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Abstract

In this paper we consider a family of product-form loss models, including loss
networks (or circuit-switched communication networks) and a class of resource-
sharing models. There can be multiple classes of requests for multiple resources.
Requests arrive according to independent Poisson processes. The requests can be for
multiple units in each resource (the multi-rate case, e.g. several circuits on a trunk).
There can be upper-limit and guaranteed-minimum sharing policies as well as the
standard complete-sharing policy. If all the requirements of a request cannot be met
upon arrival, then the request is blocked and lost. We develop an algorithm for
computing the (exact) steady-state blocking probability of each class and other
steady state descriptions in these loss models. The algorithm is based on numerically
inverting generating functions of the normalization constants. In a previous paper we
introduced this approach to product-form models and developed a full algorithm for
a class of closed queueing networks. The inversion algorithm promises to be even
more useful for loss models than for closed queueing networks because fewer
alternative algorithms are available for loss models. Indeed, for many loss models
with sharing policies other than traditional complete sharing, our algorithm is the
first effective algorithm. Unlike some recursive algorithms, our algorithm has a low
storage requirement. To treat the loss models here, we derive the generating
functions of the normalization constants and develop a new scaling algorithm
especially tailored to the loss models. In general, the computational complexity
grows exponentially in the number of resources, but the computation can often be
reduced dramatically by exploiting conditional decomposition based on special
structure and by appropriately truncating large finite sums. We illustrate our
numerical inversion algorithm by applying it to several examples. To validate our
algorithm on small models, we also develop a direct algorithm. The direct algorithm
itself is of interest, because it tends to be more efficient when the number of
resources is large, but the number of request classes is small. Furthermore, it also
allows a form of conditional decomposition based on special structure.
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1. Introduction

In this paper we develop an algorithm for calculating the (exact) blocking
probabilities (and other steady-state descriptions) in a family of loss models. These
models are multidimensional generalizations of the classical Erlang loss model. They
all have product-form steady-state distributions. The blocking probabilities have
simple expressions in terms of normalization constants (or partition functions). To
calculate the blocking probabilities and other steady-state descriptions, we calculate
the normalization constants by numerically inverting their generating functions
(which we derive here).

Our family of models includes two familiar classes of models that have received
considerable attention because of their important application to communication
networks and computer systems: (1) loss networks (or circuit-switched communica-
tion networks) as reviewed by Kelly (1991), and (2) resource-sharing models as
considered by Kaufman (1981), Roberts (1981) and others. However, our models
are more general than are usually considered in these two classes, as we explain
next.

1.1. Loss networks. A loss network has multiple nodes connected by trunks (or
links), each of which contains a number of circuits, as depicted in Figure 1. In this
figure there are five nodes and five trunks, with trunk j having K; circuits. (The
nodes actually play no role in the model.) The loss network carries multiple classes
of types of calls, which are distinguished by the set of trunks (or route) they require,
by the number of circuits required on each trunk (which need not be the same on all
trunks) and by the average call holding time. (Each call holds all its circuits for the
duration of the call.)

For the example in Figure 1, the set of routes might be

#={{1}, {2}, {1, 2}, 3,5}, {4, 5}, {1, 3, 5}}.

In this example there might be twelve call types, two corresponding to each route
(subset) with the route indicating the trunks needed for each call. We also must
specify the number of circuits needed by each call type on each trunk. We may have

O % O
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Figure 1. An example of a loss network.
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more call types than routes, because different call types with the same route may
have different circuit requirements. The steady-state distribution depends on only
one more parameter for each call type: the offered load, which is the call arrival rate
multiplied by the mean call holding time.

In the basic loss network model, calls of each type arrive according to a Poisson
process. Each call is accepted only if all the trunks on its route have enough circuits
available to support the call; otherwise, the call is blocked and lost (without
generating retrials or otherwise affecting future arrivals). Loss networks have many
applications; e.g. a loss network may represent a database, a wireless communication
network or a circuit-switched computer network as well as a circuit-switched
telephone network. For additional background on loss networks and additional
references, see Kelly (1985), (1986), (1991).

We have not mentioned the call holding-time distributions, because the product-
form models have an insensitivity property implying that the steady-state distribution
depends on the call holding time distributions only through their means: e.g. see
Lam (1977), Kaufman (1981), Burman et al. (1984) and Whitt (1980), (1985).

The example in Figure 1 is taken from the introduction of Kelly (1986). We apply
our algorithm to solve this example in Section 9. There are alternative algorithms
that could be applied to this example: a direct algorithm which we introduce in
Section 6 and recursive algorithms developed by Dziong and Roberts (1987), Pinsky
and Conway (1992) and Conway and Pinsky (1992), but all these alternatives
encounter numerical difficulties when the model gets large. We try to address this
difficulty with our inversion algorithm, as do Conway and Pinsky (1992) with their
recursive algorithm. Effective algorithms for computing the exact blocking prob-
abilities in loss networks previously had been developed only for special cases. For a
class of two-hop tree networks, Mitra (1987) performed an asymptotic analysis and
developed bounds, while Kogan (1989) developed an algorithm for that model by
relating it to a closed queueing network. Other algorithms for tree networks have
been developed by Tsang and Ross (1990) and Ross and Tsang (1990). We apply our
algorithm to these tree networks in Section 10, and show that it may be applied to
more general structures as well. Of course, simulation can also be applied. A related
approach is Monte Carlo integration; see Ross and Wang (1992).

We generalize the traditional loss network model in the direction of trunk sharing.
The traditional loss network model assumes complete sharing (CS) of the circuits on
a trunk among all competing traffic classes. However, it is often desirable to consider
other sharing policies to provide different grades of service (the so-called platinum,
gold and vanilla services) or to protect one traffic class from another. We show how
to treat general sharing policies based on linear constraints. In particular, each
additional linear constraint is equivalent to having another trunk in the model with
the CS policy. This is because, with the CS policy, each trunk introduces a linear
constraint. Thus, a p-trunk problem with ¢ extra linear constraints is equivalent to a
(p + ¢)-trunk problem with the CS policy.
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Unfortunately, however, the computational complexity increases dramatically
with the number of trunks, because the dimension of the generating function of the
normalization constant equals the number of trunks. Thus we focus on two special
forms of sharing for which we can show the computational complexity does not grow
much. In particular, we consider two other candidate trunk sharing policies. The first
is the upper limit (UL) policy, which provides upper limits on the numbers of circuits
that can be used by each class on each trunk. The second is the guaranteed minimum
(GM) policy, which reserves a specified number of circuits on each trunk for each
traffic class. Both of these sharing policies can be represented by the addition of
linear constraints, with one constraint for each class. However, we exploit the special
structure to reduce the effective dimension of the transform. We show that the
effective dimension with the UL and GM sharing policies is at most one greater than
with the CS sharing policy.

In this paper we only consider the two non-CS sharing policies UL and GM, but
our results illustrate what can be done more generally. The various sharing policies
can be thought of as restrictions of the state space corresponding to the CS policy.
From the general theory of reversible Markov processes, it is known that all the
models with such restrictions inherit the product-form distribution. The new
steady-state distribution is a truncation and renormalization of the steady-state
distribution associated with the CS policy; see Section 1.6 of Kelly (1979). (Of
course, the restriction must leave an irreducible Markov process.) Moreover,
closed-form generating functions of normalization constants can be derived more
generally.

Some recent papers on loss networks have focused on extensions which do not
have product-form steady-state distributions, and thus are beyond the scope of our
algorithm. A major goal of these more general models is to represent schemes for
providing alternative routes to blocked calls; e.g., see Kelly (1991), Mitra et al.
(1993) and Ash and Huang (1993). Both product-form and non-product-form loss
networks have been analyzed primarily by approximate methods, such as reduced-
load or Erlang fixed-point approximations; see Whitt (1985), Dziong and Roberts
(1987) and Chung and Ross (1993) in addition to the references above. Simulation
has also been applied, see Greenberg et al. (1992) and Gaujal et al. (1993). These
alternative methods are often effective, but there remains a need for exact
algorithms such as we develop here. Moreover, our algorithm for product-form
models can assist in developing and evaluating approximations for more complicated
non-product-form models. New reduced-load approximations for large loss networks
can be based on the exact solution for single links or more general subnetworks with
Poisson arrivals.

1.2. Resource-sharing models. The second class of models we consider are the
resource-sharing models. These models are closely related to the loss networks, but
they have evolved in a somewhat separate literature. The basic resource-sharing
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model has a single resource, such as a set of memory buffers, which is shared by
several classes of requests. A distinguishing feature of the resource-sharing model is
the use of resource-sharing policies, such as the UL and GM policies discussed
above; see Kamoun and Kleinrock (1980) and Kaufman (1981).

One version of the resource-sharing model can be regarded as a special case of the
loss network having only a single trunk; then the circuits on the trunk constitute the
resource to be shared. This first version of the resource-sharing model can be
thought of as an infinite-server variant, because each request enters service
immediately upon arrival (unless it is blocked) and has a sojourn time that does not
depend on the other requests present. Another version is a single-server variant, as
in a memory buffer at a node in a packet-switching network in which each class is
served by one outgoing link. Then the packets occupy some buffers while waiting to
be transmitted, as in Kamoun and Kleinrock (1980). Even if a processor-sharing
discipline is used, so that requests enter service immediately upon arrival, the
sojourn time depends strongly on the other requests that are present. In this paper,
we consider only the infinite-server variant of the resource-sharing model. We
discuss the single-server variant and more general many-server variants in Choud-
hury et al. (1995b). Early work on the infinite-server variant was motivated by
sharing bandwidth on a satellite channel (e.g. Aein and Kosovych (1977) and Aein
(1978)). Mitra and Morrison (1993) discuss important new applications of resource-
sharing models to integrated multi-rate services on ATM and wireless networks.

The standard resource-sharing model has requests arriving according to indepen-
dent Poisson processes, one for each class of requests. However, it is also possible to
consider variants of the resource-sharing model with state-dependent arrival rates,
as was done in the case of linear arrived rates (the binomial-Poisson-Pascal model)
by Delbrouck (1983), Dziong and Roberts (1987), and Mitra and Morrison (1994).
Here we confine attention to Poisson arrivals, but we extend the inversion algorithm
to state-dependent arrivals in Choudhury et al. (1995b).

