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AN ANALYSIS OF THE MODIFIED
OFFERED-LOAD APPROXIMATION FOR
THE NONSTATIONARY ERLANG LOSS MODEL

By WILLIAM A. MASSEY AND WARD WHITT
AT & T Bell Laboratories

A fundamental problem that led to the development of queueing
theory is the probabilistic modelling of the number of busy lines in
telephone trunk groups. Based on the behavior of real telephone systems,
a natural model to use would be the M,/G/s/0 queue, which has s
servers, no extra waiting space and a nonhomogeneous Poisson arrival
process (M,). Unfortunately, so far queueing theory has provided an exact
analysis for only the M/G/s/0 queue in steady state, which yields the
Erlang blocking formula, and the M,/G /> queue, which treats nonsta-
tionary arrivals at the expense of having infinitely many servers. How-
ever, these results can be synthesized to create a modified offered-load
(MOL) approximation for the M,/G/s/0 queue: the distribution of the
number of busy servers in the M,/G/s/0 queue at time ¢ is approximated
by the steady-state distribution of the stationary M /G /s/0 queue with an
offered load (arrival rate times mean service time) equal to the mean
number of busy servers in the M,/G/» queue at time ¢. In addition to
being a simple effective approximation scheme, the MOL approximation
makes all of the exact results for infinite server queues relevant to the
analysis of nonstationary loss systems. In this paper, we provide a rigor-
ous mathematical basis for the MOL approximation. We find an expres-
sion for the difference between the M,/G/s/0 queue length distribution
and its MOL approximation. From this expression we extract bounds on
the error and deduce when one distribution stochastically dominates the
other.

1. Introduction. The probabilistic modelling of the number of busy lines
in telephone trunk groups is one of the fundamental problems that led to the
development of queueing theory. It was first formulated as an M/M/s/0
queue by Erlang [7]. He gave an exact solution for the steady-state distribu-
tion, which gave rise to the well known Erlang blocking formula. This
formula states that if @,(¢) is the random queue length at time ¢ for the
M/M/s/0 system (queueing here means “waiting” for service completion),
then

(1.1) ;ggP(Qs(t)=s)=Bs(%) (A/u)/Z(A/M)
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where ) is the Poisson arrival rate, 1/u = E[S] is the mean of the exponen-
tially distributed random service time S and s equals the total number of
servers (trunk lines). Since Poisson arrivals see time averages, B(A/p) is
also the long-run proportion of arrivals that are lost.

The Erlang blocking formula also applies to the M/G/s/0 queue with a
general service-time distribution, having the same Poisson arrival rate and
mean service time. This insensitivity property means that the assumption of
exponential service is superfluous, which expands the model’s range of appli-
cability. Moreover, limit theorems for general point processes show that
modelling the arrival process as Poisson is not too restrictive; for example,
see [2], page 281.

In fact, the most restrictive assumption in the M /M /s /0 model is having
a constant arrival rate. Significant steps were made to solve this problem
starting in the 1930s; see [16], [11] and [17]. They found the exact solution for
the time-dependent distribution in the M,/G/« model. This infinite server
queue captures the effect of a time-varying mean arrival rate and general
service times, but at the expense of letting the total number of servers be
infinite. If @.(¢) equals the queue length at time ¢ in the M,/G /» model and
Q.(t,) = 0 for some t, < t, then

m.(t)"
(1.2) P(Q.(t) = k) = exp(—m,(t)) 2
for all nonnegative integers %, where
(1.3) ma(t) = E[[‘ A(T) df],
t-S

with A(#) = 0 for all ¢ < ¢,. A simple direct approximation for the blocking
probability P(Q,(¢) =s) in the M,/G/s/0 model is the tail probability
P(Q.(¢) = s).

