independent of the arrival 
process, which is the superposition of independent nonidentical renewal processes. Customers are assigned to the first 
available server in the order of arrival. The heavy-traffic expansion yields relatively simple approximations for the tails of 
steady-state distributions and higher percentiles, yielding insight into the impact of the first three moments of the defining 
distributions. 
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I. Introduction 

Let Q and W be the steady-state queue length (number in system) and workload (remaining service time of 
all customers in the system) at an arbitrary time in an infinite-capacity queueing model. In surprisingly great 
generality, 

a kP(Q>k)--*fi ask -~oc ,  (1) 

and 

e " x P ( W > x ) ~ 7  a s x - - , ~ ,  (2) 

where o- and r/are the asymptotic decay rates, and fl and ~ are the asymptotic constants. For the GI /G/1  queue, 
such exponential small-tail asymptotics were established in 1953 by Smith [20]; these results require that the 
service-time distribution have a finite moment  generating function in a neighborhood of the origin. For 
recent extensions and more references, see the works of Abate et al. [1 ] - [3 ] ,  Asmussen and Perry [5], 
Asmussen and Rolski [6], Elwalid and Mitra [10], [11], Falkenberg [12], Neuts [18], Tijms [21] and Whitt 

0167-6377,"94,'$07.00 ,,~C) 1994 Elsevier Science B.V. All rights reserved 
SSDI 0 1 6 7 - 6 3 7 7 ( 9 4 ) 0 0 0 2 1 - W  



224 J. Abate, W. Whitt /' Operations Research Letters 15 (1994) 223~ 230 " 

[23]. Corresponding small-tail asymptotics also typically hold for the steady-state random variables 
associated with the embedded processes, observing just before arrivals or just after departures, with the same 
asymptotic decay rates, but different asymptotic constants; see [3]. 

In even greater generality, we have the weaker limits 

k l logP(Q > k ) ~ l o g a  a s k ~ o c  (3} 

and 

x l l o g P ( W > x ) ~ - q  a s x ~ o c ;  (4) 

see the works of Chang [7] and Glynn and Whitt [13]. The limits (1) and (2) support the approximations 

P(Q > k) ~ fla ~ and P ( W  > x) ~ ~e -"x, (5} 

and the limits (1) (4) support the cruder approximations 

P(Q > k) ~ a k and P ( W  > x) ~ e -"x. (6} 

Moreover, these approximations are often surprisingly good; see Tijms [21, Section 1.9, Ch. 4] and Ref. [2]. 
The cruder approximations in (6) are often good for high percentiles. 

In [2] a heavy-traffic expansion was developed for the decay rate r/in the GI/GI/1 model, which reveals 
how r/depends on the first three moments of the interarrival-time and service-time distributions when the 
traffic intensity is not too low. The first term corresponds to the familiar heavy-traffic limit [16, 17]. The 
second term is especially revealing as a refinement of this heavy-traffic limit. Numerical examples in [1] 
clearly demonstrate the value of this approach. It is significant that the heavy-traffic refinements for q are 
much more tractable than the heavy-traffic refinements for the mean E W; i.e., we obtain useful exact formulas 
for q, whereas this is not possible for the mean [2, 22]. 

The purpose of this paper is to develop the corresponding heavy-traffic expansions for both q and a in the 
general multichannel queue, with m heterogeneous servers and the superposition of n independent nonidenti- 

cal renewal arrival processes. This multichannel model is of considerable interest to study the effect of 
statistical multiplexing in communication networks. The asymptotic decay rates play a key role in concepts 
of effective bandwidth for admission control; see the works of Chang [7], Elwalid and Mitra [10, 11] and 
Whitt [23]. The way to determine the decay rates for this model was indicated in [23]. Theoretical 
justification was provided first for the special case of phase-type distributions by Neuts [18] and then for the 
special case of a single server by Chang [7] and Glynn and Whitt [13]. However, in full generality, the 
formula for the decay rates remains to be justified. 

Interestingly, the GI /GI / I  analysis extends directly to the 52'~- 1 G I i / G I / m  model with m identical servers in 
parallel and an arrival process that is the superposition of n independent and identical renewal arrival 
processes, because the decay rates a and q are the same as for the GI/GI/1 model, after an appropriate 
adjustment of the time scale. However, this also remains to be fully proved. 

Here is how this paper is organized. In Section 2 we review the equations determining the asymptotic 
decay rates; in Section 3 we establish the heavy-traffic expansion; and in Section 4 we make a few concluding 
remarks. 