Recursive algorithms for computing normalization constants in resource-sharing
models were first developed by Kaufman (1981) and Roberts (1981) for the case of
complete sharing (CS) with Poisson arrivals. A recursive algorithm for the CS case
with state-dependent arrivals (the BPP model) was then developed by Delbrouck
(1983). Delbrouck’s algorithm was extended to multiple resources by Dziong and
Roberts (1987). A new recursion for the multi-resource BPP model has recently
been developed by van de Vlag and Awater (1994). Further recursions were
developed for the case of batch Poisson arrivals with CS by Kaufman and Rege
(1995) and van Doorn and Panken (1993). (Our methods also apply to batch
arrivals: we discuss both batch Poisson arrivals and state-dependent batch arrivals in
Choudhury et al. (1995c).) A recursive algorithm for the UL sharing policy has
recently been developed by Chuah (1993). These recursions are all similar in spirit
to Buzen’s (1973) classical convolution algorithm for closed queueing networks.

These recursive algorithms are effective when the model is not too large, but they
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tend to become ineffective as the model grows, due to numerical underflow/
overflow, slowness or roundoff error. For large models, we can use asymptotic
approximations, as in Evans (1991), Reiman (1991), Labourdette and Hart (1992),
Kogan and Shenfild (1994), and Mitra and Morrison (1994). The uniform asymptotic
approximation (UAA) of Mitra and Morrison (also in Kogan and Shenfild) seems
especially effective for analyzing large models, but even UAA can experience
difficulties with large models if not all parameters are suitably large, as we show in
Choudhury et al. (1995b).

For resource sharing models, our main contributions are to consider multiple
resources and develop an effective algorithm for non-CS policies as well as the CS
policy. Previous algorithms have primarily been for a single resource with the CS
policy. However, even in the relatively familiar setting of a single resource with the
CS policy, our algorithm can treat cases not covered by any previous algorithm, as
we show in Section 7.

1.3. The numerical inversion algorithm. Our algorithm follows the approach in
our previous paper, Choudhury et al. (1995a). In that paper we developed an
algorithm for calculating normalization constants and moments in product-form
models by numerically inverting their generating functions. For that purpose, we use
the numerical inversion algorithm developed by Abate and Whitt (1992a,b) and
enhanced by Choudhury et al. (1994a), which is based on the Fourier-series method.
That algorithm (reviewed in Section 3) requires that we can indeed obtain values of
the generating function and that we can perform a suitable scaling to control the
erTorS.

In Choudhury et al. (1995a) we developed a full algorithm for a class of closed
queueing networks. This was a convenient first class of product-form models to
consider, because it was known that the generating function of the normalization
constant can be expressed in a closed, compact form; see Reiser and Kobayashi
(1975) and Bertozzi and McKenna (1993). Here we develop a full version of the
numerical inversion algorithm for the multi-rate multi-class multi-resource loss
models described above. Our first contribution here is to derive the generating
functions of the normalization constants for these models (Section 2). We do this for
all three sharing policies; CS, UL and GM. It is significant that these generating
functions also can be expressed in a remarkably simple closed, compact form. There
has been less previous work with generating functions of normalization constants for
loss models than for closed queueing networks. Generating functions of normaliza-
tion constants in some loss models were previously derived by Delbrouck (1983),
Mitra (1987), Mitra and Morrison (1994) and Morrison (1995). Their derivations are
less general since they involve only the CS policy, and they have simpler network
structures. (However, Morrison (1995) consider the more general batch-Poisson
arrivals.)

Our second contribution here is to develop an effective static scaling algorithm to
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control the discretization error (Section 4). As with the closed queueing networks,
the scaling is an essential step since the normalization constant can be very large or
very small. The general principles for developing effective scaling apply as before,
but we cannot just apply the old scaling algorithm. Here we develop a new scaling
algorithm especially tailored to the loss models.

While the numerical inversion algorithm is very effective for treating certain kinds
of largeness, e.g. large capacity in a resource and many request classes, the
computational complexity grows exponentially with the number of resources (see
Section 5). Hence, we are not nearly able to analyze a complex product-form loss
model of the size of the AT&T long-distance network. Nevertheless, just as with the
closed queueing networks, fortunately the computation can often be reduced
dramatically by exploiting conditional decomposition based on special structure
(Section 3.1). For example, the dimension can be reduced to 2 for the two-hop tree
networks considered by Mitra (1987), Kogan (1989) and Tsang and Ross (1990) even
though the number of trunks can be arbitrarily large. Other structured models
exhibit similar dramatic dimension reduction by conditional decomposition.

For the loss models, we find that the computation can often be further reduced by
judicious truncation of large finite sums (Section 5). For example, we show that for a
single resource model with 100 000 resource units the computational savings can be
by a factor of 200 with essentially no loss of accuracy. For multiple resources, similar
savings can be obtained in each dimension, so that the overall saving grows
geometrically with the number of resources.

1.4. Validation of the inversion algorithm. In this paper we also develop an
alternative direct algorithm in order to validate our numerical inversion on small
models (Section 6). Interestingly, the direct algorithm has regions where it is more
effective than the inversion algorithm. Hard problems for the direct algorithm tend
to be duals of the hard problems for the inversion algorithm, with duality meaning
that we switch the role of classes and resources. The inversion (direct) algorithm
thus tends to perform well when there are only relatively few resources (classes), but
there can be many classes (resources). Furthermore, we can also exploit conditional
decomposition based on special structure for the direct algorithm, so that it can
perform well with very large numbers of classes.

Finally, we consider four classes of numerical examples (Sections 7-10). We start
by considering the classical single-resource resource-sharing model with the CS
policy (Section 7). Since there is only one resource, the inversion is only one
dimensional. Thus this example is very easy for our algorithm. In addition to making
comparisons with the direct algorithm for problems that have few classes, for this
model we also implemented the Kaufman (1981)-Roberts (1981) recursion and the
Mitra and Morrison (1994) uniform asymptotic approximation (UAA). We verify
the validity and effectiveness of our algorithm by showing that our algorithm agrees
with the recursion for small models and agrees with Mitra and Morrison’s UAA for
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large models. Our algorithm also has a self-contained accuracy check. We verify
accuracy by performing calculations with different inversion parameters (corres-
ponding to different contours on the inversion integrals). Since the computations are
indeed different, the accuracy is indicated by the extent of the agreement.

We also consider variations of the resource-sharing model with the UL and GM
sharing policies as well as CS. We show that our algorithm is able to treat these
other sharing policies just as effectively as CS (Section 8). For a single resource, the
dimension of the inversion always can be reduced to at most 2. Hence, these
variations are not difficult for our algorithm.

To illustrate our algorithm for loss networks, we consider the multi-rate extension
of the five-resource example in Figure 1, taken from the introduction of Kelly (1986)
(Section 9) and networks with special structure, such as tree networks (Section 10).
Even though the Kelly example with only five trunks is relatively small by
communication network standards, it is already a challenging model to analyze.
Analysis by our algorithm is facilitated by reducing the dimension from five to three
by exploiting conditional decomposition. For tree networks, we consider both UL
and CS sharing policies, thus going beyond previous algorithms. When no
alternative algorithm is available, we rely on our self-contained accuracy check.
Readers could go next to the numerical examples in Sections 7-10.

2. The generating functions

In this section we derive the generating functions of the normalization constants.
In Subsection 2.1 we review the general product-form solution for the loss model
with Poisson arrivals. In Subsection 2.2 we indicate how to treat other steady-state
characteristics besides blocking probabilities, in particular, factorial moments of
marginal distributions. In Subsections 2.3, 2.4 and 2.5, we consider this loss model
with the CS, UL and GM sharing policies, respectively. In Subsection 2.6 we
consider the same model with mixed sharing policies, where the three sharing
policies are each used by subsets of the requests (on all resources).

To emphasize the wide applicability of the models, we use the generic resource-
sharing terminology of resources, requests and capacity (or units) instead of trunks,
calls and circuits, respectively.

2.1. The general product-form solution. Consider a loss model with p resources
and r classes or types of requests. Let the resources be indexed by i and the type of
request by j. Let resource i have capacity K;, 1=i=p, and let K= (K,, - -, K,) be
the capacity vector. (We let vectors be either row vectors or column vectors; it will
be clear from the context.) Each type j request requires a; units of resource i, where
a; is a (deterministic) non-negative integer. Let A be the p X r requirements matrix
with elements a;. Let the requests come from independent Poisson processes, with
requests of type j having arrival rate A; Let the holding times be mutually



1112 GAGAN L. CHOUDHURY, KIN K. LEUNG AND WARD WHITT

independent and independent of the arrival processes. Let the mean holding time of
a type j request be #. Thus the offered load of type j is p;= A;t; Each request is
accepted if all desired resources can be provided; otherwise, the request is blocked
and lost. All resources used by a request are released at the end of the holding time.

Let the system state vector be n=(n,, - - -, n,), where n; is the number of type j
requests currently being satisfied. Let Sp(K) be the set of allowable states, which
depends on the capacity vector K and the sharing policy P. With non-CS policies,
the set of allowable states will typically depend on other parameters besides K.

If the holding times are exponentially distributed, then the stochastic process
{N(t):t =0}, where N(r) gives the system state at time ¢, is a finite-state continuous-
time Markov chain (CTMC). We will only consider cases in which this CTMC is
irreducible, and we will be interested in its unique steady-state probability mass
function #. Through insensitivity, this steady-state distribution also holds for
non-exponential holding times.

The steady-state probability mass function has the simple product form

e8) w(m) =0 [144,
=it

with the normalization constant

(22) gK)=gok)= > []2.
neSp(K) j=17:

Formulas (2.1) and (2.2) are consequences of the product-form model theory; see
for example Kelly (1979). Formula (2.1) is easily derived by initially considering the
infinite-server model without any capacity constraints. In the case of exponential
holding times, the Markov process N(t) is easily seen to be irreducible positive
recurrent and reversible (corresponding to independent M/M/~ queues) with a
stationary distribution that is the product of independent Poisson distributions, i.e.

23) n(n) =T exp {—p} L.
j=1 n;:

By Section 1.6 of Kelly (1979), the steady-state distribution with capacity constraints
is just the truncation of (2.3) to a smaller state space with a renormalization to yield
total mass 1; obviously this truncation and renormalization of (2.3) is just (2.1).
Alternatively we can just check that (2.1) satisfies the global balance conditions for &
to be the steady-state distribution of the CTMC N(¢). Since Poisson arrivals see time
averages (see for example Melamed and Whitt (1990)), the steady-state distribution
seen by an arrival is also given by (2.1).