These exact solutions to the M /G /s/0 and M,/G /> models led to a better
technique for approximating the time-dependent queue length distribution in
the M,/G/s/0 model. It is called the modified offered-load approximation
(MOL); see [8]. Since the Erlang blocking formula is a function of A/u and
A/ is the mean queue length in the steady-state stationary M /G /~ queue,
we should obtain a reasonable approximation for the time-dependent blocking
probability in the M,/G/s/0 queue if we substitute m.(¢) for A/u in the
Erlang blocking formula. Thus the MOL approximation is

(14)  P(Q(1) = 5) = B,(mu(1)) = P(QLt) = slQu(¢) <3),
where B is given by (1.1) and m.(t) is given by (1.3).

From (1.4), we see that MOL enables us to apply the exact results for the
M,/G/» model to the analysis of the M,/G/s/0 model. For example, we
applied the MOL approximation to help understand the impact of the
service-time distribution in an M,/G/s/0 queue in [3]. The MOL approxima-
tion was also a major motivation for the papers by Eick, Massey and Whitt [5,
6] on the M,/G /» model. Moreover, since a solution exists for the transient
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distribution of the M,/G />~ queue (see [1] and [15]), we can apply the MOL
approximation to the M,/G,/s/0 queue as well.

The goal of this paper is to create a mathematical theory supporting this
heuristic approximation. In Section 4, we do so by constructing a formal
solution to the error between the exact probability solution and the MOL
approximation for the case of time-dependent phase-type service. From this
main result, we derive simple, computable error bounds for MOL. For the
M,/M/s/0 queue, we will show that

sup |P(Qy(7) = s) — By(mu(7))]

O<7<t

(15) ¢ ‘ dm
< 2['B.(mr))(1 - Bmir))|

where we assume that the distribution of @,(0) is the steady-state M /M /s/0
distribution with parameter m_(0), which is a family of distributions that
includes the point masses at 0 and s; see (4.6). For the more general
M,/G/s/0 system, we will also show that

oo(1') dr,

T

dm,, d
" (7) | drs

T

(16)  sup [P(Q,(7) =5) = By(mu())| < 2- [ B,(mu())

O<7<t 0
see (4.7). These error bounds imply that the MOL approximation is asymptot-
ically correct as either the derivative of m(¢) or the tail probability P(Q.(¢) >
s) in the M,/G, /> model approaches 0. In turn, these limits for the M,/G /~
model hold as the derivative of A(¢) approaches 0 and as s — . More
generally, these bounds support the intuition that MOL should perform
better when the arrival rate A(¢) changes more slowly and when the blocking
probability is lower.

We obtain alternative bounds for the M,/M/s/0 system in Section 5 by
using the /,-norm on cumulative distribution functions instead of the /;-norm
on probability mass functions. For example, with the same initial conditions,
if u =1 and A is bounded with a bounded derivative A’ on [0, ), then

(L) sup[E[Qu(0)] ~ mu)(1 = By(mu(t)))] < INlusBy(IAL),

where |fl. = sup, . o/f(x)| for all bounded functions f on [0, ). Note that
(1.7) is uniform over all time.

In Section 6, we investigate in detail the special case of an M /M /s/0
model which experiences a change of parameters at time 0. Hence we are
describing the transient behavior going from one stationary regime to an-
other. Here we exploit the fact that the generator after time 0 is not
time-dependent.

2. The M,/ PH, /s /0 queue. We define the M,/PH,/s/0 queueing
system as follows. It has s independent servers, each with a common time-de-
pendent phase-type service, and an arrival process that is nonhomogeneous



1148 W. A, MASSEY AND W. WHITT

Poisson. The class of phase-type service-time distributions is quite general,
because phase-type distributions are dense in the space of all distributions.
This assumption enables us to construct an extended finite state space such
that the queue length process is Markovian in continuous time. Let C equal
the finite set of service phases (which we assume does not change with time).
To obtain a general state description that makes our system Markovian, we
count the number of customers in each phase of service. We define S, to be
the corresponding state space, allowing arbitrary numbers of customers. The
states in S; can be denoted by k, where every k € S, is written as the
formal sum