Since this paper was written, we have made significant extensions of the results given here and they are in 
the works of Choudhury and Whitt [9] and Glynn and Whitt [13, 14]. We have also developed numerical 
algorithms and evaluated the approximations based on the asymptotics. Choudhury et al. [8] show that the 
quality of the cruder asymptotic approximations in (6) based on the decay rates q and G alone can deteriorate 
dramatically when the number of sources gets large. 
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2. The model and the determining equations 

The model  is specified by n + m nonnegat ive  mean-one  r a n d o m  variables Ui, 1 ~ i ~ n, and Vi, 1 ~ j ~< m, 
and n + m time-scaling factors (arrival and service rates) pwi ,  1 <~ i <~ n, and Itj, 1 ~< j ~< m, where it is 
unders tood  that  y ~ :  1 wi = 1 and y ~ :  1 llj = 1; i.e., the total service rate is 1 and the total arrival rate (which 
equals the traffic intensity) is p. The r a n d o m  variable U~/pw~ is a generic interarrival  t ime in the ith arrival 
channel,  while the variable I/i//~ j is a generic service- t ime at the j t h  server. We assume that  cus tomers  are 
assigned to the first available server in order  of arrival, with some procedure  to break ties. Interestingly, the 
t ie-breaking mechanism does not affect the asympto t ic  decay rates. 

O u r  asympto t ic  expansion as p ~ 1 will involve the paramete rs  w~ and I~j, and the first three moment s  of Ui 
and ~ .  which we assume are finite. Moreover ,  we assume that  the m o m e n t  generat ing functions Ee ~v' are all 
finite for some positive s. This is a necessary (but  not sufficient) condit ion for (1) and (2): see [2]. 

Let u~k and ~)k be the kth momen t s  of U~ and Vj, respectively. Let c~ and (,z~j be the squared coefficients of 
variat ion (SCV, variance divided by the square of the mean) of Ui and l" i. By the assumpt ions  above,  

u~ = vi~ = 1, u~z - 1 =(,,'2 and ~2 - 1 =(~j.'2 

Note  that  u~3 and ~)3 are the third momen t s  of U~ and Vj instead of U~/pw~ and Vj/#j. 
We now describe the equat ions  that  we conjecture determine the asympto t ic  decay rates. {As indicated in 

the introduct ion,  the references explain where these equat ions  come from and provide s t rong suppor t ing  
evidence for their validity.) The geometr ic  decay rate a in (1) is the unique root  z in (0, 1) of the decay-rate  
equation: 

" 

ai(z) = sj(z), (7) 
i 1 j 1 

where a~(z) ~- aAz, p) and s j(z) are the functions of z that  are roots  of the individual congest ion equations: 

Ee ,,,t:ir,, . . . . .  z, 1 <~ i <, n, 18) 

and 

1 
Ee ' ' l : ' ~ ' ' , =  , 1 ~<j~<m.  (9) 

Z 

Then the exponent ia l  decay rate r / -  q(p) in (2) is simply 

m 

'7 = ai(~) = ~ sj(c~). (10) 
i:1 j=l  

3. The heavy-traffic expansion 

In this section we show how to obtain  heavy-traffic asympto t ic  expansions  for the decay rates ~; and ~7 in { 1) 
and (2) as p-- ,  1 f rom below, using a var iant  of the me thod  used for the G I / G I / 1  queue in [2]. For  the 
G I / G I / 1  queue, this idea goes back  to Smith [20, p. 461], but  he considers only the first term. Even the first 
term is useful here, because it provides addi t ional  suppor t  for claims in Section 2. The first term yields the 
exact decay rate of the limiting exponent ia l  in the heavy-traffic limit given in [16 17], as we will now 
demonstra te .  

To  do the asymptot ics  for the decay rates, it is convenient  to work with the cumulan t  generat ing func- 
tions, which are the logar i thms of the m o m e n t  generat ing functions [15, p. 64]. The specifying equat ions (8) 
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and (9) become 

log Ee -.,v,/p,,,, = log z, 

and 

1 ~< i ~< n, (1 1) 

l ogEe  ~/~', = - l o g z ,  1 ~< j ~< m. (12) 

The coefficients of  s"/n! in the power  series expansion of these cumulan t  generat ing functions are the 
cumulants  of  - Ui/wip and V//~j, respectively. The first three cumulants  of  Ui are u .  = 1, u~2 = u21 = u~2 - 
1 - c.~2 and u~3 - 3u.u~2 + 2u31 = ui3 - 3U~z + 2. We will express the cumulants  via the momen t s  below. 
The key pa ramete r s  are 

2 ~ 2 w h e r e  2 Ca = WiCai Cai = ui2 -- 1, (13) 
i=1 

2 E 2 2 - -  1, (14) c, = &cs) where Csj = v)2 
j = l  

-- 3Cai(Cai + 1) -- 1) da = wi(Ui3 2 2 (15) 
i=1 6 

(/~3 2 2 - 3c~j(c~j + 1) - 1) (16) 
ds = ~ l~j 

j = l  6 

Theorem.  Assuming that the decay-rate equation (7) has a unique root in (0, 1) and the cumulant generating 
function (11) and (12) admit partial asymptotic expansions in powers o f  s, we obtain the following asymptotic 
expansions for  the asymptotic decay rates a and q in (1) and (2): 