Basic properties of the Poisson distribution help us see that the probability mass
function m(n) in (2.1) is well behaved. For example, p"/n! is unimodal in n with a
maximum at either Lp| or Lp]+1, where Lx] is the greatest integer less than or
equal to x. This structure helps us develop effective scaling in Section 4.
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We calculate the normalization constants by numerically inverting the generating
function

2.4) Go=3 3

K:1=0 K,=0

- 2 g(K)ziofr e 2,
K,=0

where z=(z;,2,, ***, 2,) is a vector of complex variables. (For the UL and GM
sharing policies, there will be extra variables in g and thus G.)
From (2.2) it is evident that g(K) is increasing in K,

gK)=exp(p,+---+p,) for all K,

and g(K) approaches this upper bound as K;— « for all j. Hence, the generating
function G(z) is absolutely convergent, and thus analytic, in the open polydisc
{z:lz] <1, 1=j=p}. For numerical inversion, the key point is that the generating
function G(z) can be expressed conveniently in a closed, compact form.
A generic expression for the blocking probability for class j is
i &2
neSyK) j=11;!
25) By=1 -1
Pr
neS,(K) j=1n;!
where S,(K) is defined in (2.2) and S,(K) is the subset of states in 5,(K) in which
another class j request can be accepted. The denominator of the second term in (2.5)
is the standard normalization constant, while the numerator can be expressed as
another normalization constant.

2.2. Steady-state quantities other than blocking probabilities. In this paper we only
consider blocking probabilities, but other steady-state quantities such as marginal
distributions and moments can also be expressed in terms of normalization
constants, usually involving only two normalization constant values. For example, let
N, be the steady-state number of class j in service with the CS policy. It is easy to see
that the marginal distribution is given by

p"!g(l)(K—Aen)
26 P(N,=n))=PL8 2 _26%)
26) % =m) =2

where g’(K) represents the normalization constant of the system with class j
removed and e; is the jth r-dimensional unit vector (with a 1 in the jth place and 0’s
elsewhere), which here we regard as a column vector.

We can treat moments as indicated in Section 6 of Choudhury et al. (1995a). Since
it is convenient to treat factorial moments, let

x

(2.7) My = > ninj—1)- - (n;— k + )P(N, = n)).
k

n;=
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By (2.6),

n oK —
=S (1) (n,— k +1)PLE K —Aen)
M nzk"’("’ )y =+ 1) S =

Let n; =n; — k. Then,

= pig V(K —Aek —Aeny) |, g(K—Aek)
2.8 M., = p* —eLg i 1)k %)
( ) Jk p] ,7}2=0nj! g(K) p} g(K)

So all the factorial moments may be computed just as easily as the blocking
probability, namely, by computing the normalization constant at two values. The
mean is obtained as’

2.9) _ , B K —Ae)

TP (K)

Using (2.9) and (2.11) below, we get M;; = A;(1 — B;)u;", which agrees with what we
get by applying Little’s law.

2.3. Complete sharing. With complete sharing (CS), the only capacity constraint
is provided by the capacity vector K. The allowable states are now the set of state
vectors n such that 37_, a;n, = K;, 1Si=p;ie.,

(2.10) Ses(K)={n e Z’,:An =K},

where Z, is the set of non-negative integers and Z’, is its r-fold cartesian product.
From (2.10) we see that with the CS policy each resource produces a linear
constraint; i.e. resource i produces the constraint 37_; a;n; = K; where a;;, n; and K;
are integers. Thus additional linear constraints are equivalent to introducing
additional resources. To obtain integer parameters, we assume that the coefficients
a; are all rational; then there is an equivalent representation in which a;; and K; are
integers.

By (2.5), the stationary blocking probability of an arbitrary type j request is given
by

@.11) =1 _8&—Ac)

g(K)

We calculate B; in (2.11) by calculating g(K — Ae;) and g(K).
The key to obtaining a convenient closed-form expression for the generating
function is changing the order of summation from the given order in (2.2) and (2.4).
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Doing so for G(z), we obtain

G(Z)=§:"'i i i H_L

n1=0 =0 Ki= e ay K, El-lam"l =1n
r
exp (2 P; ) z?"‘)
j=1 "i=1
fl1-2z)
i=1

2.4. Sharing with upper limits. We have indicated above how to treat additional
linear constraints on the state space by adding additional resources. Now we
consider two special sharing policies for which we can reduce the dimension of the
generating function. We now assume that, in addition to the overall capacity
constraint provided by K, an upper limit L, is imposed on request j for resource i for
each (i, j) pair. At first glance, this appears to be rp new constraints, but it is easy to
see that there are at most r binding constraints, one for each type of request. We
first identify the resource that limits the maximum number of type j requests to be
carried by the network simultaneously. Resource i is the type-j limiting resource if

(2.13) LL;/a;)=Lijlas;]  for1=i'=p.
If resource i is the type-j limiting resource, then we let M; = |_L,-,-/a,~,-_|. Note that

{neZ,aqn=L;:1sisp 1sj=ri={neZ,:n,=M, 1=j=r}.

2.12)

Introduce the vector M = (M, - - -, M,) and note that the set of feasible states with
UL is

(2.14) SuuK,M)={n € Z",:An =K, n= M},

Let g(K, M) be the normalization constant as a function of the pair (K, M).
Paralleling (2.11), the blocking probability is now

B-1- g(K—Ae, M — L).
g(K, M)

Since (K, M) is of dimension p + r, so will be the generating function of g(K, M)
(but in Section 3.1 we will show that the dimension always can be reduced to p +1
or p for the numerical inversion). Let y=(y;, -, y,) be a vector of complex
variables which we will use for the last r dimensions. Thus, we can define the
generating function of g(K, M) as

(2.15)

©

G(z,y)—Z S - P> i_

=0 K>=0 Kp,=0 M;=0 M.

(2.16)

P’ k. k K, M M,
H+211222 zppy lyz .o r'-
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We change the order of summation, just as we did for the CS policy, in order to
obtain a closed-form expression:

S rfL K MM,
2.17) 2 b Un Lyt Yy

Ki=Yjmayy,  K=Saam =100
exp (2 Py fi z?"")

_ j=1 i=1
fla-z)10a-y)
i=1 j=1

‘u MR

Looking at (2.17) and (2.12), we see that a loss model with p resources, r classes
and the UL policy is equivalent to a special case of a loss model having p +r
resources, r classes, and the CS policy: just let z,,;=y, for 1=j=r. The capacity
limit on resource p +j is the upper limit M; for class j and a class j request requires
a; resource units from resource i, 1 =i = p, 1 resource unit from resource p +j, and
no resource units from resource p + k for k #jand 1=k=r.

2.5. Sharing with guaranteed minima. With the GM policy, a certain number of
units in each resource are reserved for each type of request. It is easy to see that UL
and GM policies are equivalent for two classes, but not for more than two. For
example, with three classes, GM puts upper limits on the total amounts of the
resource used by pairs of the classes. More generally, the GM policy is equivalent to
introducing constraints for each resource on the weighted sum of the numbers of
requests from all but one class. Thus, the GM policy also corresponds to a set of
linear constraints, so that it could be implemented by just adding resources.
However, we will show how to exploit the special structure to reduce the dimension.

To obtain a tractable expression in this case we assume that the requirements
matrix A has a special form. In particular, let there be a vector b= (b;, - - -, b,) such
that a; equals either b; or 0 for all i and j. Moreover, we assume that the amount of
capacity guaranteed for each type of request is the same for all resources used by
that type of request. Let M; be the capacity guaranteed to type j request in each of
its required resources and let M denote the vector (Mi,---, M,). Note that M
denotes different quantities for the UL and GM policies.

For the ith resource with capacity K;, M;8; resource units are reserved for
type j requests, j=1,2,---,r where ;=1 if a;>0 and 6, =0 otherwise. So
K;— 3j-1 M;6; resource units are commonly shared. If a; >0, then type j requests
can use any of the M; resource units reserved for them and any of the commonly
shared resource units. A new type-j request is blocked if the type-j requests already
occupy more than the guaranteed minimum on some resource and if not enough
resource units are available at that resource. Given K and M, let S;, (K, M) be the
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set of allowable system states under the GM policy. Then

(2.18)  Sou(K, M) = {n € 7', : D, max (azn;, ;M))=K,fori=1,--- ,p}

j=1
Let g(K, M) be the normalization constant. Paralleling (2.11) and (2.15), the
blocking probability now, by (2.5), is

g(K—Ae, M — Ae))
(2.19 B=1-
) ! g(K, M)

As for the CS and UL policies, the order of summation can be changed to obtain a
close-form expression for the generating function of g(K, M). For a given system
state n, observe that each M, has no effect in causing n to be valid or not (for some
sufficiently large capacity vector K). Consequently, for the given n, M; can vary from
zero to infinity. Next, consider the capacity K;. For n; type j requests, the number of
units in resource i occupied or reserved for type-j requests is the maximum of a;n;
and §;M;. To account for all request types, K; must be at least X7_; max (a;n;, 5;M;).
Thus we can write the generating function as

where K;(n, M)=3]_, max{a;n;, §;M;}. Carrying out the summation over all K;,
then over all the M; (breaking the sum over M, into two parts, below and above
bn;), and finally over all n;, we obtain

Gz y)= (ﬁ L)

i=11—z

(2.20) o A ‘ .
IL[ exp (p] itll Ziq) B y] exp (p]yf] if[l Zi“) y] iﬁl Zis‘, exp (ply}b, iﬁl ia"hj)

X + .
j=1 I-y; 1-y i]i[1 i

As with the UL policy, the dimension of the generating function with the GM
policy is p + r, but in Section 3.1 we will show for the numerical inversion that the
dimension can always be reduced to p +1 or p.

2.6. Mixed sharing policies. We now consider a multi-resource loss model with r
types of requests, where different requests use different sharing policies. For a given
class, we assume that the same sharing policy is used on all requested resources.
Thus there are integers r, and r, with 1 =r, =r, =r such that classes 1,-- -, r, use
the CS policy, classes r,+1, rn+2,---,r, use the UL policy and classes r, + 1,
r,+2,---,ruse the GM policy.
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Just as in Section 2.5, we place restrictions on the requirements per request a; for
requests using the GM policy. In particular, a;; is either b; or 0 for all i. Similarly, we
require that the capacity guarantee M; for class j is the same on all resources used by
class j. We continue to use M; to refer to both the upper limits for requests with the
UL policy and guaranteed minimum number of resource units for the GM policy.

