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Abstract

Armony et al. (2015) carried out an extensive exploratory data analysis of the
patient flow through the Rambam Hospital in Israel from a queueing science
perspective. In addition, they made a large portion of the data publicly avail-
able. We respond by using a portion of that data to analyze the Emergency
Department (ED). Our analysis confirms the previous conclusions about the
time-varying arrival rate and its consequences, but we also find that the ad-
mission probability and the patient length-of-stay distribution should be time
varying as well. Our analysis culminates in a new time-varying infinite-server
aggregate stochastic model of the ED, where both the length-of-stay distribu-
tion and the arrival rate are periodic over a week. Our analysis provides new
insights into the arrival, length-of-stay, occupancy and departure processes
of this complex system as well as new statistical methods for analyzing ED
data.

Keywords: emergency departments, nonstationary stochastic models,
queueing models, nonhomogeneous Poisson process, time-varying
length-of-stay distribution, two-time-scale arrival process model

1. Introduction

This is an appendix to the main paper [1]. We present additional material
that supplements the main paper. This appendix is organized by first hav-
ing the six sections of the main paper (excluding the conclusions) and then
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following by three extra sections covering new material, the first on the time-
varying Little’s law [2, 3, 4], which will be expanded upon in [5], the second
on fitting birth-and-death processes to the data, which relates to [6, 7, 8],
and the third on estimating the extra congestion effect, i.e., how much of the
LoS is due to additional waiting caused by congestion as opposed to what
can be regarded as the normal required service time. When there is nothing
to add to the main paper, as in §2, we leave an empty section.

2. The Rambam Emergency Department and the Data

3. The ED Arrival Process

In this section, we study the arrival process of patients at the ED (by
which we always mean the EIMU). In §3.1 we look at the daily totals and
then in §3.3 we estimate the hourly arrival rates over a week. We evaluate the
stochastic variability in the arrival process in §3.4 which leads to proposing
the two-time-scale model involving a conditional nonhomogeneous Poisson
process (NHPP). In §3.4.1 we estimate the index of dispersion for counts; in
§3.4.2 we report results of statistical tests of the conditional NHPP property,
drawing on [9, 10]. In §3.5 we examine the arrival processes of two separate
groups of patients: those that are ultimately admitted to one of the IW’s and
those that are not. Finally, in §3.6, we summarize the two-time-scale model
for the arrival process that we propose, based on that statistical analysis.

3.1. Daily Totals

We first considered a two-factor statistical regression model with Gaussian
residuals for the daily total numbers of arrivals; see §§2.7, 3.7 and 6.5 of [11]
for background. Here we are only adding to the main paper by showing the
histogram of residuals and the Q-Q plot of the Studentized residuals.

To be complete, we repeat the setting. The daily total is represented as

T (w, d) ≡ A+Bw + Cd+G(0, σ2), (1)

where ≡ denotes equality by definition, w represents the week and d is the
day-of-week (DoW), while G(0, σ2) is a mean-0 Gaussian random variable
with variance σ2 (to be estimated) and A, B and C are constants. The week
and the DoW are the two factors. Because there is redundancy in model
(1), we set

∑
B ≡ 0 and

∑
C ≡ 0, so that A gives the average daily total

number of arrivals for all days.
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Table 1 is the usual Analysis of Variance (ANOVA) table for the regres-
sion. From the P -values in the last column of Table 1, we see that both factors

Factor Sum of square df Mean sum of square F statistics P-value
Week 10666 24 444.4 2.75 <0.01
DoW 62893 6 10482.2 64.89 <0.01

Residuals 23262 144 161.5

Table 1: ANOVA table for the two-factor model (1). (Use dataset 3.)

are statistically significant at the 1% level. From the residuals, the estimated
variance is σ̂2 = 161.5 = 12.712. Under this model, the variance-to-mean ra-
tio is 161.5/133.8 = 1.21. The Gaussian two-factor model is supported by
observing that the residuals are consistent with the Gaussian distribution, as
can be seen from the histogram of the residuals and the QQ-plot of the stu-
dentized residuals in Figure 1. Figure 1(a) is the histogram of the residuals
and Figure 1(b) is the QQ-plot of the studentized residuals. The normality
assumption looks fairly good. Under this model, the variance-to-mean ratio
is 161.5/133.8 = 1.21.
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(b) Q-Q plot for studentized residuals.

Figure 1: Residuals of regression of daily totals model. (Use data set 3.)

However, our main model for the daily totals is the associated single-
factor with only the DoW factor in (2) of the main paper. It is natural to
use only the DoW factor because the DoW is known in advance, whereas
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the week factor usually is not. The exception might be weeks with Jewish
holidyas.

3.2. Dependence Among Daily Totals and Residuals

Figure 2 shows a comparison between the actual daily totals (the solid
line) and the expected daily totals generated from the single-factor model
(the dotted line), while Figure 3 shows a comparison between the actual daily
totals (again the solid line) and a realization (sample path) of the daily totals
generated from the single-factor model (dotted line). These show reasonable
agreement. Figure 4 shows the difference between the data and the predicted
values in Figure 2, while Figure 5 does the same for Figure 3. The low week
in Figure 1 of the main paper can be seen around day 70.
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Figure 2: A comparison of the daily totals from the data (solid line) and the Gaussian
model mean (Use dataset 3.)

We did four statistical tests of the residuals and found that none could re-
ject the independence hypothesis. Specifically, we performed the Bartles rank
test, the difference sign test, the rank test and the turning point test; e.g., see
[12]. We also directly estimated the auto-correlation functions (ACF’s) for
the daily totals and for the residuals. The ACF is defined for a discrete-time
process {Xt}, t = 1, 2, · · · , n as

R(s, t) =
E((Xt − µt)(Xs − µs))

σtσs

,
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Figure 3: A comparison of the daily totals from the data (solid line) and a realization of
the Gaussian model (Use dataset 3.)
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Figure 4: The difference (errors) between the daily totals from the data and the Gaussian
model mean (Use dataset 3.)

where µt is the expectation of Xt and σt is the standard deviation of Xt. If
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Figure 5: The difference (errors) between the daily totals from the data and a realization
of the Gaussian model (Use dataset 3.)

{Xt} is stationary, then it can be simplified to

R(t) =
E((Xs − µs)(Xs+t − µs+t))

σ2
.

Given a sample path of the process, we can estimate the ACF by

R̂(t) =
1

n−t

∑n−t

i=1 ((Xi − X̄)(Xi+t − X̄))

σ̂2
,

where X̄ = 1
n

∑n

i=1Xi and σ̂2 = 1
n−1

∑n

i=1(Xi − X̄)2. Figures 6, 7 and 8
shows these ACF’s for the daily totals and residuals from the single-factor
model by mean prediction and a realization, respectively. The ACF shows
positive dependence among the residuals. We refer to [12] for background on
the ACF.

We also considered various autoregressive-moving-average time-series mod-
els (ARMA(p,q)). An ARMA(p,q) model is of the form

Xt = a0 +

p∑
i=1

apXt−p +

q∑
i=1

bqǫt−q + ǫt,

where ai, bi are constants and {ǫi} is a sequence of i.i.d. mean-zero Gaus-
sian variables (white noise). We again refer to [12] for more details about
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Figure 6: The estimated autocorrelation function for the daily totals (Use dataset 3.)
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Figure 7: The estimated autocorrelation function for the residuals from the single-factor
model by mean prediction (Use dataset 3.)

the ARMA model. We tried AR(p) (which is just ARMA(p,0)) models for
1 ≤ p ≤ 7 for the residuals, but found that the fitting was not very good.
However, the coefficients were almost all positive, indicating that there is
some positive dependence among the residuals.
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Figure 8: The estimated autocorrelation function for the residuals from the single-factor
model by a realization (Use dataset 3.)

We tried ARMA(p,q) models for the true daily totals for various p and q.
Based on the established DoW effect, p = 7 seems a good choice. The param-
eter q can capture the long-term effect, but we did not have a large sample.
Figure 9 shows a 10-week forecast of the daily totals based on an ARMA(7,28)
autoregressive moving average model after the observed 25-week record of
daily totals. Figure 10 shows the residuals using the ARMA(7,28) model.
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Forecasts from ARIMA(7,0,28) with non−zero mean
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Figure 9: A forecast based on an ARMA(7,28) model fit to the data (Use dataset 3.)
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Figure 10: The difference (errors) between the daily totals from the data and the Gaussian
model (Use dataset 3.)

9



3.3. Arrival Pattern Within Days

3.4. Stochastic Variability in the Time-Varying Arrival Process

As we wrote before, it is commonly accepted that the arrival process to
an ED can be modeled by a nonhomogeneous Poisson process (NHPP), be-
cause the arrivals typically come from the independent medical incidents of
many different people, each of whom uses the ED infrequently. Mathemati-
cal support is provided by the Poisson superposition theorem; e.g., §11.2 of
[13], but that should be verified, as in [9, 10]. Indeed, a moderate level of
overdispersion was found before by [14, 15].

Indeed, we have already seen strong stochastic variation in the daily to-
tals that suggests overdispersion relative to a Poisson process. To illustrate
unsuspected bunching of arrival that can occur, anecdotally from New York,
ED employees report surges of arrivals at public transportation arrival times
at the hospital.

Accordingly, we investigated the stochastic variability in the arrival pro-
cess by (i) estimating the index of dispersion for counts, as in [16, 17], and
by performing statistical tests of the NHPP property as in [9, 10]. We briefly
summarize the results of our investigations.