(2.1) k= ) k.e,,

acC

such that e, is an independent basis vector, corresponding to the service
phase @, and each %, is a nonnegative integer, representing the number of
customers in service phase a. The set S is the state space for the case of
s = . In algebraic terms, S is referred to as the free Abelian semigroup
generated by the set C, in contrast to the free non-Abelian subgroup struc-
ture used in [13] for the state space of a multiclass single server queue.
Finally, if we denote the length of k as [k|, which equals ¥, .%,, then the
state space for our queueing model M,/PH,/s/0 will be S.(s), where

(2.2) Sc(s) = (k |k € S; and k| < s}.

Now let {Q,(¢)|z > 0} be the Markovian queue length process with state
space S¢(s). Its infinitesimal generator will be constructed from the following
parameters:

A.(t) = the external arrival rate at time ¢ for a customer that initiates
service in phase «a,
() = the service rate at time ¢ for phase «,
Pqp(t) = the probability that phase B service is initiated at time ¢, given
that phase a service has just terminated,
q,(t) = the probability that the entire service has terminated at time ¢,
given that phase a service has just terminated.

If p(k,t) =P(Q,(¢) = k), then for |k|<s, Q,(t) has the following set of
forward equations:

d
P&, t) = ¥ A (t)sen(k,)p(k — e,,¢)

acelC

T () (ke + 1)q () p(k + e, ¢)
+ ZC mp(t) (kg + 1) pg.(¢)sgn(k, ) p(k — e, + ey, 1)
Be

~(A(2) + po()k,)p(k, 1) |,
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where sgn(k) = 0if 2k = 0 and = 1if 2 > 0. When [k| = s, we have

d
=P 1) = ¥ | A (t)sgn(k,)p(k — e, 1)

acC
+ Bzcﬂp(t)(kﬁ + 1) ppa(¢)sgn(k, ) p(k — e, + eg,t)
—ko(t)k,p(k, 1)

Letting I(S.(s)) be the vector space of real-valued functions on S;(s), we can
encode these equations as

d
(2.3) 5 P(?) = P()A(2),
where
(2.4) p(t) = L P(Q.(t) =k)ey
keSq(s)

and A(?) is the corresponding infinitesimal generator; that is, a linear opera-
tor on I(S.(s)) composed of the arrival and service rates for the queueing
process. The e,’s are the unit basis vectors for I(S.(s)), where each e,
corresponds to the indicator function for the singleton set {k}. In general, p(¢)
is a probability vector, since it is a vector encoding of the probability
distribution given by p(k, ¢t). We will use the terms probability vector and
probability distribution interchangeably. Formally, we can solve for p(¢) and
get

(2.5) p(t) = P(0)EL(2),

where E,(¢) is the time-ordered exponential of the family of generators
{A(7)|0 < 7 < t}. When A is a constant operator, then the corresponding
time-ordered exponential is just exp(tA). In general, it is the unique operator
solution to the equation

d
(2.6) EEA(t) = EA(2)A(?),

where E,(0) = I, the identity operator. For all 7, 0 < 7 < ¢, it will also be
useful to define

(2.7) E (7,t) = E (1) 'Ep(2).

A thorough treatment of the issues of existence, uniqueness and construction
of time-ordered exponentials can be found in [4].

3. The M,/ PH,/ >~ queue. Our approximate analysis of the
M,/PH,/s/0 queue employs the exact solution for its infinite-server counter-
part, the M,/PH, /> queue. Let {Q.(¢)| t > 0} be the M,/PH, /> queue length
process. Its marginal probabilities, q(k, ¢) = P(Q(¢) = k) for all k € S, will
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then solve the following set of forward equations:

d
220, 8) = X | A (t)sgn(k)q(k — e, )

acC

(8 (ke + 1)qo(£)g(k + e, ¢)
+ ZC/"'B(t)(kﬂ + 1) pg.(t)sgn(k,)q(k — e, + g, 1)
Be

— (0 + m(t)ka)q(k,t)].