To identify all request types appropriately, let mn=(ny, - -, n,, n, .,

MR (R (P PR nr), M= (Mr,+1’ ) Mrz, Mr2+1, ) Mr) and y= (yr1+1, )
Vrps Yot = *5 ¥r)- We use Sup(K, M) to denote all feasible system states under these
mixed policies, which is

rn
SMP(K,M)={n eZ.:nj=M;forj=r+1,n+2,---,nand E a;n;

j=1
+ 2 max (a;n;, 6;M;) =K, fori=1,--- ,p}.
j=n+1
The conditions for being feasible states simply reflect that the upper limits have to
be met for the UL policy, the guaranteed minima are satisfied for the GM policy,
and that enough capacity is available in each resource for requests using all three
sharing policies. By the definition of the generating function,

Gan= 3 3 - 2 d 20 2

,,H-o M,,*z_o 0 K= 0 neSur(K,M)
S
ann.,zllzzz CZpPY Y y
j=in;!

Once again, after changing the order of summation, we obtain

oen=(fi)on(Sa i) $, 0120 1L ()

i= 11 j=r+1 i=1 j=n+1 1—)’,

2.21) . a ) 5,
IL[ P <pl igl Zi”) B yj exp (p]yfl igl Zi‘l) yj igl Z;s‘l exp (pjy]bl it[] Zisqb,)

J=n 1=y 1-y [ 2
i=1

Clearly, the generating functions in (2.12), (2.17) and (2.20) are special cases of
(2.21), in which only one of the sharing policies is used for all request types
throughout the model. Dimension reduction applies to the mixed policies just as it
does to the UL and GM policies; see Section 3.1.

In Choudhury et al. (1995b) we consider more general sharing policies in which
each class has both UL and GM bounds. In Choudhury et al. (1995d) we show that
appropriate UL/GM bounds (identified by a heuristic search algorithm) can perform
significantly better than complete sharing or complete partitioning. In some
scenarios the UL/GM bounds even perform significantly better than the commonly
used trunk reservation policies.
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3. The numerical inversion algorithm

In this section we briefly review the numerical inversion algorithm; for back-
ground and more details see Abate and Whitt (1992a,b), Choudhury et al. (1994a,b)
and Choudhury et al. (1995a). In Subsection 3.1 we discuss dimension reduction by
conditional decomposition, and in Subsection 3.2 we review the basic algorithm. We
develop our scaling algorithm for the loss models in Section 4 and discuss other
algorithmic issues in Section 5. Throughout the next three sections we use the
notation in (2.4) and (2.12); thus our goal is to calculate g(K) given G(z) where K
and z are p-dimensional.

3.1. Dimension reduction. Our approach to inverting p-dimensional generating
functions is to recursively perform p one-dimensional inversions. In general, the
computational complexity is exponential in the dimension p, but a dramatic
reduction in computation often occurs due to special structure if we perform the
one-dimensional inversions in a good order.

We look for conditional decomposition. We select d variables which we are
committed to invert. We then look at the generating function with these d variables
fixed, and we write the function of the remaining p —d variables as a product of
factors, where no two factors have any variables in common. Since factors without
any common variables can be treated separately, the maximum dimension of the
additional inversion required beyond the designated d variables is equal to the
maximum number of the p — d remaining variables appearing in one of the factors,
say m. The overall inversion can then be regarded as being of dimension d + m. The
idea, then, is to select an appropriate d variable, so that the resulting dimension
d +m is as small as possible. A systematic procedure is presented in Choudhury et
al. (1995a).

We note that recursive algorithms exploiting forms of decomposition have been
developed previously. The first evidently was the tree convolution algorithm of Lam
and Lien (1983); it applies to closed queueing networks. A recursive algorithm for
loss networks exploiting decomposition has been developed by Conway and Pinsky
(1992). Our algorithm is very different from these recursive algorithms.

From (2.12), note that indeed G(z) can be written as a product of factors. In the
denominator a single variable z; appears in each factor. The exponential term can be
written as a product of factors with one factor for each class. The variable z; appears
in the exponential factor for class j if and only if class j requires resource i, i.e., if
a; >0.

The generating function for the UL policy in (2.17) appears to require a
(p + r)-dimensional inversion, but exploiting special structure, the problem always
can be reduced to a (p +1)-dimensional or even a p-dimensional inversion. If we
at first keep all the z, variables fixed, then the inversions for the different y; variables
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clearly can be done separately. This reduces the dimension to p + 1. Furthermore, it
is possible to invert with respect to each y; variable explicitly to get

(o i)

M,
(3.1) Gz M)=——[] > —=

) j=11=0 I ’

which clearly requires a p-dimensional inversion. If M; is very large, we recommend
using the (p + 1)-dimensional inversion to take advantage of truncation; otherwise
use (3.1).

Similarly, from (2.20) the generating function for the GM policy appears to be
(p + r)-dimensional, but it too always can be reduced to (p + 1)-dimensional or
p-dimensional. As for the UL policy, the inversion with respect to y; may be done
explicitly for the GM policy as well, yielding

1

lfl(l-z.

Gz, M) =

(3.2)

!
LeM;—1ym,] (pJ H z )
z — =

=0

)4 jL(IWj_l)/b,J !
P
(M=) 3

=0

r p
X l_l1 exp (pj l_Il z?'”')
j= i=

A similar reduction in dimension from p + r to p + 1 or p is possible for the mixed
sharing policy in Section 2.6 as well.

3.2. The basic algorithm. Given a p-dimensional generating function G(z), we
first do the dimension reduction analysis to determine the order of the variables to
be inverted. Given that the order has been specified, we perform (up to) p
one-dimensional inversions recursively.

To represent the recursive inversion, we define partial generating functions by

(3'3) g(] (ZJ: 1+1) - KE_O 2 g(K) IL[ Z, ‘for 0 <] =D,
where z;,=(21, 22, "+, ;) and K; = (K}, Kj1, - - -, K,) for 1 =j =p. Let z5 and K+,
be null vectors. Clearly, K=K, z=2z,, §")(z,, K,+1)= G(z) and g(zy, K;) =

8(K).
Let I, represent inversion with respect to z;. Then the step-by-step nested
inversion approach is

(3.4) gV (z-1, K) =1[gV(z, K;11)], 1=j=p,
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starting with j=p and decreasing j by 1 each step. In the actual program
implementation, we attempt the inversion shown in (3.4) for j=1. In order to
compute the right-hand side we need another inversion with j = 2. This process goes
on until at step p the function on the right-hand side becomes the p-dimensional
generating function and is explicitly computable.

In each step we use the LATTICE-POISSON inversion algorithm in Abate and
Whitt (1992a,b) with modifications to improve precision and allow for complex
inverse functions as in Choudhury et al. (1994a). We show below the inversion
formula at the jth step. For simplicity, we suppress those arguments which remain
constant during this inversion, letting g{(K;)=gY""(z;_;, K;) and Gj(z)=
g¥(z;, K;+,). With this notation, the inversion formula (3.4) is

LK;—1

Y. Gi(ryexp {mik/l;K;}) exp{—mik/l} - e;,

(3.5) g(K;) = UKF 2

where i = V-1, [; is a positive integer, r; is a positive real number and ¢; represents
the aliasing error, which is given by

(3.6) ;= >, (K, +2nLK)r¥x,
n=1

Note that (3.5) differs from (2.3) of Choudhury et al. (1995a), because that inversion
formula was chosen to exploit Euler summation (involving nearly alternating series),
whereas here we use simple truncation instead of Euler summation, as we explain in
Section 5.1.

Note that, for j =1, g,(K;) = g(K) is real, so that G;(Z;) = Gy(z;). This enables us
to cut the computation in (3.5) by about one half; see Choudhury et al. (1995a).

To control the aliasing error in (3.6), we choose r; = 10™% for a; = v,;/(2],K;). Then
(3.6) becomes

(3.7) e;= 2, g(K;+2nK;)107"".
n=1

As is clear from (3.5), a bigger v; decreases the aliasing error. Also, as explained
in Choudhury et al. (1994a), the parameter /; controls roundoff error, with bigger
values causing less roundoff error. An inner sum of the inversion requires more
accuracy than an outer sum since the inverted values in an inner sum are used as
transform values in an outer sum. With a goal of about eight significant digit
accuracy, the following sets of /; and v; typically are adequate: (i) /; =1, y; =11, (ii)
L=13=2, y,=v3=13, (iii) l4=1Is=1=3; y4=7ys= ys=15, assuming that com-
putations are done using double-precision arithmetic. It is usually not a good idea to
use the same /; for all j, because then more computation is done to achieve the same
accuracy.

When the inverse function is a probability, the aliasing error ¢; in (3.7) can easily
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be bounded. In contrast, here the normalization constants may be arbitrarily large
and therefore the aliasing error ¢; may also be arbitrarily large. Thus, we scale the
generating function in each step by defining a scaled generating function as

(3.8) Gi(z) = aq,Gi(@2)),

where ay; and q; are positive real numbers. We invert this scaled generating function
after choosing a; and «; so that the errors are suitably controlled. The inversion of
Gi(z;) in (3.8) yields the scaled normalization constant

3.9 gi(K;) = agjagi(K)).

4. Scaling

The numerical inversion algorithm is completed by choosing the scaling para-
meters in (3.8). A general scaling strategy is described in Section 2.2 of Choudhury
et al. (1995a) and a detailed scaling algorithm for a class of closed queueing
networks is developed in Section 5 there. Here we briefly describe the general
scaling strategy in Section 4.1. In Section 4.2 we derive an appropriate scaling for a
single resource with a single request class arriving according to a Poisson process.
Then we develop a heuristic extension to multiple classes in Section 4.3. We use
similar heuristics for multiple resources and non-CS sharing policies.

Since the scaling involves heuristics, we validate its effectiveness in two ways: first,
we compare against alternative algorithms whenever available. Second, we perform
calculations with different inversion parameters (corresponding to different contours
in the inversion integral). Since the computations are indeed different, the accuracy
is indicated by the extent of the agreement. Several examples appear in Sections
7-10. They show that the accuracy is always very high (eight or more decimal
places).

