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1. INTRODUCTION AND SUMMARY

In stochastic dominance applications it is often difficult to compute the
admissible set. Of course work is being done to develop efficient algorithms,
e.g., Bawa et al. (1979), but it is often necessary to use approximations,
especially when there are many alternatives as with portfolios. A standard
approximation procedure is to use a two-parameter admissible set such as
the mean-variance admissible set instead of a theoretically appropriate
admissible set determined by a set of utility functions (such as the risk-averse
admissible set; see Section 4). It is of considerable interest to understand the
properties of such an approximation procedure. It is significant that for -
certain special familes of probability distributions the two-parameter
admissible sets coincide with the risk-averse admissible set; see Section 5.
However, since. a typical set of alternatives at best only can be approximated
by such a special family of probability distributions, it is appropriate to ask
how well the two-parameter admissible set approximates the risk-averse
admissible set when the set of alternatives is close to such a special family.
The purpose of this paper is to address this approximation question. This
paper is thus similar in spirit to Samuelson (1970).

It should be evident that closely related questions arise in many economics
contexts. Hence, we first investigate the approximation question in a more
abstract setting and then return to stochastic dominance in Sections 4—8.
Before introducing the abstract setting, we indicate how the later sections are
organized. In Section4, we show that the compactness and continuity
conditions in Sections 2 and 3 are satisfied in the standard setting for
stochastic dominance, i.e., for a large class of probability measures on the
real line (with the topology of weak convergence; Billingsley (1968)) and for
a large class of all nondecreasing concave utility functions (with the
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APPROXIMATING THE ADMISSIBLE SET 219

topology of uniform convergence over compact sets). In Section 5 we study
location-scale families of probability distributions because they are
prospective limiting sets of alternatives for which two-parameter rules work
exactly. In Section6 we show that the compactness and continuity
conditions in Sections 2 and 3 are satisfied for the two-parameter admissible
sets. In Section 7 we show that the continuity results for general sets of alter-
natives extend to portfolios. Finally, in Section 8 we show how all the pieces
can be combined to at least partially answer the original question. In
Section 8 we also discuss several extensions, including rates of convergence
and first-order stochastic dominance.

Our general framework involves a set & of alternatives and a set Z of
real-valued functions on /. The set # determines a partial order S on &7,
called the Z-order: P Q for P, Q€ & if u(P)Ku(Q) for all u€ Z. Our
notation is motivated by the special case of stochastic dominance, in which
the elements of & are probability measures, the elements of Z are utility
functions and u(P) is the expectation of # with respect to P. With stochastic
dominance, we thus follow the common practice of simultaneously regarding
u as a function on the underlying sample space and as the function on the
space of probability measures that is induced by the expectation. Even with
stochastic dominance, however, we wish to consider u(P) when u is a
function of P not obtained as the expectation of a utility function. For
example, #(P) might be the median of P or a measure of dispersion such as
the variance. :

As usual, let equivalence P~ Q hold if P < @ and Q S P. Let strict order
P < Qhold if P < Q and not P~ Q. Hence, P < Q means u(P) < w(Q) for all
uc? and u(P)<u(Q) for some u€#%. Let the subset of dominated
elements be

dom & = {P € & | 3Q € & such that P < Q}
and let the subset of admissible elements be
admbse/:.%—dom,af.

we write adm(«, 7)) and <z when 7 is to be emphasized.

We are interested in the way adm(s/, Z) changes as & and # change.
Before describing the results, we introduce the usual closed-convergence of
subsets of a metric space; e.g., pp. 15-21 of Hildenbrand (1974). Let {.%,}
be a sequence of nonempty subsets of a metric space (X, d). We denote by
Li(2,) (resp. Ls(Z,)) the subset of all elements x in X for which there exists
a sequence {x,} with x, € %, for all n such that {x,} (resp. a subsequence of
{x,}) converges to x as n— co. Of course, Li(.%,) S Ls(Z,). We write
lim,. . %, =% or just Z,— 2 if Li(Z,) = % = Ls(%,). In general, closed-
convergence is not topological, but convergence of closed subsets of a
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compact metric space is topologizable and can be represented by the
Hausdorff metric