Now for any x in I(C), the vector space of real-valued functions on C, and any
state k € S, define the following useful operations:

(3.1) xk= ]k, Kk!= 1k, IKl= ) Ix,l,

acC aeC aeC

where x, = x(a). We will also represent x by the formal sum X, _.x,€e,.
Hence [x| is the /;-norm applied to x. In this notation, the multinomial

theorem is transformed into
32) x*  [x/°
Kl=s k! s!

Theorem 8.2 of [15] gives the exact solution for the M,/PH,/> queue, with
appropriate initial distributions, as

e mOm ()"
(3.3) q(k,t) = —— 53—

where m(¢) = X, ..m&(t)e, and m(¢) = m(t) = L, om2(¢), such that
the m2(¢)’s solve the set of differential equations

d
(34)  —=ms(t) =A,(0) + L wp(t)mE(t)ppa(t) = ma(t)ms(2)
BeC

for all « € C, with arbitrary m_(0). The solution (3.3) is valid provided that
the initial distribution p(k,0) is also of the same form depending on the
initial mean vector m_(0).

4. The fundamental identity and bounds for MOL. The MOL ap-
proximation is defined to be p*(k, t) for S, where

PQU() = K) = p*(k, ) = ) / y 20

k' [
= P(Q.(¢) = k| IQ.(t)| < 5),

where the components of the vector m(¢) = £, . -m2(¢)e, solve the differ-
ential equations given by (3.4), with arbitrary initial vector m.(0). We now
present our main result, which we prove in Section 7.

(4.1)



NONSTATIONARY ERLANG LOSS MODEL 1151

THEOREM 4.1. Let {Q,(¢)|t > 0} be the Markovian queueing process for
M,/PH,/s /0 with the family of infinitesimal generators {A(t)| ¢t > 0}. Let p(t)
be the probability vector for the distribution of Q(¢), with an initial distribu-
tion p(0) = p*(0), which is of the form (3.3) for arbitrary m_(0). Let p*(t) be
the probability vector for the modified offered-load approximation. Then

t
(42) p*(t) —p(t)= X fop*(k,f)(p*(f) — e, )E(7,¢) dm.(7),
ki=s
where E\(7,t) is given by (2.7), the signed measure dm.(7) is formally the
derivative of m,, times dt and

(43) am(r) = [ T A (0) = m(1)ms(1)a, (7)) dr.

aeC

We now apply Theorem 4.1 to obtain bounds and inequalities. First, we
obtain bounds by simply bounding the time-ordered exponential E (7, ¢) in
(4.2) by 1. It may be possible to obtain more refined relations by more
carefully examining the time-ordered exponential, as we illustrate by exam-
ple in Section 6. Recall that [x|is the /;-norm, defined in (3.1). Let |[dm,|(7) be
the measure

d

(4.4) \dm..|(7) E‘ Zw ()| dr.

COROLLARY 4.2. In the setting of Theorem 4.2, we have the following
bounds for the error due to the modified offered-load approximation:

sup |p*(r) — p(7)|

0<7<t
(4.5) <2 ¥ /:p*(k,'r)(l — p*(k, 7))ldm.|(7)
k|=s
(4.6) < 2[(:38(%(7)) 1- —;[i:r(Llné“’l——(—T_Dl—— ldm..|(7)
(s +1S1=1)
(4.7) < 2]:,83(mw(1-))|dmwl(*r),
where B(m(t)) is given in (1.4), that is,
(4.8) B(mAt)) = ¥ p*(k,t).
ki=s

ProoF. The first bound follows from Theorem 4.1, the identity
(4.9) p*(¢) — el = 2(1 — p*(k, t))

for all k € S; and the fact that [E,(¢)| = 1, where |-| is an operator norm
induced by the /;-norm on row vectors.