4.1. General scaling strategy. We choose the parameters ag and e; in (3.8) to
control the aliasing error with scaling

(4.1) &=, g(K;+2nK;)10""".
n=1

Since we are interested in ratios of normalization constants, we focus on relative
errors e; = ¢;/g;(K;), which can be bounded by

= §~(K-+2nl~K~)‘ N
4.2) |ef = ol T 107",
( / Zl 81(K;)
Let
5 4 K. 1/n ) K + K Un
(4.3) C]:max{lﬂge_lg_’l_ll_lgL)‘} =a’21,-K,max{ EL'TZMLI—) } a
’ &) " &(K;)
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Then
G107
(4.4) |e|<EC"10 el

Note that C; in (4.3) is independent of ay. We use the second parameter a; mainly
to keep g;(K;) close to 1, so as to avoid numerical underflow or overflow. (This
numerical problem also can be avoided by working with logarithms.)

Hence, our main goal is to choose a; so that C; <« 10”. Of course, in general we do
not know g;(K;) and thus we do not know C;. However, we aim to achieve C; «< 10"
by roughly controlling the growth rate of gi(K;), or its fastest growing term,
exploiting the structure of the generating function.

4.2. Scaling for a single resource. In this section we do a careful analysis of the
simple case of a single resource with a single class using the CS policy. By (2.12) and
(3.8), the scaled generating function is

(4.5) G(z) = agexp (paz?)/(1 - az),

where we have dropped subscripts. Through explicit inversion,

LK/al

(4.6) g(K)=aga® > p*/k! = a,aXe?F,(K/al),
k=0

where Lx] is the greatest integer less than or equal to x and F,(x)=P(X =x) is the
cumulative distribution function (c.d.f.) of a Poisson random variable X with mean p
(which is unimodal with mode at an integer next to p).

Since 0-5=F,(x)=1 for x>p, if p<K/a, then ap=e"” and a=1 yields
0-5=g()=1forall /=K, so that C =2 in (4.3).

Next we treat the case p > K/a. Here our strategy is to control the growth rate of
the largest term of g(K) with respect to K (which happens to be the last term).
Using Stirling’s formula for the factorial, the largest term of g(K) is

e~ pLK/a_I) ao(aap)K/a
LK/al (K/a)X"e~Xa\2nK|a"

We use the term involving « in the numerator to cancel the dominant term
(K/a)*" in the denominator and a, to cancel the next dominant term exp (—K/a) in
the denominator. This yields the following scale factors:

(4.8) a=(K/ap)"* and ay=exp{—K/a}=exp{—pa’}

4.7 aga’e <

Alternatively, we could use a alone to cancel out the two most dominant terms in
the denominator of (4.7) and use e« to cancel the remaining term in the
denominator to get the scaling

(4.9) a=(K/ape)' and ao=V2nKa.
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We choose (4.8) instead of (4.9) to ensure that the scale parameters change
smoothly with K and coincide with the scale parameters in the other case at
p = K/a. The scaling in the two cases may be combined as follows:

a is the largest number in (0, 1] such that pa®a = K and

(4.10) agy = exp (—pa?).

4.3. Heuristic extensions. With multiple classes and a single resource, we extend
(4.10) heuristically by stipulating that

(4.11) a is the largest number in (0, 1] such that >, pjaa; =K
j=1

and letting

(4.12) @ = exp ( -y p,.a"f) :
j=1

In order to get « satisfying (4.11), we first compute X7_, p;a;. If this quantity is less
than or equal to K, then we immediately get « =1. Otherwise « is obtained as the
unique solution in the interval (0,1) of the non-linear equation X} p;a®a; = K.
Any search procedure, such as bisection, is adequate since we do not need to find «
with high precision.

It is to be noted that the heuristic extension satisfies two consistency checks. First,
for r =1, (4.11) and (4.12) reduce to (4.10). Second, if g; is independent of j, then
(4.11) and (4.12) again coincide with (4.10) with p =37_; p; and a = a;. This is a nice
check since in this case the independent Poisson streams may be combined to a
single one for the blocking probability calculation.

Turning to multiple resources, from (2.12), (3.8) and (3.9), the scaled generating
function is

'—ﬁl ®o: €XP {12; Pi ilfll (aizi)aii}

(4.13) Gz, 2) =—
fl (- az)
i=1

and the scaled normalization constant is

(4.14) 56 = [ (awag (50,

Using similar heuristics as above, we obtain the scaling parameters o;, 1=i=p,
so that they satisfy the inequalities 0 <a; =1 and

r i—1
(4.15) 21 p; kﬁl ol kHl r¥a; =K, 1sisp,
i Z
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where r, is as defined in Section 3.2. Once the scaling variables «; have been
obtained, we obtain ay; recursively starting with i = p by

r i—1
(4.16) (Tao=exp{-Z p, [T at T 2o}
k=i j=1 " k=1 k=1

To find a maximal vector (ay, - - -, a,) satisfying (4.15), we start with i =p and
successively decrease i. We use the fact that the left side of (4.15) is monotone in «;.
When i =1, the values of a; for i Z/ + 1 are known. We approximate by acting as if
a;,=1fori=I/-1 and find ¢, satisfying the constraint for i =/ in (4.15). When we
are done we obtain a maximal vector; i.e., if any «; is less than 1, then at least one
constraint in (4.15) is necessarily satisfied as an equality. Hence, we cannot increase
the vector without violating a constraint. However, in general there may be many
maximal vectors.

For the UL policy the generating function in (2.17) has a form identical to the CS
generating function in (2.12) if we treat the y; variables like the z; variables. Thus the
scaling for UL is a straightforward extension of CS scaling.

The generating function for the GM policy in (2.20) is more complicated. Hence,
for scaling only, we treat GM by acting as if it were UL. For each class j on each
resource i, we use the upper limit obtained by subtracting the guaranteed minima of
all other classes from the capacity. We then use the UL scaling with these upper
limit parameters. This procedure is exact for two classes, but a heuristic approxima-
tion for more than two classes.

5. Other algorithm issues

In this section we consider other algorithm issues besides scaling. In Section 5.1
we discuss truncation; in Section 5.2 we discuss speeding up the algorithm when
there are many classes by exploiting shared computation; and in Section 5.3 we
discuss computational complexity.

5.1. Truncation. As can be seen from (3.5), the inversion formula in each
dimension is a sum of 2/,K; terms. If K; is large, then it is natural to look for ways to
accelerate convergence of the finite sum. For the closed queueing network models in
Choudhury et al. (1995a), we found that we could usually exploit Euler summation
for this purpose. Here we find that Euler summation is usually not effective, but that
truncation is. It is possible that other acceleration techniques will be even more
effective, but we leave that to future work. (See Wimp (1981) for candidates.)

The inversion formula in each dimension is a weighted sum of generating function
values evaluated over equidistant points along the circumference of a circle. The
weights are complex numbers, but they have constant amplitude. As the capacities
K; grow, the amplitude of the generating function typically becomes unevenly
distributed along the circumference of the circle. There are several local maximum
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points and the amplitude drops sharply away from these points. (Since the weights
have constant amplitude, we only need to consider the relative amplitude of the
generating function values.) If we can identify all the relative maximum points, and
then consider only those points around them that have non-negligible relative
amplitude, we can obtain a significant reduction in computation.

We first develop the truncation procedure for a single resource and then consider
the extension to multiple resources. We start with the scaled generating function in
(4.5), based on (2.12) and (3.8). As noted after (3.6), in the outer dimension we can
cut the computation in half; we thus consider the sum over the upper semicircle with
radius r, = 107720,

At a summation point, z; =re® where @ assumes the values nk/(l;K;) for
0=k =1 K,. Let G*(8) be G(z,) expressed as a function of 6, i.e.,

(5.1) ag [T exp (pjatry exp {ia;0})
G*(8) =——

1- alrle’o

Note that the amplitude of G*(0) in (5.1) is

52) aor 11 exp (py(a1)" cos (@,6))

o 0)| = j=1
IG*(6)l V1 + a?r? —2a,r cos 6

For j=1,2,---,r, the numerator has relative maxima at 6 =2/n/a; for [;=0,
1,---, l_aj/2_|. The denominator has a single minimum at 6 = 0. Hence, |G*(8)| has a
global maximum at 6=0 and potential local maxima at 0 =2n/a; for [;=
1,2, -, |_a,~/2_l andj=1,2,---,r. Note that usually many of these 3 _, |_a,~/2_] local
maxima will coincide.

In summary, we start by computing |G*(0)| and then find the distinct local
maximum points 8 =2/z/a; for [;=1,- - -, l_a,-/ZJ andj=1,---,r, and sort them in
increasing order. Let these points be 6, fori=1,2,---, L. In general @, may not
coincide with a summation point in the inversion algorithm. In that case, move 6, to
the nearest summation point used in the inversion algorithm. Next find all i such that
|G*(6:,)/G*(0)| = €, where ¢ is some allowable error. Then

* r
(5.3) l g*gg)) = exp ( —jgl pj(ain)®(1 — cos aje)) irs

1- a1n

2r2 — 20,1, cos 6

For all these i sum over all summation points in the inversion algorithm above and
below 6, until |G*(8)/G*(0)| Z &. Do not sum over any summation point more than
once.

Our experience is that for large p; and K, typically only the points around 6 =0
and a few other local maxima will be significant. We can see how much
computational savings will result by computing for all values of 6 in (0, 7) and
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TABLE 1
Proportion of @ values for which |G*(8)/G*(0)|= ¢ as a function of £ and K, for the
two-class example

K, e=10"° e=10"% e=10"1° e=10""2
20 1-000 1-00 1-00 1-00
50 0-24 0-29 0-34 0-39
100 0-15 0-17 0-20 0-22
1000 0-040 0-047 0-053 0-059
10000 0012 0-014 0-016 0-018
100000 0-0035 0-0043 0-0050 0-0055

finding the proportion of the range for which |G*(8)/G*(0)| > &. To illustrate, we do
an example.

Example 5.1. Letr=2,a,=1, a,=2, p, =K,/2, p = K,/4 and let K, be variable.
In Table 1 we show the proportion of the range [0, 7] for which |G*(8)/G*(0)|= ¢
for various values of K, and &. Clearly, the smaller the proportion, the bigger the
savings. In fact, the computational saving is the inverse of the proportion.