W2, , %, =infle > 0: F, < %5 and Z, S Zi},
where
Zi={x€EX:Iy€ F,,d(x, y) L &}

To get a feel for closed-convergence and the possible applications, suppose
Z,, n>1, and & are subsets of the real line with & =[0, 1] and Z,=
{k/n| k= 1,.., n}; then &, — 2. 7

In this paper we establish sufficient conditions for continuity, i.e., for
adm(s7,, Z,) = adm(«, %) and dom(«,, %,) —» dom(s/, %) when 7, —» &
and Z,—%. Part of the difficulty is illustrated by the fact that strict
inequality is not preserved by convergence: if {a,} and {b,} are sequence of
real numbers such that a,— a, b, — b, and a, < b, for each n, then a b but
not necessarily a < b. For this reason, we either restrict attention to finite

sets of alternatives (Section2) or use a different (new) ordering <, -

(Section 3), defined by P <, , Q if u(PY < u(Q) —c for all u€ U and u(P) <
u(Q) — d for some u € U. Of course, the case of interest is ¢ < d. For .d > 0,
Se.q Is irreflexive and, for ¢ <0 < d, 5, , is not transitive. Of course, P < Q
if and only if P <, . @ for some ¢ < 0. We introduce (¢, d)-dominance as a
technical device to obtain positive results, but we also believe it is a cdncept
of independent interest. It is related to approximate equilibria and e-cores;
e.g., Hildenbrand et al. (1973).

For brevity, many of the proofs are omitted. For additional details, see the
unabridged version, Goroff and Whitt (1977), henceforth referred to as GW.
For additional discussion, also see Whitt (1978).

2. FINITE SETS OF ALTERNATIVES

Our basic assumptions for the next two sections are:

Al. &, ,n> 1, and & are subséts of a metric space X.

A2. %, n>1, and Z are subsets of a metric space Y.

A3. Joint continuity of #(P): if u,, » u and P,— P, where 4, € %, and
P, € «, for each n, then u,(P,)— u(P).
In this section we also assume:

A4, The subsets 4, n > 1, and A are finite, each having k el«:me_nfs.;
AS5. The elements of & are Z-distinct: P4 Q for all P, Q € & with
P+ Q. ' : ' R

'
[ LT
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For part of our results, we also need to assume

A6. Ordered elements of .« do not touch: u(P) < u(Q) for all u € Z if
PSQ for all P, Q €. with P+ (.

Note that A5 and A6 apply to (&, %) but not necessarily (#,,%,), n> 1
Also note that A6 implies AS.

THEOREM 2.1. Suppose A1-AS hold, &%, 7 and #%,—~ %. Then

(a) Ls(dom(#,,%,)) S dom(#, %) and adm(«/, %) < Li(adm(+, Z,)).
(b) If Y is compact and A6 holds, then dom( , %)~ dom(s7, %) and
adm(s7,, Z,) — adm(, 7).

The proof is based on the following elemcntary properties of closed con-
vergence:

LemMmA 2.1. If &, — s and F,< ), for each n, then & —Li(%,) <
LS("Q(:: '"' ‘gn)

LemMA 2.2. If &7, and B,< 57, for all n. then the following are
equivalent: '

(i) 2,-»%and t,— F,» A —F
and
(ii) Ls(Z,) <P and Ls(&, — P, ) & — 2.

Proof of Theorem 2.1. Note that Al, A4, and &7 —waf 1mply that the -
elements of 7, and . may be relabled so that

"an_‘" {'Pnl""’ Pnk}a M {Plg ’Pk} and P —)P
Jj= 1,..., k.