3.4.1. The Index of Dispersion for Counts

The index of dispersion for counts (IDC) is the ratio of the variance to
the mean of the arrival counting process, as a function of time. Let A(t) be
the number of arrivals in interval [0, t], so that {A(t), : t ≥ 0} is the arrival
counting process. Let Λ(t) ≡ E[A(t)] and V (t) ≡ V ar(A(t)) be the mean
and variance functions. Then the IDC is I(t) ≡ V (t)/Λ(t), t ≥ 0.

Here we have both week view and day view. In Week view we take
T = 7 ∗ 24 = 168 hours, and estimate Λ(t) and V (t) hourly by taking the
25 weeks as samples, then compute the ratio to estimate I(t). In day view
we take T = 24 hours, and take the 25 ∗ 7 = 175 days as samples. In day of
week view we take T = 24 hours, and take each specific day of week in the
25 weeks (i.e. the sample size is 25 for each day of week).

The week view is in Figure 11. we see that the IDC in Figure 11(c)
is increasing. This means that the arrival counting processes in successive
days are correlated, thus the variance of the counting process of a week long
is larger than the sum of variances of the counting processes of each days.
Similarly, if we combine all the days, as shown in Figure 12, the IDC is still
increasing significantly.
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But if we look at the IDC for each day of week separately, as shown in
Figure 13, we see that the IDC is much more flat. Figure 13(c) shows that
the average of the seven DoW IDC’s is about 1.5, which coincide with the
regression result for the daily total arrivals with the single-factor model in
§3.1 of the main paper.
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Figure 11: Index of dispertion in week view. (Use data set 3.)
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Figure 12: Index of dispersion in day view. (Use data set 3.)
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Figure 13: Index of dispertion in day of week view. (Use data set 3.)
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3.4.2. Statistical Tests of the NHPP Property

The analysis above indicates that the arrival process is not an NHPP
directly, but within a given day, the IDC is like constant about 1.5, which is
a little larger than a Poisson Process.

To precisely test the departures from the NHPP assumption, we need a
statistical test. Kim and Whitt [10] suggested the conditional uniform Kol-
mogorovSmirnov test (CU KS test) and the Lewis KS test for this purpose.
The test results are shown in Table 2. In the test, we divide a day into
several time intervals and consider each day of week separately. We regard
subintervals of length L as intervals over which the arrival rate might be
regarded as constant; i.e., L is the time unit (in hours) over which we might
regard the arrival process as a homogeneous Poisson process. Since the data
is rounded to the nearest second, we also apply the unrounding by adding
iid uniform random variables on [0, 1] second; see [10].

The results in Table 2 indicate that most intervals passed the test. How-
ever, in some time periods, like 11 a.m. ot 13 p.m., the hypothesis is re-
jected more frequently. We notice that the unrounding pretreatment does
not change much. This presumably is because a second is relatively small in
this context.
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L = 1, raw L = 1, unrounded L = 0.5, raw L = 0.5, unrounded

Int start Int end Day of week N CU Lewis CU Lewis CU Lewis CU Lewis

0 7 Sun 480 0.67 0.56 0.67 0.54 0.61 0.26 0.63 0.24

0 7 Mon 413 0.51 0.48 0.51 0.49 0.71 0.23 0.72 0.22

0 7 Tues 395 0.11 0.40 0.11 0.43 0.80 0.97 0.79 0.96

0 7 Wed 369 0.59 0.73 0.59 0.73 0.87 0.98 0.87 0.98

0 7 Thurs 356 0.06 0.17 0.06 0.17 0.62 0.54 0.62 0.51

0 7 Fri 384 0.98 0.24 0.98 0.24 0.57 0.60 0.58 0.63

0 7 Sat 405 0.87 0.14 0.87 0.14 0.56 0.07 0.56 0.07

7 9 Sun 188 0.81 0.69 0.81 0.69 0.78 0.65 0.78 0.63

7 9 Mon 176 0.03 0.26 0.03 0.27 0.11 0.78 0.10 0.78

7 9 Tues 192 0.00 0.49 0.00 0.49 0.68 0.25 0.70 0.22

7 9 Wed 150 0.00 0.24 0.00 0.24 0.03 0.69 0.03 0.68

7 9 Thurs 174 0.07 0.52 0.07 0.52 0.11 0.31 0.11 0.29

7 9 Fri 138 0.19 0.84 0.18 0.82 0.30 0.17 0.29 0.17

7 9 Sat 121 0.16 0.13 0.16 0.14 0.85 0.28 0.85 0.28

9 11 Sun 509 0.20 0.03 0.20 0.03 0.30 0.04 0.30 0.03

9 11 Mon 466 0.26 0.03 0.26 0.03 0.40 0.05 0.39 0.04

9 11 Tues 478 0.70 0.05 0.69 0.05 0.05 0.03 0.05 0.04

9 11 Wed 447 0.49 0.15 0.49 0.16 0.39 0.06 0.38 0.06

9 11 Thurs 375 0.31 0.73 0.31 0.74 0.86 0.93 0.85 0.93

9 11 Fri 341 0.70 0.03 0.69 0.03 0.06 0.02 0.06 0.01

9 11 Sat 216 0.09 0.20 0.08 0.20 0.44 0.18 0.44 0.19

11 13 Sun 598 0.10 0.00 0.10 0.00 0.06 0.01 0.06 0.01

11 13 Mon 493 0.24 0.16 0.24 0.14 0.69 0.11 0.71 0.09

11 13 Tues 498 0.13 0.06 0.13 0.06 0.34 0.01 0.33 0.00

11 13 Wed 508 0.57 0.01 0.58 0.01 0.38 0.01 0.37 0.01

11 13 Thurs 456 0.13 0.19 0.13 0.18 0.05 0.10 0.06 0.10

11 13 Fri 394 0.46 0.10 0.45 0.10 0.87 0.03 0.88 0.03

11 13 Sat 281 0.88 0.23 0.88 0.24 0.93 0.12 0.93 0.13

13 15 Sun 502 0.25 0.00 0.25 0.00 0.81 0.00 0.80 0.00

13 15 Mon 462 0.87 0.01 0.87 0.01 0.12 0.01 0.12 0.00

13 15 Tues 430 0.62 0.06 0.63 0.05 0.27 0.16 0.27 0.17

13 15 Wed 448 0.03 0.31 0.03 0.32 0.20 0.43 0.21 0.43

13 15 Thurs 408 0.88 0.13 0.88 0.13 0.80 0.04 0.80 0.05

13 15 Fri 308 0.17 0.75 0.17 0.74 0.07 0.31 0.08 0.32

13 15 Sat 290 0.84 0.26 0.84 0.26 0.70 0.54 0.70 0.53

15 17 Sun 409 0.89 0.04 0.89 0.03 0.74 0.00 0.75 0.00

15 17 Mon 414 0.13 0.89 0.13 0.89 0.04 0.53 0.04 0.50

15 17 Tues 389 0.31 0.73 0.32 0.75 0.90 0.75 0.90 0.74

15 17 Wed 322 0.06 0.56 0.06 0.53 0.17 0.67 0.17 0.68

15 17 Thurs 373 0.20 0.08 0.21 0.08 0.39 0.08 0.4 0.07

15 17 Fri 243 0.31 0.91 0.31 0.92 0.59 0.97 0.58 0.98

15 17 Sat 284 0.57 0.01 0.56 0.01 0.48 0.01 0.49 0.01

17 19 Sun 440 0.27 0.19 0.27 0.18 0.50 0.07 0.48 0.07

17 19 Mon 387 0.95 0.65 0.95 0.65 0.89 0.73 0.88 0.72

17 19 Tues 380 0.55 0.44 0.55 0.44 0.92 0.07 0.91 0.08

17 19 Wed 314 0.54 0.16 0.53 0.17 0.55 0.36 0.56 0.33

17 19 Thurs 401 0.71 0.10 0.72 0.10 0.74 0.05 0.73 0.05

17 19 Fri 254 0.23 0.83 0.23 0.86 0.61 0.12 0.61 0.12

17 19 Sat 243 0.46 0.49 0.45 0.47 0.69 0.01 0.68 0.01

19 21 Sun 431 0.05 0.20 0.05 0.22 0.57 0.10 0.57 0.10

19 21 Mon 394 0.64 0.72 0.63 0.70 0.99 0.64 0.99 0.62

19 21 Tues 410 0.49 0.10 0.48 0.11 0.33 0.42 0.32 0.41

19 21 Wed 324 0.36 0.12 0.36 0.11 0.74 0.19 0.76 0.17

19 21 Thurs 399 0.83 0.00 0.84 0.00 0.68 0.00 0.69 0.00

19 21 Fri 272 0.41 0.69 0.41 0.67 0.67 0.42 0.68 0.41

19 21 Sat 314 0.69 0.77 0.70 0.80 0.58 0.55 0.59 0.53

21 24 Sun 493 0.59 0.03 0.60 0.02 0.82 0.04 0.83 0.04

21 24 Mon 505 0.19 0.01 0.20 0.01 0.96 0.07 0.97 0.08

21 24 Tues 454 0.13 0.21 0.13 0.21 0.47 0.24 0.48 0.24

21 24 Wed 428 0.11 0.98 0.11 0.97 0.93 0.88 0.93 0.9

21 24 Thurs 389 0.13 0.86 0.13 0.80 0.03 0.42 0.04 0.44

21 24 Fri 413 0.33 0.30 0.33 0.30 0.55 0.83 0.54 0.86

21 24 Sat 481 0.22 0.47 0.22 0.45 0.31 0.48 0.3 0.54

Average 371.6 0.40 0.33 0.40 0.33 0.53 0.31 0.53 0.31

# Pass 58 50 58 50 60 46 59 47

Table 2: NHPP test results
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3.5. Arrival Processes of the Two Groups: Admitted and Non-Admitted

In Section 2 of the main paper we mentioned that the patients in ED
can be divided into two groups according to the admission decision. The
non-admitted patients were released after being treated in the ED, while the
admitted ones were transfered to one of the internal wards (IW’s) of the main
hospital. A priori, the two processes are not affected by each other. In other
word, we presume that the two separate arrival processes can be regarded as
an independent thinning from the whole arrival process.