1152 W. A. MASSEY AND W. WHITT

For the second inequality, we observe that x(1 — x) is a concave function
of x, and (s + l(;| - 1) equals the number of states k with [k| = s. Now apply
Jensen’s inequality to the first bound. O

If Q,(0) has a distribution that is not of the form (4.1), then we can
construct a process Q, that has the same infinitesimal generator, but an
initial distribution of the proper form. We then have
(4.10)  sup |p*(7) — p(7)| <|p(0) — B(0)| + sup |p*(7) — B(7)l,

O<7<t O<7<t

where P is the probability vector for Qs, and now Corollary 4.2 applies.

5. MOL bounds for the M, /M, /s /0 queue. Now we restrict our-
selves to one class or |C| = 1, which gives us the M,/M,/s/0 queue. It follows
that Sy(s) ={0,1,...,s}, which is a totally ordered set. Moreover, (4.2)
simplifies to

CEVIS YORS JORIA "By (mu(r))(P*(r) — €,)Ex(7, t) dm.(7).

The next proposition establishes a stochastic comparison between the
M,/M,/s/0 queue and its MOL approximation. (All proofs appear at the end
of the section.) We say that a probability vector p, is stochastically domi-
nated by p,, and write p; <, P, if

S S

(5.2) Y pi(j) < Y py(j) forallk=0,1,...,s.
J=k j=k

In terms of operators and componentwise ordering of vectors, p; <, Py is

equivalent to p,K < p,K, where K= — L)' with L equalling the left

shift operator on row vectors, or

1 0 0 0 0
1 1.0 = 00
1 11 = 00
(5.3) K=|. . . . . |
1 11 = 10
1 1 1 - 1 1]

THEOREM 5.1. For the M,/M,/s/0 system, if m(0) < M0)/u(0) and A/
is an increasing function on [0, t], then the modified offered-load distribution
is stochastically dominated by the exact distribution for @, on [0, t], or

(5.4) p*(7) < P(7) forall T€[0,¢].

In particular, B,(m,) underestimates the actual blocking probability on [0, t].
Conversely, if m(0) = M0)/u(0) and A/u is an decreasing function on [0, t],
then the exact distribution for Q. (t) is stochastically dominated by the modi-

fied offered-load distribution at time t and B,(m,) overestimates the actual
blocking probability on [0, t].
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In order to obtain better bounds on the error of MOL in the blocking
probability, we focus on the l;-norm of cumulative distribution functions
(cdfs) or, equivalently complementary cdf’s, instead of probability mass func-
tions. For any vector x on {0,1,...,s} we define [x|g = [xK]|, that is, the
I,-norm applied to tail sums. Recall that E[X] = ¥;_(P(X > &) if X is a
nonnegative integer-valued random variable. Thus, if p, and p, are two
probability vectors corresponding to {0, 1,..., s}-valued random variables X,
and X,, we have

(5.5) max(P(X; =s) — P(X, =s)|, E[X;] - E[ X;]]) <[P, — P2lx-
THEOREM 5.2. Let p(0) = p*(0). For all t > 0, we have

() ~ B(Dlx = [[B,(mu))(s = m7)(1 = Bu(mo(7)))
(5.6)

Xexp(——f:p(r) dr)ldmwl(ﬂ').

We now apply Theorem 5.2 to obtain bounds that hold for all time. Note
that sB(x) —» 0 as s — .

COROLLARY 5.3. In the setting of Theorem 5.2, if A is a bounded function
on [0,%) and u is a constant function, then

s
sup |p*(¢) — p(¢) |k < ;max(ZI)\Im, [Ale + um.(0))

20
X Bs|max| —, m,(0)]].
78

If, in addition, X is differentiable and its derivative \' is bounded on [0, ),
then

(5.7)

suplp*(¢t) — p(t)lk < imax(l)t(O) — um(0)l, M,lw)
® ®

t>=0
X Bs|max| —, m,(0)]].
78

We remark that Corollary 5.3 is not good for the blocking probabilities,
because we can use stochastic comparisons to deduce directly with proper
initial conditions the sharper bound P(Q,(¢) = s) < B,(IAl./u), for example,
by Theorem 10 of [18]. However, Corollary 5.3 yields useful bounds for the
mean, as stated in (1.7).