1 2(1 - p )  [ 8 ( d , -  da) 2(c 2 - 1) 1 
.2 2 + [ _ ( c 2 + c 2 ) 3  ~ - - 7 2 2 - 2  ( 1 - P ) Z + O ( ( 1 - P )  3) a s p - - * l  (17) 0 " =  

(co + ~ )  J Ca + Cs 

and 

2 2 2(1 - p) [8(d~- da) 2(ca__-_ CsZ)~ ( 1 p)2 + 0 ( ( 1  p)3)  ~ - - - ~  --  _ 
~ / -  2 2 t _ q , " c ~ + c ~ '  2 2 2  (co + c=) J Ca + Cs 

_ 2 ( 1 - P ) ( I _ X ( 1  - p ) + O ( ( 1  p)2) a s p  1, ~ - ~  -- 
C,, + Cs 

where 

(18) 

X - 
4(d~ - da) (c 2 - c 2) 
(Ca 2 + c 2 )  2 +  C.2+Cs2 " (19) 

Proof.  We start  by expanding each cumulant  generat ing function in powers  of s. We keep only three terms, 
but it is easy to go further, provided higher momen t s  are finite. We obtain  the normal ized cumulants  
(expressed via moments )  as coefficients; i.e., 

- s  s2(ui2 - 1) $3(Ui3 - -  3u12 + 2) 
+ + O(s 4) = log z (20) 

pwi 2pZw 2 6p3w 3 
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and 

S S2(Uj2 - -  1) S3(Uj3 -- 3Vj2 + 2) 
--  + + + O(s 4) = - l o g z  121) 
I'., 2" 2 6fl 3 

as s ~ 0. We then use the inverse function theorem with (1 l) and (12), as with reversion of power series 
(matched power series) [4, p. 16], to write s - a~(z) and s ~- g(z) as functions of e = - log z where (ai and .~i are 
the values of s as functions of l ogz  and - l o g z ,  respectively, yielding equality in (111 and (12)), i.e., 
(~i( - log z) = ai(z) and s i( - log z) = sj(z), obtaining 

Pwi(tti2 - |)82 I ( u i 2 - 1 ) 2  ( u i 3 -  3ui2 + 2)]g3 + O(g 4 ) (22) 
fiiO:) = pwic, + 2 + pwi ~ 6 

and 

'Uj(Uj2 -- 1 ) g  2 -}- IAjV ( U j 2 -  1)2 (UJ3 -  3/;j2 "+- 2)1c3 + 0(~, 4) (23) 
lqe 

2 L 2 6 I 

as r, = log z ~ 0. 
Now we can apply (7) to obtain the asymptot ic  form of the characterizing equat ion 

i = l  i = l  

Substituting (22), (23) and (13) (16) into (24), we obtain 

(c~ e + pc~)~: 
+ (d~ - -  pda)g 2 + O ( g  3) = 1 -- p. 

2 

(24) 

(25) 

We now intend to apply the inverse function theorem again to (25) to represent e as a partial power series 
in (1 - p). First, however, we eliminate p from the coefficients o fe  k in the left-hand side of(25). We write (25) 
a s  

A¢: + BeoJ + Ce 2 + O g 2 { u  + O ( g  3) = {O (26) 

where {,J = 1 -- p, A = (c 2 + cZ~)/2, B = - c 2 / 2  and C = (ds - d,). Then, substituting expression (26) for ~,J in 
each appearance of {o in the left-hand side of (26), we get 

A~: + (C + AB)e 2 + O(e 3) = co. (27) 

Hence. by the inverse function theorem, we get 

2(1 - p) [ 8(d~-  d.) 2c~ 7 
~ p~2 ~ 0 ( ~ 1  (28) L" - -  ,2  , 2  ~ - -  2~3 2 - - -  2 2 , 2 + c ,  L(~ + c o )  (c~ + c , ) ' j ( 1  

Finally, since ~ = - l o g z ,  the geometric decay rate in (1) is 

E2 
a = e  ~=  1 - c , + ~ - + o ( e  2) a s e ~ 0 ,  (29) 

which is equivalent to (17). 
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Next, since q = tp(a) = ~ ( - l o g  a), where - l o g a  = e, ~, = 27=1 sj and ~ = 27=1 g~, by (10), we can apply 
(23) to obtain 

C2 /~2 
r / = ~ - ~ -  + O ( ~  3) a s e ~ 0 .  (30) 

Then we can apply (25) to obtain (18). [] 