In Figure 14 we show the arrival rates of the admitted and non-admitted
patients for a week. Generally, the shape of the curves are quite similar. The
arrival rate of non-admitted patients are almost always higher than the one
of admitted patients. Overall, 40% of the arriving patients are admitted.
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Figure 14: Arrival rates for the admitted and non-admitted patients. (Use data set 5 and
6.)

Further, we look at the proportion of admitted patients in total arrivals
for a week in Figure 15. It coincides with Figure 14, but more clearly shows
that the proportion of admitted patients is a function of time. Then we want
to see if we can combine all the days. In Figure 16(a) we show the estimated
proportion of admitted patients by combining all the 175 days. We see that
after combining, the line still represents the proportion of admitted patients
well for each day of week, thus we think when a patient comes to the ED, with
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probability p(t) the patient will be admitted (and with probability 1 − p(t)
be released), where p(t) is a function of time with period 1 day.
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Figure 15: Estimated proportion of admitted patients in arrival process of EIMU for a
week. (Use data set 5 and 6.)

According to Figure 16(a), we fit a quadratic function for p(t) using the
method of least squares with a fixed vertex at 2:30 p.m.. The result is shown
in Figure 16(b). The expression of the fitted function p̂(t) is

p̂(t) = f(x)

= −0.001082x2 + 0.02914x+ 0.2548015

= −0.001082(x− 13.5)2 + 0.451996, (2)

where x = ((t− 1.5) mod 24) + 1.5 and t ∈ [0, 24].

3.6. Summary: Full Model of the ED Arrival Process

Repeating the main paper, we combine the analysis in the previous sub-
sections to develop a full arrival process model that can be used in simulation
studies. First, the daily totals for the number of arrivals are modeled as in-
dependent random variables with a Gaussian distribution, as determined by
the single-factor Gaussian model in §3.1 if the main paper. Then, given the
daily totals, the arrival process is modelled as an NHPP, which means that
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(b) Fitting the Estimated proportion of
admitted patients in arrival process of
EIMU for a day with a quadratic function.

Figure 16: Proportion of admitted patients in the arrival process of EIMU for a day. (Use
data set 5 and 6.)

the given random daily number of arrivals are treated as i.i.d. random vari-
ables over the entire day with a pdf proportional to the estimated arrival rate
function for that day. We refer to that arrival process model as MT

t . Finally,
a patient that arrives at time t is admitted with probability p(t), estimated
by the quadratic function above. We conduct simulation experiments using
the model in §6.

4. Length of Stay

In this section, we investigate the LoS distribution for the ED. We find the
LoS is time-varying. Particularly, there is a midnight surge in the departure
process. It tends to clear all the patients that arrived early in the day.
Even for patients who arrived in the afternoon or evening, there exist a
slight departure surge before midnight. We will show this time view in §5.
In this data, two key effects are confounded: (i) service time (i.e., service
requirement) and (ii) extra congestion (i.e., waiting, because of congestion).
We do not see these as separate directly from the data, but we try to recognize
them in §9.
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4.1. General LoS Distribution

In general, we know that the mean LoS for patients in ED (EIMU) is
4.10 hour, which is relatively short compared to a day. But if we look at the
histogram and ECDF of LoS in Figure 17 and 18, we see that there are also
patients, thought not many, who have relatively long LoS.
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Figure 17: Histogram of LOS for EIMU. (Use data set 3.)

4.2. Failure of the Gt/GI/∞ Aggregate Model

4.3. The Time-Varying LoS Distribution

At first we were not aware of the time-varying structure of LoS. In our
study the patient LoS is given by the difference of the exit time and the enter
time of the patient (See Section 2 in the main paper). We only know when
did the patients come and when the patients were released, but we know
nothing about what happened between. In other word, we do not know
what proportion of the LoS is the waiting time and how long is the service
time.

We tried an Mt/GI/∞ model but the predicted number of patients in the
system is not close to the reality. This made us to question the assumptions
of the model, in particular, the assumption that the service times are iid.

To see this in a simple way, we plot the box-plot of LoS of for each hour.
First we look at it in week view in Figure 19. Though not obvious in week
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Figure 18: Histogram of LOS limited to interval [0, 10] and the empirical cdf for EIMU.
(Use data set 3.)

view, we see a time-varying structure within a day. We see more clearly from
the same plot for a day in Figure 20(a). In Figure 20(a) we see that the mean
LoS is large in the early morning and is decreasing until 9 a.m., then it keeps
like constant though the day time. The median of LoS is more interesting.
It is also large in the early morning and decreasing until 9 a.m., then it keeps
like constant until 7 p.m.. From 7 p.m. to midnight, it decreases, and at
midnight it reaches the bottom. After midnight, it rapidly increases to high
level.

We make several tables to see the time-varying length of stay more clearly.
Table 3, 4 and 5 show the entire X̄ matrix as difined in the main paper. We
use different fonts and grey backgrouds to emphasize the midnight push-
out. Table 6, 7 and 8 show the normalized X̄ matrix where we normalized
each row of X̄ into a probability distribution. We can see the significant
difference among the 24 distributions. Finally Table 9, 10 and 11 show the
complementary cumulative distribution functions, which is just 1 substracts
the cumulative summation of the normalized X̄ matrix. It gives us another
view of the time-varying distributions of length of stay.

4.4. The LoS of the Two Groups

4.5. The LoS Model and Occupancy
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Figure 19: Time view of LOS. The blue dots are means and the black bars ar medians.
(Use data set 3.)
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Figure 20: Time view of LoS. (Use data set 3.)
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1 2 3 4 5 6 7 8
0 0.194 0.160 0.120 0.063 0.086 0.051 0.057 0.149

1 0.531 0.451 0.297 0.234 0.143 0.171 0.131 0.246

2 0.891 0.486 0.314 0.189 0.194 0.154 0.234 0.366

3 0.554 0.274 0.211 0.171 0.286 0.160 0.314 0.417

4 0.280 0.131 0.280 0.274 0.217 0.183 0.263 0.337

5 0.154 0.131 0.297 0.223 0.200 0.183 0.263 0.171

6 0.137 0.337 0.280 0.177 0.143 0.171 0.189 0.194

7 0.246 0.206 0.160 0.149 0.160 0.091 0.091 0.120

8 0.171 0.217 0.177 0.171 0.063 0.057 0.023 0.051

9 0.166 0.160 0.091 0.120 0.040 0.029 0.029 0.103

10 0.189 0.086 0.057 0.034 0.040 0.034 0.006 0.051

11 0.103 0.074 0.086 0.040 0.029 0.051 0.023 0.017

12 0.063 0.017 0.029 0.011 0.006 0.011 0.017 0.034

13 0.074 0.017 0.006 0.023 0.011 0.000 0.011 0.017

14 0.006 0.017 0.017 0.006 0.000 0.000 0.000 0.006

15 0.006 0.017 0.011 0.006 0.006 0.011 0.006 0.006

16 0.006 0.006 0.000 0.000 0.000 0.000 0.000 0.057

17 0.000 0.000 0.000 0.006 0.000 0.000 0.034 0.000

18 0.000 0.000 0.006 0.000 0.006 0.040 0.000 0.006

19 0.000 0.000 0.000 0.000 0.046 0.000 0.006 0.000

20 0.000 0.000 0.000 0.040 0.000 0.006 0.000 0.000

21 0.000 0.000 0.057 0.000 0.000 0.000 0.000 0.000

22 0.000 0.120 0.000 0.000 0.000 0.000 0.000 0.000

23 0.114 0.000 0.000 0.000 0.000 0.000 0.000 0.000

24 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000

26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

27 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

29 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

35 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3: X̄T part 1. (Use data set 4).
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9 10 11 12 13 14 15 16
0 0.434 0.526 0.709 0.789 0.771 0.531 0.743 0.771
1 0.491 0.817 1.069 1.263 1.194 1.006 0.680 0.640
2 0.709 1.194 1.560 1.543 1.446 1.211 1.114 1.017
3 0.754 1.177 1.691 1.554 1.286 1.343 1.549 1.314
4 0.623 1.040 1.114 1.154 1.331 1.257 1.171 1.080
5 0.320 0.669 0.703 1.257 0.840 1.011 0.874 0.709
6 0.217 0.411 0.697 0.657 0.583 0.594 0.651 0.549
7 0.154 0.400 0.394 0.366 0.474 0.423 0.343 0.314
8 0.171 0.246 0.274 0.257 0.263 0.211 0.211 0.497
9 0.074 0.131 0.211 0.206 0.211 0.137 0.446 0.097
10 0.017 0.109 0.149 0.097 0.069 0.383 0.051 0.029
11 0.023 0.080 0.051 0.086 0.269 0.034 0.051 0.023
12 0.029 0.029 0.046 0.246 0.051 0.011 0.011 0.023
13 0.006 0.023 0.366 0.006 0.029 0.011 0.006 0.006
14 0.000 0.234 0.011 0.023 0.011 0.000 0.000 0.006
15 0.126 0.006 0.000 0.017 0.000 0.000 0.011 0.006
16 0.000 0.006 0.006 0.006 0.011 0.017 0.011 0.000
17 0.000 0.006 0.000 0.006 0.006 0.017 0.011 0.017
18 0.000 0.000 0.000 0.000 0.000 0.017 0.011 0.011
19 0.000 0.000 0.000 0.000 0.006 0.011 0.017 0.011
20 0.000 0.000 0.006 0.000 0.000 0.011 0.029 0.000
21 0.000 0.000 0.000 0.006 0.011 0.006 0.000 0.017
22 0.000 0.000 0.000 0.006 0.000 0.000 0.011 0.000
23 0.000 0.000 0.006 0.011 0.006 0.006 0.000 0.006
24 0.000 0.006 0.000 0.000 0.000 0.011 0.000 0.000
25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006
26 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000
27 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.006
28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
29 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30 0.006 0.000 0.006 0.000 0.006 0.000 0.000 0.000
31 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006
33 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000
34 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000
35 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
36 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000