From Table 1, we see that the savings increase rapidly as K increases, and
decrease slowly as € decreases. There is no saving at K; =20, but a saving by a
factor of 182 even with a low error tolerance of £ = 107'2 at K, = 10°. From Table 1,
it appears that the saving is approximately proportional to VK. Equivalently, this
means that with truncation the required summation is approximately proportional to
\/I—(—l instead of K;.

To see that the required summation should be O(VK;) more generally, focus on
the exponential term in (5.3) and note that it is approximately of the form

exp (C1K,(1 — cos (k/C,K,))) =~ exp (C,1k*/2C3K,)

for 6 = nk/1,K, and C, and C, constants (using 1 — cos x = x*/2 for x small). Thus,
the number of 6 values satisfying |G*(8)/G*(0)| > & should be O(VK;) as K; gets
large.

Truncation can also be exploited with multiple resources, but the situation is more
complicated. Now the scaled generating function is given by

(54) fll «g; €Xp (jél pj é‘l (ai zi)aii)

Gz, - ,z,,)='_

fl(1-az)
i=1
and the scaled normalization constant is

(5.5) Z(K) = ﬁ (cqal)g(K).
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For inversion with respect to z,, the same computational saving as for a single
resource may be achieved, but there are two differences. First, the inversion formula
involves summation over the entire circle instead of just a semicircle, so that we
have to consider more maximum points. Second, the constant p;a® in (4.12) has to
be replaced by the constant p; [I7-; af* II2-! z&. Since the latter constant is a
complex number, it will introduce a constant phase change to 8 and hence to all
maximum points.

For inversion with respect to z; for i <p, we have to cope with the partially
inverted generating function g¥~"(z;-,, K;) in (3.4), for which we do not know the
functional form. Hence, we do not know the maximum points and we must resort to
heuristics. We have observed that by heuristically assuming the location of the
maximum points to be the same as if the partially inverted generating function has
the same functional form as in (5.4) usually works and gives good computational
savings. Obviously, care should be taken with these truncations, because we no
longer have full control of the errors. This is a good direction for further research.
Perhaps asymptotic analysis can be used to develop more effective truncation.

5.2. Efficient computation for many classes. In order to compute the blocking
probability for each of the r classes, the computational complexity is O(r*), because
r +1 normalization constant values have to be calculated and the computation
required for each is O(r). However, we will show that for large capacity vectors K it
is possible to compute the r +1 normalization constants simultaneously with the
bulk of the computations shared, so that the required computation for all
normalization constants is only slightly more than for one. This reduces the overall
computational complexity from O(r?) to O(r).

To explain the method, we consider a single resource and the CS policy. From
(2.11), we know that the blocking probability for class jis B, =1 — g(K; — a;)/g(K,).
Then, letting a, =0, we must compute g(K; — a;) for 0 =j =r. Combining the scaling
and inversion procedure in Sections 3.2 and 4, we see that the standard formula for
this computation is

-1 - (Ky—a) ¥m,—1

K. — _a()ljalj( Y -
g( 1 aj)_ m -rK“"'

(5.6) VAl k=—}m,,

X exp{—2mik (K, — a;)/m;},

amiG(a],-r” €xXp {2””( /m,,})

where ay); and «a,; are the scaling parameters (which may be obtained from (4.11)
and (4.12)),

5.7 my;=2(K;—a;) and n;=10" nimy,

The associated aliasing errors are

(5.8) €, = > agyjaty'”“g(Ky — a; + nmy;) 107",
n=1
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Note that the computation (5.6) for different values of j cannot be shared because
the quantities ag;;, a;; and m;; are different for different values of j.

In order to share computation for different values of j, we propose that for K; > a;
(0=j =r), the quantities aqy;, ay; and my; be replaced by their values at j = 0 for all
j- This should not cause any appreciable difference in the error expression (5.8) since
for K, > a; the quantities agy;, ay; and my; are pretty close to their values at j =0
anyway.

Dropping the subscript j for g, @;; and m,;, we can rewrite (5.6) as

1 im,
(5.9) gKi—a)=———7— > TC}

myag(an) Y S,

where
(5.10) C;=exp{2mia;/m,} and T = ag G(a;rexp{2nik/m,})exp{—2nikK,/m,}.

Note that the bulk of the computation in (5.9) is computing 7, which can be shared.
The quantities Cf may be computed quickly, since C; needs to be computed only
once for each j. It is also clear that by working with partial sums for all j
simultaneously the overall computation may be done with a storage requirement
O(r). Moreover, if truncation applies (see Section 5.1), then it applies uniformly for
all j since |Cf|=1. For multiple resources and other sharing policies, the same
approach works.

5.3. Computational complexity. We now roughly analyze the computational
complexity of the inversion algorithm. For simplicity, assume that the capacity of
each resource is K. Let Cp represent the computational complexity for sharing policy
P, where P may be CS, UL or GM. The main computational burden is carrying out
the p-fold nested inversion in (3.5). Other work, such as finding the scale parameters
is insignificant compared to that. A straightforward application of our algorithm in
the CS case to compute one normalization constant would require O(K?) evalua-
tions of the generating function, each of which would involve O(r) work. In order to
compute the blocking probability for each class, we need to compute r+1
normalization constants, but in Section 5.2 we have shown that all this work can be
done in time O(1) by sharing the bulk of the computation (requiring storage only of
O(r)). Without further enhancements, this yields Ccs = O(rK?).

However, in Section 5.1 we have shown that we can use truncation to reduce K to
K « K and, with special structure (see Section 3.1), we can reduce p to p < p. So,
finally, we get

(5.11) Ccs = O(rK?),
where

K=K and K<«K forlarge K
(5.12)

p=p and p<«p with special structure.
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By contrast, the computational complexity of the algorithms in Dziong and
Roberts (1987) (in the Poisson case) and Pinsky and Conway (1992) are

(513) CCS = O(YKP)

So our algorithm would be faster if we can exploit special structure or if K is large,
where we can exploit truncation. Conway and Pinsky (1992) also reduce p by using
special structure (although differently from ours) but they do not seem to reduce K.

For the upper limit and guaranteed minimum sharing policies (exploiting
conditional decomposition as described in Section 3.1), we get

(5.14) CuL= Com = O(rK”*")

for K and p in (5.12). For these policies there does not appear to be a general
recursive algorithm for multiple resources. For a single resource, Chuah (1993) has
developed a recursion for the UL policy with complexity O(r*K?); this is slower than
ours for large K. For more on recursions, see Section II of Choudhury et al. (1995b).

The storage requirememt for our inversion algorithm is O(r) for all cases. This is
an attractive feature of our algorithm since it is much smaller than the storage
requirement of the recursive algorithms.

6. An alternative direct algorithm

In order to validate our inversion algorithm on small models, we also constructed
a direct algorithm. We directly calculate the normalization constant g(K) via the
r-fold nested sum

Nyy

(6.1) gy S LS e ”’

ny1=0 ny! nz_0n2 n=0",!

implemented as an r-level nested do loop. The upper limits of summation n;, depend
on the sharing policy and also on n; for 1 =k =j — 1. (This is why the sums cannot
be separated, but must be treated in a nested fashion.) In each case, when
considering the jth sum, the values of n, for 1=k =j—1 are already fixed. The
maximum value n; can take occurs when n, =0 for k =j + 1. Therefore we easily
obtain the proper upper limits n;,. For CS,

a;#0

For UL, we apply (2.14) to obtain

6 e gl S/}

a;j#0
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For GM, we apply (2.18) to obtain

(6.4) n;, = min {L(K,- — J§ max {ngay, Sy M} — i SikMk)/a,-jJ}.

1=i=p k=1 k=j+1
a.;#O

Let x; = pf/k! The quantities x; can be calculated recursively by setting x;o=1
and

6.5) Xpe = Xji-1(p;/ k).

To speed up the computation, all the x;’s are precomputed, stored and used as
needed for 0= k = nj,™, where nj;** is the maximum possible value of nj,, which is
obtained from (6.2)-(6.4) by setting n, =0 for 1=k =j—1 The total storage

required for the CS policy is Z/_; [ min (|_K,-/a,-,-_|)] and less for the other policies.
1=isp

Assuming for simplicity that K; =K for all i and a; =1, and keeping in mind that
g(K) has to be computed for (r + 1) sets of parameter values, the overall complexity
is O(rK").

For large capacity values there may be numerical underflow/overflow problems.
Instead of always starting the summation over #; at 0 as in (6.1), it may be more
efficient to start it near p; since x; has a maximum near k =p; (and then use
truncation when k is far from p;). (Special care is needed, since in some cases n;,
may be much smaller than p;.) We do not address these issues in this paper.

Looking at the complexity and storage requirements of the direct algorithm, we
see that it will be effective only when r is small. However, with special model
structure, many of the inner summations in (6.1) become independent of each other,
thereby allowing efficient computation even when r is very large; i.e., once again we
are able to apply conditional decomposition based on special structure to reduce the
effective dimension of the computation.

One such structure is the dual of the two-hop tree network: there are p resources
and r=p +1 classes of requests. Class 1 requires one or more units from each
resource, while class j requires one or more units only from resource j—1 for
2=j=p+1. Formula (6.2) simplifies to

(6.6) n]-u = L(K]-l - nl)/aj_l’jJ, 2 éj ép +1.

If we fix ny, then all the n;,’s are fixed and independent of each other, so that the
sums in (6.1) become independent of each other. Therefore, the overall problem
requires only a two-level nested summation, so that it can be solved even when r, p
and X are all large.

Example 6.1. We now give an example illustrating how the direct algorithm can
perform with such special structure. (We give similar examples for the inversion
algorithm in Section 10.) In our example p =10, r=11, K;=45+5i and a;; =1,
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TABLE 2
Blocking probabilities computed by the direct
algorithm, exploiting dimension reduction

Class CS UL
1 0-4056451 0-2744358
2 0-0579203 0-1363239
10 0-1023460 0-1327021
11 0-1062107 0-1334783

1=i=p,a;_,;j=1for2=j=6and q;_;;=2for 7=j=11, and the vector of offered
loads is

p = (25, 30, 35, 40, 45, 50, 27, 30, 33, 36, 39).
We consider the CS and UL policies. For the UL policy, the upper limit vector is
M = (50, 30, 35, 40, 45, 50, 27, 30, 33, 36, 39).

The blocking probabilities for classes 1, 2, 10 and 11 are given in Table 2.