(a) By Lemma 2.1, the second conclusion follows from the first. To
establish the first, suppose that {P,.} is a subsequence of a sequence {P,}
with P, € &, for ali n, P, € dom(s,., %,.) for all »’ and P,,—» P as n’ — co.
Since P,.—» P, P=P; for some j and there exists ny such that P,. =P, ,; for
all n’ >nj. Hence'forth, assume n' > ny. Since P,; € dom{(+,.,Z,.), there
exists 0, € &7, such that P,.; < Q,,. for all n’. By A4, there exists an i, i # j,
such that Q.. =P, for infinitely many »’. Hence, there is a subsequence
{@,~} of the sequence {Q,.} such that Q,.=P,.; and P,.,; < P,.; for all n".
Hence, u',,(P,,,,j) upulP,.) for all u,. € %, and ulu(Pya;) < iy (P,n;) for
some 2, € #,.. Sinee #,— #, for any u € Z, there is a sequence {u,} with
u, € %, and u, —»u. For such a ¥ and {u,}, u,.(P,.;) = u(P;) and u,.(P,.;) —
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u(P;) by A3. Hence, u(P;)<u(P;) for all u€Z. The strict inequality
Ud (P i) < uyo(P,sy) may be lost in the limit, but AS implies that u(P) <
u(Q) for some u€Z, so that P& dom(s,%), ie., Lsdom(s,,%,)=
dom(+7, 7).

(b) By Lemma 2.2, it suffices to show that Ls(dom(s7,,%,))<
dom{«,#) and Ls(adm(s,,%,)) < adm(=,%). The first inclusion has
been established in part (a). Now suppose that {P,.} is a subsequence of a
sequence {P,} with P, € «7, for all n, P, € adm(«,.,%,.) for all n’ and
P, — P. Again, we can assume P=P; and P, =P,; for all n’. Let P,
be an arbitrary eclement of " with P;#P;. Then P,;— P, Since
P,; € adm(s7,., %,.), there exists a u,. such that u,(P,,;) > u,.(P,.;) for all
n'. Since Y is compact, the sequence {u,.} has a convergent subsequence
{u,.} with limit u. Since Z, > %, u € Z. By A3, u(P;) > u(P;). By A5, either
u(P;) > u(P;) or there exists some other u, € Z such that u,(P;) > u,(P)). If
no such u, existed, then u(P;) <u(P,) for all u, which implies by A6 that
u(P;) < u(P;) for all u, which is a contradiction. Hence, P = P, € adm(+/, &),

~ so that Ls(adm(x7,, Z,)) < adm(<, %), which completes the proof. [

We now state an elementary convergence result in which only the sets %,
change. Write .#, | 2 if Z,< .2 for all n and U2, &, = 2. Write B, | @
if 2¢1.2°, where 2° =X —.%. :

THEOREM 2.2. If Al-A4 hold, &, = for all n and %, | %, then there
exists ny such that adm(%, Z,) = adm(, Z) for n > n,.

Proof [GW, Theorem 5.2(b)].

Remark. One cannot say that adm(s, %,)— adm(«/, %) if A4 is not
assumed in Theorem 2.2; Example 5.2 of GW.

We conclude this section with some elementary set inclusion relations that
complement the limit theorems. They obviously do not use the assumptions
(except A5 in part (b)).

THEOREM 2.3. (a) If & C &), then adm(s], #) 2 adm(s}, Z) M .
(b} If% <%, and AS holds for %,, then adm(%/, %) € adm(=, Z,).
Remark. The inclusion in (b) can fail if assumption A5 for %, does not

hold; p. 21 of GW. -

3. (¢, d)-DOMINANCE

We now consider more general sets of alternatives using the ordering <, 4
with ¢ < d. Recall that P S, , Q if u(P) <u(Q) —c for all u € Z and u(P) £
u(Q) —d for some uEZ.
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dom, (&, %)={PE€ & |IQ € & WithP S, ; O}
and |
adm, (&, %)= —dom,_ (&, %).

It is signiﬁcant that in this setting we no longer need assumptions A5 and
A6, but we still assume AI-A3.
For the proofs of the following results, see Section 3 of GW.

THEOREM 3.1. If. X is compact, Ls(&)c= and %, —%, then
Ls(dom, (4, #,)) € dom, (¢, 7).