(5.8)

PROOF OF THEOREM 5.1. The basis vector e is a probability vector for the
point mass distribution of being in state s, which is the maximum probability
distribution, with respect to stochastic dominance, on {0,1,..., s}. It follows
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that the probability vector p*(¢) is always stochastically dominated by e,.
Now A(t) for fixed ¢ is the generator for a birth—death process, which is
stochastically monotone. Using Theorem 7.5 of [14], it follows that the
probability vector p*(7)E,(7,t) is always stochastically dominated by
e, E (7, ¢) for all 0 < 7 < ¢. After combining this result with (4.2), we will be
done once we show that the derivative of m, is nonnegative (or nonpositive)
on [0, ¢]. This will follow from the lemma below. O

LEmmA 5.4. If m(0) < M0)/w(0) and A/u is a right-continuous increas-
ing function on [0,t], then m, is increasing on [0,t] also. Conversely, if
m0) > XM0)/u(0) and A/ is a right-continuous function on [0, t], then m,, is
decreasing on [0, t].

ProOF. Since |C| = 1, (3.4) becomes

d

(5.9) Zmat) = A(t) = w(t)m.(2)

and so

(5.10) my(¢) = m(0exp(— f ‘u(r) dr) + ft)t('r)exp(— [ " w(v) dv) dr.
0 0 T

Now let p = A/pu. Since by hypothesis p is right-continuous and of bounded
variation, we can apply the integration by parts formula (see [2], page 104)
and get

1 d t
5 ™0 = (4(0) - mm(O))eXp(—fO,Uv("') d’f)
(5.11)
+f(:exp(—f:u(v) dv) dp(r).

We now observe that the hypothesis gives precisely the conditions that makes
the two summands above nonnegative or nonpositive on [0, ¢]. O

PROOF OF THEOREM 5.2 AND COROLLARY 5.3. Since u is constant, we can
write (5.10) as

(5.12) m.(t) = m(0)e # + [Nt — r)e " dr

0
(5.13) = [“um.(0)e #7dr + fot/\(t — e dr
(5.14) < ]:omax(b\lm, umy(0))e *"dr

(5.15) < max(l—-)ﬁii m (0))
< P
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Combining this with (5.9) gives us
‘ dm,,

< Al + plmgle < Ao + max(|Al., um.(0))

< max(2|Als, Al + um(0)).
When )’ exists and is bounded, we have by (5.11),

dt

(5.16)

(5.17) —| ={(A0) — mm.(0))e# + fote_’”)t’(t — 1) dr
(5.18) < IM0) — pm.(0)le~#t + %‘1(1 )
(5.19) < max(IA(O) — um(0)], M:‘” )

Finally, we apply the following lemma.

LEMMA 5.5. If E,(t) is the transition probability matrix foran M,/M,/s /0
queue at time t, then for any two probability vectors p and q we have

(520) I - QEADK| I(p - Klexp( - ['u(r) dr).

ProoOF. If A is the generator for an M /M /s /0 queue, then it has the form

—-A A 0 0 0
g —(A+p) A 0 0
0 2 —(A+2p 0 0
(521) A=| . ; (v - : :
0 0 0 o —(A+(s=Dup) A
0 0 0 S —Su

Using right and left shift operators, we have

(5.22) A= )R + uAL — ARL — pA = (AR — pA)(I - L).
Since K = (I — L)1, then

(5.23) K 'AK=(I-L)(AR - pA) = AR + uLA — ALR — uA.