The computational complexity for computing all blocking probabilities is O((r +
1)K, 2}-, K;), with the leading r +1 due to needing r + 1 normalization constant
values. Hence, it is O(r*K?). Computing all blocking probabilities for this example
took only a fraction of a second. We could solve examples substantially bigger as
well (e.g. larger capacities), but then it is necessary to avoid numerical
underflow/overflow problems by working with logarithms or scaling (which we do
not do here).

7. Examples of a single resource with complete sharing

We now give examples illustrating the numerical inversion algorithm. All
computations were done on a SUN SPARC-2 workstation.

Our first numerical example is the classical resource-sharing model with a single
resource and the CS sharing policy. The generating function is given in (2.12) with
p =1 This example is relatively elementary since the generating function is
one-dimensional. As a basis for comparison, we also implemented the recursive
algorithms of Kaufman (1981) and Roberts (1981) and the uniform asymptotic
approximation (UAA) of Mitra and Morrison (1994).

The specific model we consider has two classes of requests with requirements
a1, =1 and a,, =12. The capacity K ranges from 20 (relatively small) to 5000 000
(very large). We consider three regions: heavily loaded, critically loaded and lightly
loaded. These regions occur as the total offered load 37—, p;ay; is significantly greater
than, approximately equal to and significantly less than the capacity K, respectively.
In the heavily loaded region the offered loads are p, =0-15K and p, = 0-10K for
classes 1 and 2, so that X7 pja;;=1-35K in all heavily loaded cases. For the
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TABLE 3
Numerical results for a single resource with two classes and the CS policy

Parameters Blocking probability of class 1 Blocking probability of class 2

K p1 P2 Inversion Recursion UAA Inversion Recursion UAA

Heavily loaded region

20 3.0 2-0 5-4147360e-3 same 6-38e-2 0-6670903 same 0-6580
50 75 50 1-6157470e-2 same 4-92e-2 0-5259738 same 0-5080
500 75 50 3-2084709e-2 same 3-2151e-2 0-3317448 same 0-3317368
5000 750 500 2-8456587e-2 —  2:84627e-2  0-2936775 —  0-2936770
50000 7500 5000 2-7984241e-2 —  2-7984851e-2 (-2887462 — 0-2887461
500000 75000 50000 2-7935032e-2 — — 0-2882328 — —
5000000 750000 500000 2-7930089e-2 — — 0-2881812 — —

Critically loaded region

50 75 3-5 9-9887360e-3 same 3-18e-2 0-39930413 same 0-383
500 75 35 1-0194371e-2 same 1-0217e-2 0-1232678 same 0-1232615
5000 750 350 2-8928545e-3 —  2-89351e-3  3-4908258e-2 @ —  3-490795e-2
50000 7500 3530 9-404766e-4 —  9:40488e-4  1-130281e-2 —  1-13026%e-2
500000 75000 35400 3-262452e-4 — — 3-915783e-3 — —
5000000 750000 354100 1-012373e-4 — — 1-214952¢-3 — —

Lightly loaded region

50 7-5 1 9-4989161e-4 same 2-71e-3 6:2853438e-2 same 6-14e-2
500 1552 20-7 1-6906537e-3 same 1:6949e-3 2-3605271e-2 same 2-36040e-2
5000 1805-8 240-8 6-1636276e-4 —  6-1652¢-4 7-7329048e-3 —  7-73287e-3
50000 18860 2515 2-046621e-4 —  2:046674e-4 2-489884e-3 —  2-4898832e-3
500000 191137 25488  6-713379e-5 —  6-713395¢-5 8-090529¢-4 —  8-090528¢-4
5000000 1919390 255947 2-284043e-5 —  2:284040e-5 2-744436e-4 —  2-744440e-4

critically loaded region, we let 37_; p;a;; =K, but we avoid exact equality to avoid
degeneracy in the UAA algorithm. (Mitra and Morrison (1993) propose an alternate
formula for this degenerate case, but we do not use it.) For the lightly loaded region,
we set £p;ay; ~ K — 4-313VK. (It is known that the total offered load should grow as
K —cVK for some constant ¢ for the blocking to be non-negligible.) The specific
parameter values appear in Table 3.

We give numerical results for the blocking probabilities of each class in Table 3.
These are based on formula (2.11). In the cases with K =500, the inversion and
recursion algorithms agreed well beyond the accuracy given (eight significant digits).
For K = 5000, the recursion either had numerical underflows or overflows, or took
too long to run. For K 25000, the inversion results agreed closely with UAA, and,
as expected, the agreement improves as K increases. However, in the heavily loaded
region, for K = 500 000 even the UAA had numerical overflow problems. Also, in
some cases of the critical region, the UAA was too close to its degenerate region. In
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each case we also checked the accuracy of the inversion algorithm directly by
running it twice, with /; =1 and [, = 2.

In all cases considered here the inversion algorithm took less than a second. For
the larger values of K, a critical factor in achieving this speed is truncation. It is
significant that the computational complexity in calculating all the blocking
probabilities grows only linearly with the number of classes. So the inversion
algorithm can solve models with a very large number of classes (say 100) and very
.arge K (say 5000 000) in only tens of seconds.

For the example in Table 3 the exact blocking probability for class 2 (which
requires 12 units per request) is monotonically decreasing in K, but this is not so for
class 1. Note that UAA does not capture this non-monotonicity for class 1.

For :he example in Table 3 it would suffice to use only the recursions and UAA,
using UAA after the recursions takes too long. However, it is not difficult to
construct examples that are sufficiently large so that the recursion breaks down and
yet UAA is not sufficiently accurate (because size alone does not imply that the
model is in the proper region for the UAA asymptotics). One way is to significantly
increase a; , e.g. from 12 to 100 or more. An example with finite sources showing
the limitations of UAA is given in Choudhury et al. (1995b).

8. Examples with different sharing policies

In this section we again consider a single resource, but now we consider the UL
and GM sharing policies as well as the CS policy.

The generating functions for the UL and GM policies are given in (2.17) and
(2.20) with p =1, and the blocking probabilities are given in (2.15) and (2.19). Since
p =1, we can use either one-dimensional or two-dimensional inversion for the UL
and GM policies, as explained in Section 3.1. For all examples in this section we use
the one-dimensional inversion, exploiting the explicit inversions in (3.1) and (3.2).

We first consider a smaller example, for which we can apply the direct algorithm
in Section 6 as well as the inversion algorithm. We let the capacity be K =150 and
consider five classes. The five classes require 1, 2, 3, 4 and 5 resource units per
request, respectively, and the corresponding offered loads are 20, 15, 12, 10 and 9.
For UL, the class limits are 20, 30, 50, 60 and 70. For GM, the corresponding
guaranteed minima are 5, 18, 25, 36 and 40.

The blocking probability for each class and each sharing policy is shown in Table
4. The two computational methods agreed to at least 12 digits in each case. This
example thus serves to validate the generating functions and both algorithms. For this
smaller example, the inversion algorithm runs in less than a second while the direct
algorithm runs in minutes. Hence, the direct algorithm is already beginning to reach
its limits with this example.

Next we consider a larger example with capacity K =600 and 10 classes, for



An algorithm to compute blocking probabilities 1135

TABLE 4
Blocking probabilities for the three sharing policies and K = 150

Class
Sharing
policy 1 2 3 4 5
CS 0-0605131  0-1188490  0-1749724  0-2288574  (-2804872
UL 0-1760449 02145673  0-1621870  0-1957472  0-2391045
GM 0-1482263  0-2542774  0-2851976  0-2167977  0-2441586

which the inversion algorithm runs in seconds, while the direct algorithm can no
longer run in reasonable time. Class j requires j units, 1=;=10. The vector of
offered loads for the 10 classes is (30, 25, 20, 18, 16, 14, 13, 12, 11, 10). The vector
class limits with the UL policy are (30, 50, 60, 80, 90, 100, 110, 120, 130, 140), while
the associated vector of guaranteed minima for the GM policy is (5, 10, 20, 30, 40,
50, 60, 70, 80, 100).

The blocking probabilities for classes 1, 2 and 10 for each sharing policy are given
in Table 5. For the CS policy, the inversion algorithm was validated by applying the
Kaufman (1981) and Roberts (1981) recursion. For the UL and GM policies, the
inversion was validated by performing two separate inversions with the parameters
l;=1 and /; = 2. There was agreement to at least 11 digits in each case.

9. The Kelly example

We now consider the Kelly example in Figure 1 (in Section 1) with the six routes
{1}, {2}, {1, 2}, {3, 5}, {4, 5}, {1, 3, 5}. The standard example has the CS policy, Poisson
arrivals and single unit requirements. We keep the CS policy and Poisson arrivals,
but consider the multi-rate generalization. Furthermore, we allow multiple classes
with different multi-rate requirements.

The r traffic classes are dividled among the six routes as follows: define
nonnegative integers r; fori =0, 1,---, 6 such that 1=ry,<r,<r,---<rg=r. Class j

TABLE 5
Blocking probabilities for the three sharing policies and K = 600

Class
Sharing
policy 1 2 10
() 0-0427417 0-0838918 0-3613882
UL 0-1455476 0-1706272 0-3199203
GM 0-0973615 0-1861317 0-1865667
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goes over route [ if r,_; +1=j=r for 1 =/=6. For this generalized Kelly example,
the generating function is

G@)=——"exp (2 it 3 piz3" + ) piZ123" + ) p25725°

ﬁ (1 Z,) = j=n+1 j=rn+l j=n+1
9.1) i
+ 2 piugit E Pz ”23”2“5’)
j=ra+1 j=rs+1

The possible dimension reduction for this example is somewhat less obvious, so
that it is helpful to use the systematic procedure in Section 3.1. That analysis shows
that the dimension can be reduced from 5 to 3 by designating z; and zs as variables
to invert. For any given (z;, z5), the generating function G(z) can be written as the
product of three factors, each involving only one of the remaining variables; i.e. the
optimal order of inversion is z,, zs, 2, z3 and z,. Thus, the inversion dimension is
reduced from 5 to 3. Since the final dimension is 3, this example requires more
computation than the previous two examples. For the optimal inversion order, we
use the /; parameter vectors (1,2, 3,3,3) and (1, 3, 3, 3, 3) in the inversion.