Table 4: X̄T part 2. (Use data set 4).
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17 18 19 20 21 22 23 24
0 0.480 0.337 0.349 0.291 0.326 0.366 0.229 0.989
1 0.640 0.749 0.731 0.680 0.891 0.760 1.549 0.520
2 1.057 0.983 0.971 1.263 1.160 1.903 1.051 1.103
3 1.326 1.206 1.497 1.354 2.309 1.309 0.977 0.817
4 1.029 1.291 1.029 1.829 0.943 1.023 0.617 0.366
5 0.657 0.669 1.331 0.657 0.606 0.440 0.269 0.223
6 0.451 0.851 0.366 0.417 0.246 0.171 0.114 0.131
7 0.617 0.189 0.229 0.177 0.103 0.114 0.166 0.103
8 0.120 0.137 0.171 0.091 0.069 0.131 0.029 0.200
9 0.103 0.080 0.034 0.063 0.040 0.086 0.223 0.171
10 0.063 0.046 0.040 0.029 0.046 0.114 0.120 0.126
11 0.040 0.011 0.023 0.040 0.091 0.143 0.154 0.126
12 0.011 0.011 0.023 0.074 0.080 0.137 0.131 0.097
13 0.023 0.023 0.034 0.114 0.057 0.109 0.069 0.080
14 0.011 0.029 0.063 0.040 0.103 0.091 0.046 0.057
15 0.023 0.040 0.023 0.040 0.034 0.057 0.029 0.017
16 0.011 0.040 0.029 0.063 0.046 0.034 0.029 0.011
17 0.023 0.034 0.023 0.029 0.046 0.029 0.029 0.023
18 0.011 0.006 0.017 0.029 0.006 0.006 0.000 0.000
19 0.017 0.040 0.011 0.017 0.000 0.000 0.006 0.006
20 0.011 0.017 0.006 0.023 0.006 0.000 0.000 0.000
21 0.011 0.000 0.000 0.000 0.000 0.011 0.000 0.000
22 0.006 0.000 0.006 0.000 0.000 0.000 0.000 0.000
23 0.006 0.006 0.006 0.000 0.000 0.000 0.006 0.000
24 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.011
25 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
26 0.000 0.006 0.000 0.000 0.006 0.000 0.000 0.000
27 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000
28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
29 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
31 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
32 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
33 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
35 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006

Table 5: X̄T part 3. (Use data set 4).
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1 2 3 4 5 6 7 8
0 0.0499 0.0550 0.0481 0.0324 0.0512 0.0366 0.0337 0.0633
1 0.1366 0.1552 0.1190 0.1209 0.0853 0.1220 0.0774 0.1046
2 0.2291 0.1670 0.1259 0.0973 0.1160 0.1098 0.1380 0.1557
3 0.1424 0.0943 0.0847 0.0885 0.1706 0.1138 0.1852 0.1776
4 0.0720 0.0452 0.1121 0.1416 0.1297 0.1301 0.1549 0.1436
5 0.0396 0.0452 0.1190 0.1150 0.1195 0.1301 0.1549 0.0730
6 0.0352 0.1159 0.1121 0.0914 0.0853 0.1220 0.1111 0.0827
7 0.0631 0.0707 0.0641 0.0767 0.0956 0.0650 0.0539 0.0511
8 0.0441 0.0747 0.0709 0.0885 0.0375 0.0407 0.0135 0.0219
9 0.0426 0.0550 0.0366 0.0619 0.0239 0.0203 0.0168 0.0438
10 0.0485 0.0295 0.0229 0.0177 0.0239 0.0244 0.0034 0.0219
11 0.0264 0.0255 0.0343 0.0206 0.0171 0.0366 0.0135 0.0073
12 0.0162 0.0059 0.0114 0.0059 0.0034 0.0081 0.0101 0.0146
13 0.0191 0.0059 0.0023 0.0118 0.0068 0.0000 0.0067 0.0073
14 0.0015 0.0059 0.0069 0.0029 0.0000 0.0000 0.0000 0.0024
15 0.0015 0.0059 0.0046 0.0029 0.0034 0.0081 0.0034 0.0024
16 0.0015 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0243
17 0.0000 0.0000 0.0000 0.0029 0.0000 0.0000 0.0202 0.0000
18 0.0000 0.0000 0.0023 0.0000 0.0034 0.0285 0.0000 0.0024
19 0.0000 0.0000 0.0000 0.0000 0.0273 0.0000 0.0034 0.0000
20 0.0000 0.0000 0.0000 0.0206 0.0000 0.0041 0.0000 0.0000
21 0.0000 0.0000 0.0229 0.0000 0.0000 0.0000 0.0000 0.0000
22 0.0000 0.0413 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
23 0.0294 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
25 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6: Normalized X̄T matrix part 1. Each column is a probability vector. (Use data
set 4.)
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9 10 11 12 13 14 15 16
0 0.1044 0.0739 0.0781 0.0824 0.0869 0.0643 0.0927 0.1077
1 0.1181 0.1149 0.1178 0.1320 0.1345 0.1217 0.0849 0.0894
2 0.1703 0.1679 0.1720 0.1613 0.1628 0.1466 0.1391 0.1421
3 0.1813 0.1655 0.1865 0.1625 0.1448 0.1625 0.1933 0.1836
4 0.1497 0.1462 0.1229 0.1207 0.1499 0.1521 0.1462 0.1508
5 0.0769 0.0940 0.0775 0.1314 0.0946 0.1224 0.1091 0.0990
6 0.0522 0.0578 0.0769 0.0687 0.0656 0.0719 0.0813 0.0766
7 0.0371 0.0562 0.0435 0.0382 0.0534 0.0512 0.0428 0.0439
8 0.0412 0.0345 0.0302 0.0269 0.0296 0.0256 0.0264 0.0694
9 0.0179 0.0185 0.0233 0.0215 0.0238 0.0166 0.0556 0.0136
10 0.0041 0.0153 0.0164 0.0102 0.0077 0.0463 0.0064 0.0040
11 0.0055 0.0112 0.0057 0.0090 0.0302 0.0041 0.0064 0.0032
12 0.0069 0.0040 0.0050 0.0257 0.0058 0.0014 0.0014 0.0032
13 0.0014 0.0032 0.0403 0.0006 0.0032 0.0014 0.0007 0.0008
14 0.0000 0.0329 0.0013 0.0024 0.0013 0.0000 0.0000 0.0008
15 0.0302 0.0008 0.0000 0.0018 0.0000 0.0000 0.0014 0.0008
16 0.0000 0.0008 0.0006 0.0006 0.0013 0.0021 0.0014 0.0000
17 0.0000 0.0008 0.0000 0.0006 0.0006 0.0021 0.0014 0.0024
18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021 0.0014 0.0016
19 0.0000 0.0000 0.0000 0.0000 0.0006 0.0014 0.0021 0.0016
20 0.0000 0.0000 0.0006 0.0000 0.0000 0.0014 0.0036 0.0000
21 0.0000 0.0000 0.0000 0.0006 0.0013 0.0007 0.0000 0.0024
22 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0014 0.0000
23 0.0000 0.0000 0.0006 0.0012 0.0006 0.0007 0.0000 0.0008
24 0.0000 0.0008 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000
25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008
26 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
27 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0008
28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.0014 0.0000 0.0006 0.0000 0.0006 0.0000 0.0000 0.0000
31 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000
32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008
33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0000
34 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
36 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000