It is easy to see that
Ls(admc,d “Q{.rzs ?/n)) = admc.d(ﬁa ?/)

does not hold in genefél' under the assumptions of Theorem 3.1 when
s, — 7. However, positive results can be obtained by modlfymg the
parameters ¢ and d. First, it is easy to verify
LemMA 3.1. adm, (o7, Z)cadm,, ., 4, (&, %) for all €15 &> 0.
Lemma 3.1 leads us to define
admc+,d+(“'{’ %) = n admC+£.d+ e('MB %)'
. e>0

THEOREM 3.2. If &7, —ua/ and %, %, then Ls(adm, ,(+7,,%,))<
admc-l- d+('M ?/) i

We now combine Theorenis 3.1 and 3.2 to obtain

THEOREM 3.3. If X is compact, 4,— s and %,— Z, then for any ¢,,
g, >0

adm, ,(«/, Z) < Li(adm, 4(,, Z,)) < Ls(adm, ,(+7,, Z,))
= admc+.d+(‘5{’ ?Z) & admc+ex.d+ez(‘%: ?/)

We conclude this section with an analog of Theorem 2.2.

THEOREM 3.4. If Al-A3 hold, X is compact, s, =/ for all n and
# 1%, then adm(s,%,) | adm(s7, 7).

Proof |GW, Theorem 5.2(c)].
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4, RiSK AVERSE DECISION MAKERS

We now focus on the special case of stochastic dominance for risk averse
decision markers.

Let Y be the set of continuous real-valued functions on the real line R with
convergence #4,— u being uniform convergence on every compact set. This
space is known to be metrizable; Chapter XII of Dugundji (1966). Let %, be
the subset of Y consisting of all concave nondecreasing functions. Since
utility functions are typically unique only up to a positive linear transfor—
mation, we normalize the elements of %, by requiring that #(0})=0 and
u(1)=1 for all u € %,. We thus rule out total indifference or even indif-
ference in the interval [0, 1]. We consider a subset of %, given in terms of a
(fixed) function g € %, with g*(0) > 1. (Of course the nght derlvatlve ut(x)
exists for each u € Z,.) Define

Cl. Z*={ueZ,|ut(x)< g*(x)forall x 0}.

A possible choice of g is g(x) = Mx, which can be used whenever the ch01ce
of relevant x values is bounded below.

Let X be the set of probability measures on the real line with convergence
being weak convergence, i.e., P,—P if | f dP,— | fdP for all bounded
continuous real-valued functions f; see Billingsley (1968). This space is
known to be metrizable. In order to have u(P) defined for all u € 7,
consider the subset 7% of X given in terms of the fixed function g € %, by

C2. F¢={PEX|[|h()** dP(x) < My),

where ¢ and M, are arbitrary positive constants -and

h(x) = g(x), x<0,
=min{l, xg*(O)} 0<xg 1,
= X, X > 1

Obviously, Z?® increases and .7 decreases as g(x) decreases (as g*(x)
increases). If g(x) = M, x, then C2 just means that the (1 + &)th moments are
uniformly bounded. If the space of possible outcomes is contalned in a
bounded interval, then we can have 7% = X,

THEOREM 4.1. Z¢ and 9** in.Cl and C2 are compact metric spacés
such that u,(P,)— u(P) when u,—~u and P, - P.

Progf. We first use the Arzela—Ascoli Theorem to show’that %% is
compact; p. 267 of Dugundji (1966). Note that u € Z'¢ oscillates at most.
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g7 (x A Q) in the interval [x,x -+ ¢]; so the elements of Z* are equicon-
tinuous. Also,

{u(x)|u ez} =1, x}, x 21
= [x, min{1, xg " (0)}, 0<x<1,
= [g(x), x], - x<0,

and the above sets are compact. We finally argue that Z¢ is closed in Y. It is
easy to verify that %, is closed in Y. It remains to show that if , € Z'* and
u,— u then u*(x) < g*(x) for all x 0. The latter property is equivalent to

requiring that u(x,) — u(x,) < glx,) — g(x,) for all x, < x, <0, a property-

which is clearly preserved under pointwise limits.