Translating back into matrix form, we get

0 A 0 0 0

0 —(A+m) A 0 0
(5.24) KAK - 0 n —(A+2p) o 0 0

0 0 0 o —(A 4 (s - Dw) A

0 0 0 (s—Dp —(A+sp)
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Let A* be the lower right-hand s X s submatrix of K™ !AK, namely,

—(A+p) A 0 0
m —(A+2p) - 0 0
(5:25) A*= ; : : : :
0 0 o =(A+(s—1Dp) A
0 0 (s—Dpn —(A+sp)

The off-diagonal terms of A* are nonnegative, which makes exp(tA*) a
nonnegative matrix. Moreover, the row sums of A* are all nonnegative and so
exp(tA*) is substochastic, meaning its 7, operator norm is less than or equal
to 1. Since A* + ulI has these same properties, we get

(5.26) lexp(tA*)| < exp( —ut).

Now observe that if p and q are probability vectors, then the first (or
zeroth) entry of the row vector (p — @)K is 0. Hence A acts on (p — @)K the
same way that A* acts on the nonzero, right-handed, s-dimensional subvector
of (p — @)K. Taking norms, we get

I(p — @)exp(tA)K| < |(p — q)Kexp(:K 'AK)|
(5.27) <I(p — @)Kllexp(zA*)]
<I(p — q)Klexp( —ut).

Now we consider the transition matrix 17, exp(¢;A;), where A; is an
M /M /s/0 generator for each i. By (5.27) and induction,

(5.28) (p—9q) InTlexp(tiAi)K <l(p - q)KIexp( - Zn) u,-t,-)~
i= i=1

However, we can approximate E,(¢) arbitrarily closely by I, exp(¢;A)).
This allows us to deduce (5.20). O

6. Example: Changing M /M /s /0 rates in midstream. Suppose
we consider the case of A(¢#) = A, and u(¢) = u, forall ¢ > 0 and p(0) = p*(0),
where m0) = A_/u_. The time-dependent behavior of @, is that of a
stationary M /M /s/0 queue with rates A_ and wu_ for all time ¢ < O that
suddenly switches to rates A, and u, for all times ¢ > 0. We now want to
compute an upper bound for the error between the transient distribution of
Q. and its MOL approximation. Now, in addition to Theorem 4.1, we exploit
the fact that E,(¢) = exp(A¢), where A is the infinitesimal generator of the
M/M/s/0 queue with parameters A, and w,. In this case, (5.1) becomes

(6.1)  p*(t) — p(t) = fotﬁs(mw('r))(p*(’r) — e,)exp((t — 7)A) dm.(7).
Ifwelet p,=A,/u, and p,= A_/u_, then
(6.2) m,(7) = p_exp(—p,7) + p+(1 — exp( _V‘+7))
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and

d
(6.3) Z.mA7) = w (pi— p)exp(—p, 7).

Since @, is reversible (see [10], page 32), the generator A is diagonally
similar to a symmetric matrix. By the spectral decomposition theorem, we
have

(6.4) exp(tA) = 17w + i exp(—crjt)A(\/;)_lexjA(\/;),
j=1

where 7 is the steady-state probability vector for A such that wA =0, Vm is
the positive vector whose components are the square roots of the components
of w and A(Yw) is the corresponding diagonal matrix. The negatives of the
s + 1 real numbers 0 < o, < - < g, are the eigenvalues for A. Finally,
{Vm,x,,...,x,} is the corresponding set of orthonormal eigenvectors for
A(/w)AAGW® )~ . The eigenvalues and eigenvectors for this model are read-
ily obtained, as shown in [12] and [9]. In this case the orthogonal polynomials
are the Poisson—Charlier polynomials; also see [8].
Since p*(7) and e, are probability vectors, we have