Table 7: Normalized X̄T matrix part 2. Each column is a probability vector. (Use data
set 4.)
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17 18 19 20 21 22 23 24
0 0.0711 0.0495 0.0497 0.0398 0.0452 0.0520 0.0391 0.1907
1 0.0948 0.1100 0.1043 0.0929 0.1236 0.1080 0.2649 0.1003
2 0.1566 0.1444 0.1385 0.1725 0.1609 0.2705 0.1799 0.2128
3 0.1964 0.1772 0.2135 0.1850 0.3201 0.1860 0.1672 0.1577
4 0.1524 0.1898 0.1467 0.2498 0.1307 0.1454 0.1056 0.0706
5 0.0974 0.0982 0.1899 0.0898 0.0840 0.0626 0.0459 0.0430
6 0.0669 0.1251 0.0522 0.0570 0.0341 0.0244 0.0196 0.0254
7 0.0914 0.0277 0.0326 0.0242 0.0143 0.0162 0.0283 0.0198
8 0.0178 0.0202 0.0244 0.0125 0.0095 0.0187 0.0049 0.0386
9 0.0152 0.0118 0.0049 0.0086 0.0055 0.0122 0.0381 0.0331
10 0.0093 0.0067 0.0057 0.0039 0.0063 0.0162 0.0205 0.0243
11 0.0059 0.0017 0.0033 0.0055 0.0127 0.0203 0.0264 0.0243
12 0.0017 0.0017 0.0033 0.0101 0.0111 0.0195 0.0225 0.0187
13 0.0034 0.0034 0.0049 0.0156 0.0079 0.0154 0.0117 0.0154
14 0.0017 0.0042 0.0090 0.0055 0.0143 0.0130 0.0078 0.0110
15 0.0034 0.0059 0.0033 0.0055 0.0048 0.0081 0.0049 0.0033
16 0.0017 0.0059 0.0041 0.0086 0.0063 0.0049 0.0049 0.0022
17 0.0034 0.0050 0.0033 0.0039 0.0063 0.0041 0.0049 0.0044
18 0.0017 0.0008 0.0024 0.0039 0.0008 0.0008 0.0000 0.0000
19 0.0025 0.0059 0.0016 0.0023 0.0000 0.0000 0.0010 0.0011
20 0.0017 0.0025 0.0008 0.0031 0.0008 0.0000 0.0000 0.0000
21 0.0017 0.0000 0.0000 0.0000 0.0000 0.0016 0.0000 0.0000
22 0.0008 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000
23 0.0008 0.0008 0.0008 0.0000 0.0000 0.0000 0.0010 0.0000
24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0022
25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
26 0.0000 0.0008 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000
27 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011

Table 8: Normalized X̄T matrix part 3. Each column is a probability vector. (Use data
set 4.)
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1 2 3 4 5 6 7 8
0 0.9501 0.9450 0.9519 0.9676 0.9488 0.9634 0.9663 0.9367
1 0.8135 0.7898 0.8330 0.8466 0.8635 0.8415 0.8889 0.8321
2 0.5844 0.6228 0.7071 0.7493 0.7474 0.7317 0.7508 0.6764
3 0.4420 0.5285 0.6224 0.6608 0.5768 0.6179 0.5657 0.4988
4 0.3700 0.4833 0.5103 0.5192 0.4471 0.4878 0.4108 0.3552
5 0.3304 0.4381 0.3913 0.4041 0.3276 0.3577 0.2559 0.2822
6 0.2952 0.3222 0.2792 0.3127 0.2423 0.2358 0.1448 0.1995
7 0.2320 0.2515 0.2151 0.2360 0.1468 0.1707 0.0909 0.1484
8 0.1880 0.1768 0.1442 0.1475 0.1092 0.1301 0.0774 0.1265
9 0.1454 0.1218 0.1076 0.0855 0.0853 0.1098 0.0606 0.0827
10 0.0969 0.0923 0.0847 0.0678 0.0614 0.0854 0.0572 0.0608
11 0.0705 0.0668 0.0503 0.0472 0.0444 0.0488 0.0438 0.0535
12 0.0543 0.0609 0.0389 0.0413 0.0410 0.0407 0.0337 0.0389
13 0.0352 0.0550 0.0366 0.0295 0.0341 0.0407 0.0269 0.0316
14 0.0338 0.0491 0.0297 0.0265 0.0341 0.0407 0.0269 0.0292
15 0.0323 0.0432 0.0252 0.0236 0.0307 0.0325 0.0236 0.0268
16 0.0308 0.0413 0.0252 0.0236 0.0307 0.0325 0.0236 0.0024
17 0.0308 0.0413 0.0252 0.0206 0.0307 0.0325 0.0034 0.0024
18 0.0308 0.0413 0.0229 0.0206 0.0273 0.0041 0.0034 0.0000
19 0.0308 0.0413 0.0229 0.0206 0.0000 0.0041 0.0000 0.0000
20 0.0308 0.0413 0.0229 0.0000 0.0000 0.0000 0.0000 0.0000
21 0.0308 0.0413 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
22 0.0308 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
23 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
24 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 9: CCDF of TV LOS part 1. Each column is the CCDF of LOS for patients entered
in time period of column index, e.g. column 1 is the CCDF of LOS for patients entered
in 00:00-01:00 (Use data set 4.)
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9 10 11 12 13 14 15 16
0 0.8956 0.9261 0.9219 0.9176 0.9131 0.9357 0.9073 0.8923
1 0.7775 0.8112 0.8040 0.7855 0.7786 0.8140 0.8224 0.8029
2 0.6071 0.6434 0.6320 0.6243 0.6158 0.6674 0.6833 0.6608
3 0.4258 0.4779 0.4455 0.4618 0.4710 0.5048 0.4900 0.4773
4 0.2761 0.3317 0.3226 0.3411 0.3211 0.3527 0.3438 0.3264
5 0.1992 0.2378 0.2451 0.2097 0.2265 0.2303 0.2347 0.2275
6 0.1470 0.1799 0.1682 0.1410 0.1609 0.1584 0.1534 0.1508
7 0.1099 0.1237 0.1248 0.1027 0.1075 0.1072 0.1106 0.1069
8 0.0687 0.0892 0.0945 0.0759 0.0779 0.0816 0.0842 0.0375
9 0.0508 0.0707 0.0712 0.0544 0.0541 0.0650 0.0285 0.0239
10 0.0467 0.0554 0.0548 0.0442 0.0463 0.0187 0.0221 0.0200
11 0.0412 0.0442 0.0491 0.0352 0.0161 0.0145 0.0157 0.0168
12 0.0343 0.0402 0.0441 0.0096 0.0103 0.0131 0.0143 0.0136
13 0.0330 0.0369 0.0038 0.0090 0.0071 0.0118 0.0136 0.0128
14 0.0330 0.0040 0.0025 0.0066 0.0058 0.0118 0.0136 0.0120
15 0.0027 0.0032 0.0025 0.0048 0.0058 0.0118 0.0121 0.0112
16 0.0027 0.0024 0.0019 0.0042 0.0045 0.0097 0.0107 0.0112
17 0.0027 0.0016 0.0019 0.0036 0.0039 0.0076 0.0093 0.0088
18 0.0027 0.0016 0.0019 0.0036 0.0039 0.0055 0.0078 0.0072
19 0.0027 0.0016 0.0019 0.0036 0.0032 0.0041 0.0057 0.0056
20 0.0027 0.0016 0.0013 0.0036 0.0032 0.0028 0.0021 0.0056
21 0.0027 0.0016 0.0013 0.0030 0.0019 0.0021 0.0021 0.0032
22 0.0027 0.0016 0.0013 0.0024 0.0019 0.0021 0.0007 0.0032
23 0.0027 0.0016 0.0006 0.0012 0.0013 0.0014 0.0007 0.0024
24 0.0027 0.0008 0.0006 0.0012 0.0013 0.0000 0.0007 0.0024
25 0.0027 0.0008 0.0006 0.0012 0.0013 0.0000 0.0007 0.0016
26 0.0027 0.0000 0.0006 0.0012 0.0013 0.0000 0.0007 0.0016
27 0.0027 0.0000 0.0006 0.0006 0.0013 0.0000 0.0007 0.0008
28 0.0027 0.0000 0.0006 0.0006 0.0013 0.0000 0.0007 0.0008
29 0.0027 0.0000 0.0006 0.0006 0.0013 0.0000 0.0007 0.0008
30 0.0014 0.0000 0.0000 0.0006 0.0006 0.0000 0.0007 0.0008
31 0.0014 0.0000 0.0000 0.0006 0.0000 0.0000 0.0007 0.0008
32 0.0014 0.0000 0.0000 0.0006 0.0000 0.0000 0.0007 0.0000
33 0.0014 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000
34 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000
35 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000
36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 10: CCDF of TV LOS part 2. Each column is the CCDF of LOS for patients entered
in time period of column index, e.g. column 1 is the CCDF of LOS for patients entered
in 00:00-01:00 (Use data set 4.)
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17 18 19 20 21 22 23 24
0 0.9289 0.9505 0.9503 0.9602 0.9548 0.9480 0.9609 0.8093
1 0.8340 0.8405 0.8460 0.8673 0.8312 0.8400 0.6960 0.7089
2 0.6774 0.6961 0.7074 0.6948 0.6704 0.5695 0.5161 0.4961
3 0.4809 0.5189 0.4939 0.5098 0.3502 0.3834 0.3490 0.3385
4 0.3285 0.3291 0.3472 0.2600 0.2195 0.2380 0.2434 0.2679
5 0.2312 0.2309 0.1573 0.1702 0.1355 0.1755 0.1975 0.2249
6 0.1643 0.1058 0.1051 0.1132 0.1014 0.1511 0.1779 0.1996
7 0.0728 0.0781 0.0725 0.0890 0.0872 0.1348 0.1496 0.1797
8 0.0550 0.0579 0.0481 0.0765 0.0777 0.1162 0.1447 0.1411
9 0.0398 0.0462 0.0432 0.0679 0.0721 0.1040 0.1065 0.1080
10 0.0305 0.0395 0.0375 0.0640 0.0658 0.0877 0.0860 0.0838
11 0.0246 0.0378 0.0342 0.0585 0.0531 0.0674 0.0596 0.0595
12 0.0229 0.0361 0.0310 0.0484 0.0420 0.0479 0.0371 0.0408
13 0.0195 0.0327 0.0261 0.0328 0.0341 0.0325 0.0254 0.0254
14 0.0178 0.0285 0.0171 0.0273 0.0198 0.0195 0.0176 0.0143
15 0.0144 0.0227 0.0139 0.0219 0.0151 0.0114 0.0127 0.0110
16 0.0127 0.0168 0.0098 0.0133 0.0087 0.0065 0.0078 0.0088
17 0.0093 0.0118 0.0065 0.0094 0.0024 0.0024 0.0029 0.0044
18 0.0076 0.0109 0.0041 0.0055 0.0016 0.0016 0.0029 0.0044
19 0.0051 0.0050 0.0024 0.0031 0.0016 0.0016 0.0020 0.0033
20 0.0034 0.0025 0.0016 0.0000 0.0008 0.0016 0.0020 0.0033
21 0.0017 0.0025 0.0016 0.0000 0.0008 0.0000 0.0020 0.0033
22 0.0008 0.0025 0.0008 0.0000 0.0008 0.0000 0.0020 0.0033
23 0.0000 0.0017 0.0000 0.0000 0.0008 0.0000 0.0010 0.0033
24 0.0000 0.0017 0.0000 0.0000 0.0008 0.0000 0.0000 0.0011
25 0.0000 0.0017 0.0000 0.0000 0.0008 0.0000 0.0000 0.0011
26 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011
27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011
28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011
29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011
30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011
31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011
32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011
33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011
34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011
35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0011
36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 11: CCDF of TV LOS part 3. Each column is the CCDF of LOS for patients entered
in time period of column index, e.g. column 1 is the CCDF of LOS for patients entered
in 00:00-01:00 (Use data set 4.)
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5. Departure process