We now use Prohorov’s Theorem to show that 2% is compact; p. 35 of
Billingsley. By Prohorov’s Theorem, we will have shown that #°? has
compact closure if we show that %% is uniformly tight, but this follows from
a minor variant of Chebyshev’s inequality because, for any P € .9°% and any
interval of the form [—n, n},

_ ¢ f[—-n,n]"'h(x)ll+adp(x)' M,
. P([ 1, n] )‘~<.. (mm{]k(n)], [h(_n)l})1+3 £ g(fn)1+a .

To show that 7*¢ is itself closed, it is convenient to work with random
variables X,, n> 1, and X with probability laws P,, n>1, and P; let
X,— X mean convergence in law (weak convergence); p.22 of Billingsley
(1968). If X,— X, then |A(X,)|'*?— |h(X)|'* by the continuous mapping
theorem; Theorem 5.1 of Billingsley -(1968). Moreover, by Fatou
(Theorem 5.3 of Billingsley.(1968)),

E|h(X)'*4 g < lim me| X' TP M,.

Hence the law of X is in 2°¢, i.e., 9°¢ is closed.

We now verify the joint continuity. First, however, note that u(P) is
defined for every u € Z¢ and P € 9% because |u(x)| < |h(x)| for all x and
[R(P)| < M7, by Jensen’s inequality. Finally, suppose that u, —u in #*
and X, - X (P,— P) in .9°%. By Theorem 5.5 of Billingsley (1968), u,(X,) -
u(X) (convergence in law). Finally, Eu,(X,)=u,(P,)— u(P)=FEu(X)
because {u,(X,)} is uniformly integrable; p. 32 of Billingsley (1968). To see
this, note that |u,(X,)| <|2(X,)| and {#(X,)} is uniformly integrable because
sup, E I h(Xn')IH.a <M.

We now consider the relationship between #*-order and Z;-order. Let .7,
be a closed subset of .#*¢ such that u{P)} is defined for all PE€ 5, and u € %,.
It is easy to see that Z-order need not coincide with Z,-order in %3;

At mpm T O
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Example 5.1 of GW. However, we can apply Theorems 2.2, 2.3, and 3.4 to
obtain:

THEOREM 4.2. (a) adm(s/,%,) < adm(, %,) for any & € 9.
(b) If < is a finite subset of .9, and %, | #,, then there exists n, such
that adm(+/, Z,) = adm(s?, Z,) for n > n,.

() If%,1%, then adm, (o, %,) | adm_ (o, %,) for d > 0.

Proof. (a) By Theorem 2.3(b), it suffices to verify AS. If u(P,)=u(P,)
for all u € %, then mean(P,)= mean(P,). Using utility functions of the
form a + bx + exI _ , 4(x), where Iy(x) is the indicator function of the set B,
we see that [*  xdP,(x)=[' . xdPy(x) for all ¢, which implies that
P,=P,.

Remarks. (1) Similar results hold for higher-order stochastic dominance,
i.e., using % or %, instead of %,; Bawa (1975, p. 100) or Fishburn (1976).
For example, to treat %;, consider the subset of functions # in ## such that
u(x + h) — 2u(x) + u(x — h) is nondecreasing in x for all x and 4. Since this
is a closed subset of Z%, it is a compact metric space too.

(2) Similar results also hold if the underlying space of possible
outcomes is k-dimensional Euclidean space R* with the ordering
X = (X ey X)) APy V) = Y if x; <y 1 < j <&, o1 even a non-Euclidean
space; see pp. 23—24 of GW.

(3) There is a problem with the ordering <, , applied to Z,. Suppose
the space of possible outcomes is [0, 1] and P({0})= Q({0}) =0 for all P,
Q € &7 . Then, for any ¢ > 0, there exists a u € %, such that u(P) > u(@) —c.
Hence, adm, ,(+,%,) =« for all 0 < ¢ d. To see this, consider u,(x)=
min{Mx, 1}. For any P € &, u,(P)— 1 as M — co. There are two possible
resolutions to this problem. The first is to work with ¢ < 0 < d. The second is
to further restrict the set of test functions %,, for example, by bounding
u*(x) below as well as above for each x. Both methods seem reasonable and
both yield useful conclusions.