(6.5) (p*(7) — e, )17 = 0.
Using the Cauchy-Schwarz inequality, we have

_ s 1
(6.6) |xjA(\/;)| <1 and IxjA(\/;) 1’ <1/ X —.
k=0 Tk
Hence, we get
|(*(r) = e,)exp((¢ — 7)A)]
(6.7) s 1 s
<2 )Y — Zexp(—(rj(t—f)).
k=0 Tk j=1
Combining all of these results, we obtain
Ip*(¢) — p(t)| < 2p.B(P) p,.— p_|
6.8 s 1 S exp(—o;t) —exp(—u,t
E=0 Tk j=1 K™ Of

where p = max(p_, p_). Moreover, we get from the other bounds,
t
|(0*(2) = P())K] < el .= p_le ™+ [ B, (mu(7)

X(s = mu(1)(1 = B,(m(7)))) dr
< ,U»+|P+— p—lte_“+'tBs( ﬁ)(s _B(l - BS(—p)))’

where p = min(p_, p_).
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In addition to these error estimates, we get the following stochastic domi-
nance results by applying Proposition 5.1:

(6.9) p-<p, = p*(t) <, p(t) forallt>0
and
(6.10) p_=p, = p*(t) =, p(t) forallt>0.

7. Proving the main theorem.

LEmMA 7.1. Ifx =Y, cx,e, and we define

k s |x|j

(7.1) rk,x)=—/ ¥

-_’
k! [ =0 J!

then it follows that

(12) Fom(m) = m(k - e, x)sgn(k,) - 7(k0)(1- T 76,0
a il=s
and
(7.3) m(k,x)x,=nw(k +e,,x)(k, + 1).
Proor or THEOREM 4.1. We first observe that p*(k, ¢) = 7w(k, m(¢)) and
(7.4) By(m.(t)) = Y, w(k,m.(¢)).
ki=s
We then apply the identities of Lemma 7.1 and get
d
d
- T [Ptk e t)sn(h,) —p* (e (1= B(m()))] - rma ()
d
- £ |5 eu sgn(k) ()
acC
d
—p*(k, t)(1 - Bu(mu(t))) - ma(2)
= L |p*(k —e,,t)sgn(k,)
acC

$(1(0) + T i) ppuYmE(8) = m(0)me()
BeC

—pr(k,t) X A (t) - Ma(t)qa(t)m;?(t)]

aceC

d
+ p*(k, £) By(m.(£)) Z-m(t)
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= L | Aa(t)sgn(k,) p*(k — ey, 2) + po(8) (ke + 1)q,(2) p*(k + e, )

aelC

+ Ecﬂls(t)(kﬁ + 1) pp.(¢)sgn(k,) p*(k — e, + eg, t)
BE

— ko (t)k,p*(k,t) — A (¢) p*(k, )
d
+ p*(k, t)Bs(mw(t))amm(t)

= L [ A(2)sen(k,) p*(k — e,,t) + po(£)(k, + 1), () p*(k + e, 1)

aelC

+ ZC:u'B(t)(kB + l)pﬁa(t)sgn(ka)p*(k - ea + eﬁ’t)
BE
= (Aa(8) + pa(2)k,)P* (K, t)

d
+ p*(Kk, t) ,Bs(mw(t))amm(t).

The above relation holds for all k, but we can also write it as

d
P (& 8) = X | A (t)sen(k,)p(k — e, 1)

acC

+ Zcﬂﬁ(t)(kﬁ + 1) pgo(t)sen(k,) p*(k — e, + e, t)
BE

—1o(t) R, p*(k, )

d
— p*(k, £)(1 — B,(m(0))) rmd ).
This last equation resembles the forward equations for p(k, ¢) when k| = s.
Recasting these results in operator form gives us
d d
(15)  —p*(6) = (DA + () T p*(k, 6)(p*(¢) — ex).

k|=s

We can then write the solution to this inhomogeneous ordinary differential
equation as

p*(¢) = p*(0)Ex(?)

¢ d
(76) [ T (@) ~ e B0 dr

Combining the above with (2.5) yields the desired (4.2). O
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