In this section, we explore the departure process of the queueing system.
Under the Mt/GIt/∞ model setting, the departure process is also a non-
homogenuous Poisson process, thus it is of interest to see what the departure
process looks like. The main idea is that we consider the process in reversed
time and view the departure process as ”arrival process”. Then we can do a
similar analysis as in Section 3.

5.1. Daily total departures

Paralleling §3 of the main paper, we start by looking at the daily total
departures. Here we consider the departure process and accordingly the
population changes a little bit compared to the previous sections. In this
section, we consider the patients we exited the ED (the EIMU) from Dec. 5,
2004 to May 28, 2005, which is 23,407 patients in total. We will do everything
in reverse-time if not specified.

Table 12 shows the number of daily total departures of the 25 weeks in
reversed time. This table is similar to the daily total arrivals in Table 2 of the
main paper. The mean of each week is almost the same as for the arrivals.
The mean of each day of week also looks like the arrivals. The difference
is in the variance of the daily totals of each day of week. The variance of
departures is relatively higher than the arrivals.

Again, we fit the Gaussian model for the departures:

T (w, d) = A+Bw + Cd+G(0, σ2), (3)

where the parameters have the same meaning as before. We have the ANOVA
table for this regression in Table 13. We see that, again, both the Week factor
and the Day of Week factor are significant and the DoW factor explains most
of the variance. The mean sum of square for the residuals is σ̂2 = 202.5 =
14.232, which is higher than that of the arrival process. The variance-to-mean
ratio is 202.5/133.8 = 1.51.

If we omit the Week factor and consider the single-factor model, then
the mean sum of square for the residuals is (10661 + 29156)/(24 + 144) =
237.0, and the variance-to-mean ratio is 237.0/133.8 = 1.77. The estimated
coefficients for the single-factor model is shown in Table 14, and a histogram
of residuals and a Q-Q plot for the studentized residuals are shown in Figure
21, which is parallel to Figure 2 of the main paper. From the residuals we
see that the Gaussian model works well for the departure process in reversed
time.
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Sat. Fri. Thu. Wed. Tue. Mon. Sun. Total Mean

25 97 130 155 142 151 147 156 978 139.71
24 86 125 147 159 141 180 143 981 140.14
23 94 130 98 128 160 136 144 890 127.14
22 104 115 109 114 148 147 142 879 125.57
21 109 112 137 128 165 163 126 940 134.29
20 108 99 117 135 128 160 155 902 128.86
19 117 108 125 151 151 135 130 917 131.00
18 105 125 130 153 152 136 162 963 137.57
17 129 118 133 121 168 124 151 944 134.86
16 113 88 139 137 185 160 151 973 139.00
15 103 124 160 154 131 148 180 1000 142.86
14 95 142 133 153 150 157 158 988 141.14
13 109 113 144 124 180 163 167 1000 142.86
12 91 129 123 137 144 153 156 933 133.29
11 124 135 134 143 120 125 151 932 133.14
10 79 83 100 116 122 128 131 759 108.43
9 85 79 140 141 127 157 169 898 128.29
8 108 122 120 148 161 137 171 967 138.14
7 110 112 135 105 157 163 167 949 135.57
6 102 122 159 136 161 131 182 993 141.86
5 99 115 149 136 162 168 172 1001 143.00
4 112 99 119 139 145 174 154 942 134.57
3 91 118 128 148 141 164 152 942 134.57
2 90 123 115 141 141 123 144 877 125.29
1 102 100 121 114 127 145 150 859 122.71

Total 2562 2866 3270 3403 3718 3724 3864 23407
Mean 102.48 114.64 130.8 136.12 148.72 148.96 154.56 936.28
Var. 146.18 253.74 276.00 204.86 294.54 270.46 213.26 3109.46

Table 12: Number of departures at EIMU of each day from Dec. 5, 2004 to May 28, 2005
(25 weeks).

5.2. Departure Pattern Within Days

Now we turn to the time structure of departure rate within days. Figure
22 shows the estimated departure rate function over a week in the reverse-
time view. We see that the rate has midnight surges clearly and the peaks
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Factor Sum of square df Mean sum of square F statistics P-values
Week 10661 24 444.2 2.19 <0.01
DoW 56146 6 9357.6 46.22 <0.01

Residuals 29156 144 202.5

Table 13: ANOVA table for Gaussian model for the daily total departures. (Use data set
7.)

Coeffitients Estimate SE
A 133.754 3.079

C.Sun 20.806 4.354
C.Mon 15.206 4.354
C.Tue 14.966 4.354
C.Wed 2.366 4.354
C.Thu -2.954 4.354
C.Fri -19.114 4.354
C.Sat -31.274 4.354

Table 14: Regression result for daily total model with only DoW factor for the departures.
(We set

∑
C = 0). (Use data set 7.)
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Figure 21: Residuals of regression of daily total departures with only DoW factor. (Use
data set 7.)
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are increasing. This may correspond to the number of daily total arrivals for
each day of week. The departure rate is relatively stable from the afternoon
to the midnight.
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Figure 22: Average departure rate for EIMU by reversed time. (Use data set 7.)

As for arrivals, we divided the patients into two groups according to
the admission decision in the previous sections. Parallel to Figure 14, 15
and 16, we plot Figure 23, 24 and 25. From these 3 plots, we see that the
departure rate of non-admitted patients is almost always higher than the rate
of admitted patients and the proportion of admitted patients is extremely low
at 7-8 a.m. of each day. The proportion of admittion in reversed departure
process is less regular than the one of arrival process.

5.3. The LoS Seen By Departures

We have seen that the LoS depends strong on the arrival time in §4.3 of
the main paper. We want to see whether that is also the case for the reversed
process.

Figure 26(a) shows that the LoS the distribution also depends on the
departure time. Interestingly, the LoS is long in the morning, which means
patients who left the emergency department in the morning experienced a
long LoS. As a consequence, those patients arrived in the ED in the late
evening. This is reasonable, because these patients might have to wait to the
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Figure 23: Departure rates for the admitted and non-admitted patients in reversed time.
(Use data set 8 and 9.)
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Figure 24: Estimated proportion of admitted patients in reversed departure process of
EIMU for a week. The dotted blue lines are 7 a.m. to 8 a.m.. (Use data set 8 and 9.)

morning to see an appropriate doctor before an admission decision can be
made.

We now turn to the two groups of patients, admitted and non-admitted.
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Figure 25: Estimated proportion of admitted patients in arrival process of EIMU for a day
combining all days together (black solid line) and the proportions of admitted patients for
each day of week. (Use data set 8 and 9.)

Figure 27 is analogous to Figure 11 in the main paper. We see that
the midnight surge is caused by the non-admitted patients, and the non-
admitted patients are more influenced by time of the day. The mean of the
LoS is almost constant for the admitted patients from 4 p.m. to 3 a.m. At
5 a.m. the mean is quite large and after that it slowly decreases until 2 p.m.
The one for the non-admitted patients has a obvious ridge in the morning.
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Figure 26: Time view of LOS in reverse time. The blue dots are means and the black bars
ar medians. (Use data set 7.)
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(b) LoS of non-admitted patients by re-
versed time.

Figure 27: Time view of LoS for the 2 groups. (Use data set 8 and 9.)
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6. Comparison with Simulation

6.1. Simulation for the model

We conducted six different simulations to see if our model can characterize
the ED well. They are done as following:

A: We use the original arrival data and the non-time-varying LoS; i.e., we
estimated the LoS by combining all the data for each group.

B: We use the original arrival data and the time-varying LoS in a day
view; i.e., we estimated the distribution of LoS hourly for every hour
of a day and assume a periodic structure for the LoS of period length
24 hours.