5. LOCATION-SCALE FAMILIES

One interesting possible set . of limiting alteratives in the setting of
Section 4 is a location-scale family of probability measures; see Hanoch and
Levy (1969) and Section 5 of Bawa (1975). To specify a location-scale
family, let ¥ be a c.d.f. such that 0 < ¥(x) < 1 for some x and let 4 be a
subset of R X (0, c0). Then the set & is defined in terms of c.d.f.’s as

= |F| F(x)= ¥(]x —]/s) for all x; (/, s) € 4}.
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In other words, & is the set of probability laws of sZ + ! for (I, s) € 4,
where Z is a fixed real-valued random variable with distribution Y, i.e.,
P(Z < x) = ¥(x).

It is intuitively clear that a location-scale family = is essentially two-
dimensional, so that Z,-order in % should be easy to check. To make this
precise, endow X with the weak convergence topology as in Section 4. The
following resuit is easy to verify; it is also a consequence of the convergence
of types theorem; p. 253 of Feller (1971).

THEOREM 5.1. The location-scale family ¢ in X is homeomorphic to A
in R '

COROLLARY. & is a compact metric space if and only if A is compact.

We next show how the U,-order in a location-scale family is determined
by an order of 4. We remark that we do not assume that | x* d¥ < co. The
first result follows from Bawa (1975) where a smaller set U, is considered.
However it is shown there that for location-scale families U,-order and the
U,-order coincide. Also, notice that Bawa does not require that u(O) =0and
u(l)=1.

THEOREM 5.2 (Bawa (1975)). If & is a location-scale family for which
0 < ¥(x) <1 for all x and the means exist, then F| > F, in (&( #,) if and
only if mean (F,) > mean (F,) and s, < 5,. .

Remarks. (1) It is easy to obtain corresponding characterizations when
the condition 0 < ¥(x) < 1 for all x is relaxed; Bawa (1975). Then in some
cases the condition for order requires s, > s, instead of s; <s,.

(2) Note that if F(x)}= Y[{(x — [)/s] and the variance of ¥ exists, then
variance (F,)=s? variance (¥). So, when [x?d¥ exists, the order in
Theorem 5.2 is the mean-variance rule. :

The next result gives a different way to detemine the order in = when
u=[xd¥=0. We use the quantiles of the distributions. Let F~'(p)=
inf{r| F(t) > p}, 0< p< 1.

THEOREM 5.3. Let &7 be a location-scale family for which ¥ is a c.d.f.
wtth 1#=0 and 0 < P(x) < lfor all x. Then F1 >F,in (&, %,) if and only if

l(Po),?Fz l(P_o) where ¥~ '(py) = and = Fy "(p)—Fy'(py) € < ,
F;I(Pz) ~Fy(py) for py < pa- '

Proof. The equivalence is immediate from

FE_I(P{}) =58 BF’HI(PD) +4L=1
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and
Fi'(p) —Fi'\(p) =s,[¥ 7 (p) — 7 (p0)):

Remark. 7 5-order and #%,-order need not agree in a location-scale
family; p. 28 of GW.

Additional interesting two-parameter orderings are the mean-lower-partial-
moment orderings advocated by Bawa (1975, 1978) and others. For general
c.df’s F, and F, with finite ath moments, we say F| 2, .o F, if mean
(F,) > mean (F,) and :

LPM,_(t,, F,) = j ° {to—y)* dF ()

fo
<7t y) dF(y) S LPM, (4, Fy).

We shall focus on the case a = 1, but what follows can be extended to other
a. Write m(z,) for m(t,, 1). Note that m(¢,)-ordering for alt ¢, corresponds to
#,-order; see Theorem 2 of Bawa (1975) or Theorem 2.3 of Brumelle and
Vickson (1975). Considering only one ¢, together with the mean (which can
be interpréted as f, = o0) is a natural approximation. In general there is no
simple characterization of m(t,)-order.

THEOREM 5.4. Let & be a Ilocation-scale family for which
[ x d¥P(x)=0. Then F, >, F, in & if and only if

sito+ 1) saio+ 2
L>L and i j P(x) dx < 55 j ¥(x) dx.