The specific example we consider has five resources, as in Figure 1, with capacities
K; =15 for all i. There are 12 classes, with two classes using each of the six routes.
The specific offered loads are given in Table 6. We let the requirements be either 1
or 2 for each request, with each request having the same requirements on each
resource (trunk). The specific requirements are also given in Table 6.

The blocking probabilities for each class are given in Table 6. The computation of
the blocking probabilities in Table 6 took about 20 seconds. For this specific ex-
ample, we could allow some of the resource capacities to be much larger through

TABLE 6
Blocking probabilities in the Kelly example with the CS policy

Blocking probabilities

Class parameters for each class

j P Route Rqgmts Poisson arrivals
1 2 1 1 0-069930

2 1 1 2 0-155912

3 2 2 1 0-011306

4 1 2 2 0-030032

5 2 1,2 1 0-079276

6 1 1,2 2 0-176021

7 2 35 1 0-071961

8 1 3,5 2 0-159575

9 2 4,5 1 0-071961
10 1 4,5 2 0-159575
11 2 13,5 1 0-134236
12 1 1,3,5 2 0-280670
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the use of truncation. However, the inversion algorithm will encounter difficulties
for even larger networks without special structure.

10. Examples of networks with special structures

Many loss models have special structure allowing drastic dimension reduction. We
show two such structures in Figure 2 below, but clearly others are also possible.
Figure 2 shows the resources.

In structure A, commonly referred to as a tree network, class j requires a; units
from resource i, where a;; is allowed to be non-zero only for at most two values of i,
one of which has to be p. If both the non-zero values of a; are 1 then that
corresponds to a single-rate tree network, considered by Mitra (1987) and Kogan
(1989). Tsang and Ross (1990) considered the multi-rate case in which the two
non-zero values of a; are the same but may be bigger than 1. Ross and Tsang (1990)
allow the two possible non-zero values of a;; to be either the same or one of them to
be zero. We consider a further generalization by allowing the two values of a; to be
different, without necessarily requiring one of them to be zero. Furthermore, all the
earlier work was restricted to the CS policy, whereas we allow the UL and GM
sharing policies.

In structure B, evidently not considered earlier, a; is allowed to be non-zero for at
most three values of i, one of which has to be g and the other two have to be k and
g+k forlsk=q—1.

In structure A, divide the traffic classes according to the resources they use by
letting 0=r,<r<r,<---<r,_;=r. Then class j uses resources k and p if
ry-1+1=j=r. Similarly, in structure B, let 0=r,<r<r:--<r,_;=r. Then
traffic class j uses links k, g and g +k if ,_, +1=j=r,. By (2.12), the generating
functions for structures A and B with the CS policy are, respectively,
exp ( 3 1p,-zZ"'z;‘,"")

J=Tk-1+

(10.1)

1 »d
G(z)=
() l—Zpkl_[=l 1—zk

1

A. B.

Figure 2. Two networks with special structure.
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and

(10.2) 1 exp (] i p,z“"’z“"’z“‘l:f’)

G(z) = g k=1 (=21 = z444)

In (10.1), if we fix z,, then each term within the product becomes independent of the
others and requires one-dimensional inversion. The overall inversion thereby is
two-dimensional. In (10.2) if we fix z,, then each term within the product is
independent of the others and requires two-dimensional inversion. The overall
inversion thereby is three-dimensional. As mentioned in Section 3.1, for the UL and
GM sharing policies the inversion would be either the same or one more than for
the CS policy.

In the rest of this section we provide numerical examples for the tree networks
(structure A). We start with the single-rate tree network example on p. 235 of Mitra
(1987) using the CS policy. Here a; =1 whenever it is non-zero, r, =k, r =7 and
p = 8. The capacity vector is K = (30, 30, 20, 20, 15, 15, 15, 134). Equation (10.1)
becomes

1 1 exp (pkZkZs)

10.3 G(z)=
(10.3) @=Lz U7,

Here inversion with respect to z, for k =1, 2, - - -, 7 may be done explicitly to get

1 7 K z i
(104) 8Ky, Koy Kz = = [ 2 ),
8 k=1i=0

Starting from (10.4), we have a simple one-dimensional inversion with respect to zg,
which is readily done in a fraction of a second. The results are displayed in Table 7.

TABLE 7
Blocking probabilities in a single-rate tree network with the CS policy

Class Mitra example Larger example
Lower Upper
j p; bound Inversion bound p; Inversion
1 35 0-2201 0-2207492 0-2214 3500 0-14490125
2 30 0-1333 0-1340674 0-1347 3000 0-0297425
3 25 0-2801 0-2807294 0-2813 2500 0-2018138
4 17 0-0880 0-0888748 0-0896 1700 0-0287005
5 20 0-3302 0-3307832 0-3313 2000 0-2516581
6 15 0-1805 0-1822008 0-1828 1500 0-0339648
7 9 0-0257 0-0266322 0-0274 900 0-0287005
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We see that our results are between the lower and upper bounds determined by
Mitra (1987) in each case. Interestingly, the results are very close to the mean of the
two bounds, which Mitra suggested as an estimate. Indeed, our results agree to
within Mitra’s displayed accuracy of 10™* in each case.

In Table 7 we also show a more challenging example where each capacity
parameter K; and each traffic load parameter p; are multiplied by 100; i.e.

K = (3000, 3000, 2000, 2000, 1500, 1500, 1500, 13400)

and p; are as shown in Table 7. Using truncation we can solve even this larger
example in a few minutes. It is interesting to note that the normalization constants
involved in this case are of the order 10°%3 and much larger than the upper limit
10* allowed by the computer used. However, numerical overflow is avoided
through scaling and by storing only the logarithms of the normalization constants.
Special care also was needed in computing the quantity X%, ((p.zs)'/i!) appearing in
(10.4) which causes numerical overflow in the large example for many values of k
and zz. Let,

K,
(10.5) s=>a where a;= (p':,ZS)

i=0

Let j be such that |a|=|a| for i=0,1,---,K,. It can be seen that j=
min (K, px |zg]). Now we can write

o 5%

i=0 a' i=1

and
Kk—
(10.6) InS=Ing;+In [ Gy ] .
a; a;

i=1

Computation using Equation (10.6) avoids numerical overflow problems.

We now consider more general tree models with non-CS policies and multiple
rates, for which existing methods do not apply. We allow more than one class to use
a non-common resource and the requirements of each class for the two resources
not to be identical.

Our specific example has six resources, with the sixth resource being the common
resource. The capacity vector is K = (15, 25, 25, 30, 20, 90). Our example has 15
classes, with class j using resources [j/3] and 6 (possibly at a 0 level), where [x] is
the least integer greater than or equal to x (i.e., classes 1, 2 and 3 use resources 1
and 6, classes 4, 5 and 6 use resources 2 and 6, etc.).

The specific offered loads and requirements for each class are given in Table 8.
We consider both the CS and UL sharing policies. The limits for the UL policy are
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TABLE 8
Blocking probabilities in a multi-rate tree network with the CS and UL sharing policies

Blocking
Model parameters probabilities

J ;i a3 Ltz 4, Le; (& UL

1 10 1 10 0 0 0-328927 0-333529

2 10 0 0 1 15 0-004393 0-036827

3 10 1 10 1 15 0-331579 0-333777

4 5 1 10 1 10 0-109389 0-104160

5 5 2 15 2 15 0-219572 0-225724

6 5 2 15 1 10 0-216223 0-225384

7 4 1 8 1 8 0-112727 0-114086

8 4 3 16 3 16 0-326724 0-330792

9 4 3 16 1 10 0-320927 0-330258
10 3 1 7 1 7 0-061176 0-025887
11 3 4 15 4 15 0-236906 0-347366
12 3 4 15 1 8 0-226213 0-347187
13 2 1 6 1 6 0-075576 0-046674
14 2 5 13 5 13 0-433225 0-465534
15 2 5 13 1 5 0-422868 0-465049

also given in Table 8. (These are not used with the CS policy.) The blocking
probability for each class with each sharing policy is given in Table 8.
We obtain the generating function for CS from (10.1). It is

15 6
(10.) 6@ =exp (2 paffizr) /11 a -2
= =

We employ conditional decomposition to reduce the dimension from 6 to 2; i.e., for
any fixed value of z4, the generating function can be represented as a product of five
factors with z; appearing only in the ith factor. We obtain the generating function for
the UL policy from (2.17):

15 o
(10.8) exp (El p; yjzrjr/’3317~lz6w)
Gz y)= 6 15 :
i1=-[1 1-z) jl;[l a- }’j)

Conditional decomposition reduces the dimension from 21 to 3. As with the CS
policy, we first invert zq, then we invert the other z; variable in each factor. For any
fixed values of the two z variables, the generating function can be represented as a
product of 15 factors with y; appearing only in the jth factor.
The computation of all blocking probabilities took several seconds. We can
_increase the numbers of classes, resources and capacities each by factors of 10 and
still carry out the computations in several minutes using truncation.
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11. Conclusion

In this paper we have developed a new algorithm for a family of models that is the
natural generalization of both loss networks and infinite-server variants of the
resource-sharing models. We considered generalizations of loss networks allowing
the UL and GM sharing policies as well as the customary CS sharing policy.
Equivalently, we considered the generalization of the (infinite-server variant of the)
resource-sharing model with multiple resources. In Choudhury et al. (1995b,c) we
also treat state-dependent arrivals and batch arrivals.

Of course, the idea of such general models is not new; e.g. Jordan and Varaiya
(1991) discuss multi-resource resource-sharing models, and Chuah (1993) develops a
recursive algorithm for the UL policy with Poisson sources and one or two
resources. The principal contribution here is a new effective algorithm for solving
these models.

Our algorithm has been shown to be effective on several numerical examples. To
validate our algorithm on small models, we developed the direct algorithm in
Section 6. In addition, we implemented the recursive algorithm of Kaufman (1981)
and Roberts (1981) and the uniform asymptotic approximation of Mitra and
Morrison (1994). In all cases that these algorithms applied, the inversion approach
agreed to an accuracy of several digits. Our algorithm also has a built-in accuracy
check which can independently confirm accuracy.

A great appeal of the numerical inversion algorithm is that it is very general. It
not only applies to different kinds of product-form models through numerical
inversion of the generating functions of the normalization constants, but it also
applies to many other models, where the quantity of interest is represented via a
transform. See Choudhury et al. (1994b) for a review of recent applications of
numerical inversion to queueing models.
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