C: We use the original arrival data and the time-varying LoS in a week
view; i.e., we estimated the distribution of LoS hourly for every hour
of a week and assume a periodic structure for the LoS of period length
1 week.

A’: We treat the arrival process as an NHPP given daily total arrivals, and
the non-time-varying LoS.

B’: We treat the arrival process as an NHPP given daily total arrivals, and
the time-varying LoS in a day view.

C’: We treat the arrival process as an NHPP given daily total arrivals, and
the time-varying LoS in a week view.

The size of each simulation is 1000 (For simulation A,B and C using
original arrival data, we repeated the 25 weeks for 40 times so that we have
in total 1000 weeks). We compute the averaged number of patients in the
system and the averaged departure rate using the simulation results and
compared them to the one that estimated from the raw data. We show
these, respectively, in Figures 28, 29, 30, 31, 32 and 33.

These simulation results are informative. From simulation A we see that
a model with non-time-varying does not work for the system. It cannot
capture the midnight surge even we use the original arrival data. The result
of simulation B is better than A, but still not good enough. It captures the
midnight surge, but there is an obvious gap between the curves of number
in the system. For Sunday and Monday, the simulated one is lower than the
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(b) Departure rate.

Figure 28: Result of simulation A

real one while for Friday and Saturday the simulated one is higher than the
real one. For simulation C, the curves almost perfectly coincide.

Simulation A’, B’ and C’ look almost the same as A, B and C respectively.
The result for simulation C’, which is the model we propose, looks good.
These simulation results indicate that our model for the arrival process works
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Figure 29: Result of simulation B

well.
In Figure 34 we compute the variance of number of patients hourly for

each hour in a week. We see that the variance estimated from the data is
higher than the one estimated from the simulation C’ in the day time.
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Figure 30: Result of simulation C

We also noticed that in all the simulation we underestimated the midnight
surge effect, this may due to the resolution of our model. The midnight
surge occurs in a single hour, but we estimated both the arrival rate and
the distribution of LoS hourly, so in some sense we averaged everything in
a hour. We know estimated the arrival rate hourly and then got the rate
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Figure 31: Result of simulation A’

funtion by linear interpolation may cause some errors compared to keep the
rate constant in each hour, but this will make the rate changing continuously,
which we think more close to the reality.
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Figure 32: Result of simulation B’
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Figure 33: Result of simulation C’
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Figure 34: Variance of the number of patients in the system estimated from the data and
simulation C’.
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7. Occupancy and Time-Varying Little’s Law

This is the first section not in the main paper. This section is devoted to
developing a discrete-time version of the time-varying Little’s law (TVLL),
which is natural using the X matrix introduced in §4.2 of the main paper.
More on the TVLL will appear in [5].

The TVLL is established by Bertsimas and Mourtzinou [2]. Under very
general regularity conditions [2, 3], we have

E(L(t)) =

∫ t

−∞

Gc
s(t− s)λ(s)ds, (4)

where λ(s) is arrival rate function, W (t) is the waiting time of the last cus-
tomer to arrive at or before time t so Gt(x) = P (W (t) ≤ x|At), x ≥ 0, is the
conditional cumulative distribution function of the waiting time for a new
arrival at time t, and

L(t) =

∫ t

−∞

IW (s)>t−sdA(s) (5)

is the number in the system at time t.
The relationship between the TVLL and infinite-server (IS) queueing sys-

tem, especially for Mt/GIt/∞ model, is discussed in [4]. It points out that
the TVLL can be regarded as part of the theory of IS models since it can be
regarded as a general IS model if we simply call the waiting time the service
time in the IS model. In our case, we think the LoS is the service time.

The discrete-time TVLL is much easier to understand. In this section,
we want to show that the discrete version of TVLL is essentially a counting
problem. Let Xk,j be the number of arrivals in discrete time period k that
have a LoS of j time periods, j ≥ 0. Then

Ak =

∞∑
j=0

Xk,j and Dk =

∞∑
j=0

Xk−j,j (6)

are the number of arrivals and departures of discrete time period k.
Next, let

Yk,j =
∞∑

i=j+1

Xk,i
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be the number of arrivals in discrete time period k that have a LoS strictly
greater than j. Then

Qk =
∞∑
j=0

Yk−j,j =
∞∑
j=0

Ak−j

Yk−j,j

Ak−j

(7)

is the number in system at the end of discrete time period k. Further, if we
let

F̄ c
k,j =

Yk,j

Ak

(8)

be the proportion of all arrivals at time k that depart strictly later then time
k + j, for j ≥ 0. Then F̄ c

k−j,j is the proportion of arrivals at time k − j that
depart after time k. Then (7) becomes

Qk =

∞∑
j=0

Yk−j,j =

∞∑
j=0

Ak−jF̄
c
k−j,j. (9)

Noting that if the length of discrete time periods go to 0, (9) is equivalent to
(5).

Now we assume that Q0 = 0 (We may be able to regard all customers
initially in the system as arrivals at time 0.) and we can rewrite (9) as

Qk =
k∑

j=0

Yj,k−j =
k∑

j=0

AjF̄
c
j,k−j. (10)

Additionally, we assume a periodic structure over successive periods of d
discrete times. We assume that we have sufficient data to estimate averages
over n periods, containing nd time periods. We also assume that Xk,j = 0
for j ≥ d, so that Yk,j = 0 for j ≥ d− 1.

In this periodic settings, we construct averages. We have

X̄k−j,j =
1

n

n∑
m=1

X(m−1)d+k−j,j , Āk =
1

n

n∑
m=1

A(m−1)d+k

and D̄k =
1

n

n∑
m=1

D(m−1)d+k , (11)

for 0 ≤ k < d and positive integers n, m and d. For example, we might have
d = 24 for the number of hours over a day or d = 7 ∗ 24 = 168 for a week.
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Also we construct averages for Qk and Yk−j,j by letting

Ȳk−j,j =
1

n

n∑
m=1

Y(m−1)d+k−j,j, and Q̄k =
1

n

n∑
m=1

Q(m−1)d+k, (12)

for 0 ≤ k < d, 0 ≤ j < d− 1 and define Ȳk−j,j ≡ Ȳd+k−j,j for k− j < 0. Then
we get

Q̄k =
1

n

n∑
m=1

Q(m−1)d+k

=
1

n

n∑
m=1

d−1∑
j=0

Y(m−1)d+k−j,j

=

d−1∑
j=0

1

n

n∑
m=1

Y(m−1)d+k−j,j

=

d−1∑
j=0

Ȳk−j,j

=

d−1∑
j=0

Āk−jF̄
c,∗

k−j,j, (13)

where

F̄ c,∗

k−j,j =
Ȳk−j,j

Āk−j

=

∑n

m=1 Y(m−1)d+k−j,j∑n

m=1 A(m−1)d+k−j

. (14)

We recognize that (13) is a discrete empirical analog of the TVLL, ex-
pressed as

E(Q(t)) =

∫ t

0

P (W (s) > t− s)λ(s)ds. (15)

8. Fitting a Stationary Birth-and-Death Process to the Data

In [6] we introduced a new “grey-box” stochastic modeling approach. In
particular, we proposed approaching a queueing application where we do not
know what model is appropriate by fitting a stationary BD process to an
observed segment of the sample path of a queue-length stochastic process
estimated from system data, assuming only that the queue length increases
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and decreases in unit steps. Just as is commonly done for estimating rates in
a BD process [18, 19, 20], we estimate the birth rate in state k from arrival
data over an interval [0, t] by λ̄k ≡ λ̄k(t), the number of arrivals observed in
that state, divided by the total time spent on that state, while we estimate
the death rate in state k by µ̄k ≡ µ̄k(t), the number of departures observed
in that state, divided by the total time spent on that state. As usual, the
steady-state distribution of that fitted BD model, denoted by ᾱe

k ≡ ᾱe
k(t)

(with superscript e indicating the estimated rates), is well defined (under
regularity conditions, see [8]) and is characterized as the unique probability
vector satisfying the local balance equations,

ᾱe
kλ̄k = ᾱe

k+1µ̄k+1, k ≥ 0. (16)

(We assume that limiting values of the rates as t → ∞ exist and that our
estimators are consistent, so we omit the t.)

The BD process is appealing as a grey-box model for queueing systems,
because the fitted BD steady-state distribution {ᾱe

k : k ≥ 0} in (16) closely
matches the empirical steady-state distribution, {ᾱk : k ≥ 0}, where ᾱk ≡
ᾱk(t) is the proportion of total time spent in each state. Indeed, as has been
known for some time (e.g., see Chapter 4 of [21]), under regularity conditions,
these two distributions coincide asymptotically as t (and thus the sample size)
increases, even if the actual system evolves in a very different way from the
fitted BD process. For example, the actual process {Q(t) : t ≥ 0} might be
periodic or non-Markovian.

If we directly fit a BD process to data as just described, we should not
conclude without further testing that the underlying queue-length process
actually is a BD process. In fact, the main point of [8] was to caution
against drawing unwarranted positive conclusions from a close similarity in
the steady-state distributions, because these two distributions are automat-
ically closely related. Nevertheless, the fitted BD process can provide useful
insight about the underlying system.