The first-order approximations a ~ 1 - r/ and r /~  2(1 - p)/(c 2 + c~) in (17) and (18) are the familiar 
heavy-traffic limits [16, 17]. Formulas (17)-(19) agree with previously derived formulas for the GI/GI/1 
queue. For example, the correction factor X in (19) coincides with the previously derived GI/GI/1 result in 
the single-channel case [2]: For the GI/GI/1  model, 

2(V3 2 2 2 2 3((C2)2 (C2)2) -3c~(c~ + 1 ) - u 3 + 3 c ~ ( c ~  + 1))+ 
X = 3(c2 + c2)2 (31) 

2 2 and thus in the M/M/1 special case. Note that X = 0 when u3 = v3 and c, = c~, 
Formulas (17)-(19) are especially important to develop insight into the way the decay rates depend on the 

underlying parameters. First, the arrival process beyond its rate affects approximations (17) and (18) solely 
via the parameters c 2 and d,, while the service process beyond its rate affects these approximations solely via 
the parameters c~ and d~. From (18) (regarding the terms lexicographically), we see that ~/is decreasing (more 

.2 and .2 in (13) and (14), as we expect. The congestion) in the arrival rate 2 and the "second-moment" terms c, c~ 
decay rate q is also decreasing in the service "third-moment" parameter ds in (16), but increasinq in the arrival 
"third-moment" parameter da in (15). This last property can be understood by considering the fact that, for 
given first two moments, a high third moment usually means more mass near the origin, and thus more short 
interarrival times. 

2 ,2 We can see the effect of the degree of heterogeneity in the way the four parameters co, da, c~, ds in 
expansions (17) and (18) are determined. From (13)-(16), we see that these parameters are all convex 
combinations of the corresponding single-source parameters, with the weights depending on the rate of the 
source. 

4. Concluding remarks 

The analysis in this paper extends to other single-channel processes. For example, if the ith single-channel 
arrival process is a Markov renewal process (MRP) as in Neuts [18] and in Section III.B of [23], then we 
replace Ee -~v~ in (8) by J~(S) where f/(s) is the Perron-Frobenius eigenvalue of the matrix of Laplace 
transforms of the MRP. Instead of (16), we expand the function logf~(s/pw~) about s = 0; see the works of 
Choudhury and Whitt [9] and Glynn and Whitt [13, 14]. Key structural properties of J~(s), including its 
derivatives, are given in the Appendix of Neuts [19]. The coefficient (ui2 - 1) in (20) should be replaced by the 
asymptotic variance constant of the associated rate-1 MRP, i.e., the limit of the index of dispersion for counts 
(IDC), i.e., Ic(~) where 

Var Ai(t ) 
l c , ( t ) -  E A i ( t ~ '  t > 0, (32) 

and Ai(t) counts the number of arrivals in the interval [0; t]; i.e., it is the heavy-traffic limit. 
Similarly, if thej th single-channel service process is a Markov renewal process, then we replace Ee-~vj in (9) 

by 0j( - s) where Oj(s) is the Perron-Frobenius eigenvalue of the matrix of Laplace transforms of the Markov 
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renewal process. Instead of (21), we expand log 0 j ( - s / l l j )  about s = 0. The coefficient (v~2 - 11 in (21) should 
be replaced by the asymptotic variance constant of the associated rate-1 MRP, i.e., l~j(oc,) where 

Var Sj(t) 
l,,i(t) - t > 0, (33) 

ESj(t)  

and Sj(t) counts the number of service completions during the first t units of time that the server is busy. 
In this paper we have considered only the asymptotic decay rates cr and r/in (1) and (2). In [1 3] we discuss 

approximations and exact results for the asymptotic constants ~ and fi in (1) and (2). 
The heavy-traffic asymptotic expansion is a convenient approximation,  which is useful to provide insight 

into the way the tail probabilities depend on the basic model data. It is known that asymptotic decay rates 
and asymptotic constants can actually be computed directly from transforms for a large class of models. For 
example, suppose that we have the Laplace-Stieltjes transform of the waiting time, Ee .,w. Then the Laplace 
transform of Pt W > x) is 

/~'(s) - e - ~ x P ( W  > x ) d x  1 - Ee ~w - - -  i34) 
o s 

Then -~1 is the right-most singularity of l~(s). 
Having found q, we can find the asymptotic constant ~ in (2) by applying the final-value theorem for 

Laplace transforms, i.e., 

-= lim e " x P ( W  > x) = lira (s + q)ff/C(s + ~1). (35) 

To justify (35), we assume that (2) is valid, so that indeed the right-most singularity of ff/'(s) is a simple pole. 
Furthermore, if we can represent ff/~(s) as N(s)/D(s)  where - r / i s  a root of the equation D(s) = O, then we can 
also express ~ as 

= N ( - t l j / D ' ( - ~ 1 ) .  t36) 

where D' is the derivative of D. 
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