The first paper [6] investigated fitting BD processes to the queue length
processes of various GI/GI/s queues, and investigated what can be learned
about the underlying model. The second paper [7] investigated fitting BD
processes to the queue length processes of various Mt/GI/s queues having
periodic arrival rate functions, and again investigated what can be learned
about the underlying model. In both cases we found that these models have
“signatures” that can be recognized in the fitted virth and death rates.
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In fact, our earlier paper [8] was largely motivated by exploratory data
analysis carried out in an earlier 2011 version of §3 of [14]. They had fit
several candidate models to data on the number of patients in a hospital
emergency department, and found that a BD process fit better than others.
After writing [8], cautioning against drawing unwarranted positive conclu-
sions, we realized that fitting BD processes to data might indeed be useful,
and started the investigation in [6]. While the discussion in [14] changed
significantly since the earlier version, the issue here is still discussed in §3.2.3
of [14] on “state dependency.”

First, we look at the empirical steady-state distributions from the ED
data and the fitted BD process as before. To make these two steady state
distributions identical, we make the initial state the same as the end state;
see [8]. Here we make the initial and final states be times when the number
of patients in the ED is 26. Figure 35 empirically confirms the theoretical
result from [8]. Figure 35 is very similar to Figure 4 in [14].

The distribution is in Figure 35 and the fitted birth and death rates in
Figure 36. Next, the fitted birth and death rates are shown in Figure 36.

0.
00

0
0.

01
0

0.
02

0

state

D
en

si
ty

5 16 29 42 55 68 81 94 109

Empirical dist.
Steady dist. of BD

(a) pdf

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

state

C
D

F

Empirical dist.
Steady dist. of BD

(b) cdf

Figure 35: Empirical and BD fitted steady state distribution of the patient flow in ED.

Clearly we can see a change of slope in the estimated death rates at
state 40, which coincide with the number of beds in the ED. However, if
the system actually were a 40-server queueing system, with iid service times,
then the death rates should be a horizontal line for states large than 40, as
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Figure 36: Estimated birth and death rates and death rates per patient of the BD process
of ED.

illustrated by [6, 7]. However, as discussed in §3.1 of [14], the capacity of the
ED is actually quite flexible, so that we should not expect it to perform as
simply as a queueing model with the fixed number of 40 servers. Consistent
with that flexibility, we see that the death rate is increasing when there are
more than 40 patients. Just as in [14], we also show the estimated death
(service) rate per patient Our examination of this state dependency confirms
conclusions reached in [14]. in §3.2.3 they suggested four possible reasons,
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but they did not point out the relationship between the turning point and
the number of servers.

The birth rates also tend to become horizontal when there are more than
about 45-50 patients, a reason may be new patients were sent to other hos-
pitals when this one is full. For further discussion of this example, see §6.3
of [7], which also observes that the fitted birth rates are consistent with the
periodic time-varying arrival rate function, which we know holds for the ED.

Given the shape of the birth and death rates, we try to fit linear functions
to the rates. We fit piecewise linear models to the birth and death rates. We
tried two ways for the birth rate: one is fitting it with 2 pieces of lines and
the other is with 3 pieces of lines. We show the fitting in Figure 37 and put
the estimated parameters in Table 15. The comparison between the steady
state distribution by the fitted birth and death models and the empirical
distribution is shown in Figure 38.

Fitting
interval

Prop. of
data

Intercept
(SE)

Slope
(SE)

R2 p-value

Birth
rate

2 pieces
linear fit

[7, 25] 52.52%
−1.51 ∗ 10−4

(7.93 ∗ 10−5)
8.26 ∗ 10−5

(4.69 ∗ 10−6)
0.948 <0.01

[26, 37] 35.72%
1.87 ∗ 10−3

(2.20 ∗ 10−4)
7.79 ∗ 10−6

(6.94 ∗ 10−6)
0.112 0.288

3 pieces
linear fit

[7, 13] 17.38%
4.66 ∗ 10−4

(8.38 ∗ 10−5)
2.32 ∗ 10−5

(8.22 ∗ 10−6)
0.614 0.037

[14, 25] 35.14%
−5.92 ∗ 10−4

(9.10 ∗ 10−5)
1.05 ∗ 10−4

(4.59 ∗ 10−6)
0.981 <0.01

[26, 37] 35.72%
1.87 ∗ 10−3

(2.20 ∗ 10−4)
7.79 ∗ 10−6

(6.94 ∗ 10−6)
0.112 0.288

Death
rate

2 pieces
linear fit

[5, 25] 52.99%
−3.11 ∗ 10−4

(4.73 ∗ 10−5)
8.70 ∗ 10−5

(2.92 ∗ 10−6)
0.979 <0.01

[26, 37] 35.72%
7.32 ∗ 10−4

(1.73 ∗ 10−4)
4.59 ∗ 10−5

(5.47 ∗ 10−6)
0.876 <0.01

Table 15: Piecewise linear regression results for data without time segment. (Correspond
to Figure 37.)

Instead of fitting a piecewise linear function to the birth-and-death rates,
the bimodal structure of the empirical distribution also indicates that it may
be seen as a composition of two single-mode distributions which come from
2 time periods. It leads us to divide the time of a day into 2 periods: valley
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(d) Death rates per state.

Figure 37: Estimated birth and death rates without segment by time. (Use Monday to
Thursday of data set 3.)

hours from 00:00 to 10:00 and peak hours from 10:00 to 00:00. We show the
scaled empirical distribution of these two part in Figure 38. We can see that
this time segment captures the two peaks very well.

To elaborate, for the direct fit on the left in Figure 38, the vertical black
lines are the empirical distribution. The solid blue and red lines are empirical
distributions for valley and peak hours. The dashed blue and red lines are

56



0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Number of Patients

D
en

si
ty

3 8 14 21 28 35 42 49 56

(a) Direct BD fit.

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Number of Patients

D
en

si
ty

3 8 14 21 28 35 42 49 56

(b) Linear fit to BD rate.

Figure 38: Time-segmented state view of the data. (Use Monday to Thursday of data set
3.)

the steady-state distributions of direct BD fitting to each part of data, while
the black dashed line is the steady-state distribution of direct BD fitting to
the whole data. For the linear fit to the BD rate on the right in Figure
38, the vertical black lines are the empirical distribution. The solid blue
and red lines are the empirical distributions for valley and peek hours. The
dashed blue and red lines are steady-state distributions of the linear fitted
BD rates and the black dashed line is the sum of the dashed blue and red
lines. The brown dotted line is steady distribution of the piecewise linear
fitted BD rates without time segment. And the orange dot dash line is the
steady distribution if we fit the birth rates by 2 piece of lines

The estimated birth and death rates are shown in Figure 39 and 40.
This time we see that the all the rates are approximately linear. But there
are variations at the end states which are caused by having a small sample
size. So we only use the state interval which corresponds to the 10% and 90%
quantile points of the empirical distribution of each time periods. Specifically,
for valley hours we use state interval [9, 22] and for peak hours we use [21, 40].
Then we compute the steady-state distributions of the directly estimated BD
processes and the one with linear fitted rates. The results are also shown in
Figure 38 and Table 16.
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(d) Death rates per state of valley hours.

Figure 39: Estimated birth and death rates of valley hours with segment by time. (Use
Monday to Thursday of data set 3.)

9. Estimating the Congestion Effect

In §4 we observed that in this ED data two key effects are confounded: (i)
service time (i.e., service requirement) and (ii) extra congestion (i.e., waiting,
because of congestion). Of course, these notions are actually not easy (and
maybe impossible) to identify, regardless of how much data we have. In any
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(d) Death rates per state of peak hours.

Figure 40: Estimated birth and death rates of peak hours with segment by time. (Use
Monday to Thursday of data set 3.)

case, we do not see these separately directly from the available data.
To show the congestion effect in the ED, we look at the LOS vs number of

patients seen by arrival in the ED. Figure 41 shows that this state-dependent
mean of LOS in increasing as the number in the system increasing. The
median is also increasing, but not so obviously.

One way to see the congestion effect is by fitting a Mt/GI/∞ model
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Fitting
interval

Prop. of
data

Intercept
(SE)

Slope
(SE)

R2 p-value

Valley
hours

Birth
rate

[9, 22] 36.37%
2.99 ∗ 10−4

(7.00 ∗ 10−5)
3.70 ∗ 10−5

(4.37 ∗ 10−6)
0.857 <0.01

Death
rate

[9, 22] 36.37%
−2.85 ∗ 10−4

(8.96 ∗ 10−5)
7.78 ∗ 10−5

(5.60 ∗ 10−6)
0.942 <0.01

Peak
hours

Birth
rate

[21, 40] 50.59%
2.50 ∗ 10−3

(1.09 ∗ 10−4)
−9.39 ∗ 10−6

(3.51 ∗ 10−6)
0.285 0.015

Death
rate

[21, 40] 50.59%
8.58 ∗ 10−4

(9.94 ∗ 10−5)
4.20 ∗ 10−5

(3.20 ∗ 10−6)
0.905 <0.01

Table 16: Piecewise linear regression results for data with time segment. (Correspond to
Figure 39 and 40.)
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Figure 41: Number of patients seen by arrival vs LOS for ED.

where the length of stay distribution is estimated by taking the maximum of
the cumulative distribution functions of 24 empirical distributions of length
of stay of each hour. In other words, we regard the cumulative distribution
function got by taking maximum as the true service rate. The departure
rate and number in the system predicted by the model is shown in Figure
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42. The difference between the true and predicted occupancy level can be
seen as the degree of congestion. However, the drawback of this method is
that even without congestion, the service rate of the ED is time-varying due
to staffing, etc. Even though we are convinced that there exists congestion,
to quantify and assess the congestion effect is still a hard problem.
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Figure 42: Mt/GI/∞ model using the maximum CCDF.
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