— 00

Proof. By a change of variables,

" ato _i sito+1
LPM(t,, F,) = J F(y)dy=s; j T W(x) dx.
— 00

— Q0

Remark. Closely related to the mean-lower-partial-moment ordering is
the generalized safety-first rule in which we minimize LPM(t,, F) over the
subset of F in % with a given mean and then take a union over all means;
Bawa (1978). In particular, let SF(¢, i) be the subset of & attaining the
minimum of LPM(¢, F) given that mean (F) = u. Let SF(«, 1) = U, SF(t, p).
Obviously, adm(s/ym(t,)) = SE(+7, £p). If min{LPM(s,, F): F€ », mean
(F)=u} is strictly increasing in g for u > y*, where y* = mean (F) for an F
attaining the minimum of LPM(z,, F) over &, then adm(s, m(z,)) =
SF(«, t,) if SF(&,¢,) is redefined as the restricted union: SF(«,¢t,)=
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Upensar SE(tg, 4). Tt is easy to see that Z;-order and Z*-order coincide in
- this special case. Moreover, if ¢, < 0 too, then m(t,)-order, Z,-order and Z5-
order all coincide. This follows from Theorems 5.2 and 5.4 because

sto-+ ! '
57! j ¥(x) dx
0 ’
is then decreasing in s. The condition that min{LPM(¢, F): F € ¢, mean
(FY=u} be strictly increasing in g for x> u* holds in a case of major
interest, namely, with portfolios, because then we are minimizing a convex
function over a convex set; Bawa {1978). However, to fit in with the rest of
this ‘section, the portfolio distributions must all belong to a single location-
scale family. In that setting, this paper adds theoretical support for the
procedure suggested by Bawa (1978).

For limit theorems in the setting of Section 2 in which 7, » & with & a
location-scale family, we still need to verify the touching condition AS6.
Sufficient conditions are contained in:

THEOREM 5.5. Let &/ be a location-scale family with 0 < ¥(x) < 1 for
all x. If mean (F|)+ mean (F,) when F,# F, in 57, then u(F,) > u(F,) for
all (integrable) u € %, when u(F,)> u(F,) for all (integrable) u € #, (A6
holds).

Proof [GW, p. 31.}

6. Two-PARAMETER ADMISSIBLE SETS

We now want to show that the two-parameter admissible sets are close
when sets of alternatives are close, where the sets of alternatives are general
sets of probability measures on the real line. To treat the three cases
discussed in Section 5, let MV, MLPM, and g—r represent the two-
parameter pairs consisting of the mean and variance, mean and lower partial
moment at some #,, and p-quantile and (p,, p,)-quantile range, respectively.
Each of these two-parameter pairs corresponds to a Z-order for a set Z
containing two elements. -

Beginning with the mean and variance, let

ngMv=

PeX:fij”dPgME )

where & and M are arbitrary positive constants and X is the space of all
probability measures on the real line stiil endowed with the topology of weak
convergence. The following parallels Theorem 4.1, both in statement and
proof. ' :
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THEOREM 6.1. 9,y is @ compact subset of the metric space X such that
mean(P,) - mean(P) and Variance(P,) — Variance(P) when P,— P in Fyy.

For the mean and lower partial moment, let

‘?MLPM =

PE ,@:j|x|?+5dp(x)‘.<\M .

where ¢ and M are arbitrary positive constants. By similar reasoning, we
have '

"THEOREM 6.2, PuLpm is a compact subset of X such that mean (P,,)-a»
mean (P) and LPM(t,, P,) > LPM(ty, P) when P,— P in Fy;pu-

It is interesting that with the quantiles no moment restrictions are needed.
A natural way to get compactness is to assume that every probability
measure is stochastically dominated above and below by fixed probability
measures, i.e., work with

FPP={PEX|Q, S, PS,0:)

where @, and Q, are fixed probability measures in X and P, <, P, means
IfdP, <[ fdP, for all bounded nondecreasing real-valued functions f. Of
course, if the set of possible outcomes is a compact interval, then we can let

F=X |

THEOREM 6.3. .7, is a compact subset of X such that F;'(py)— F~(p,)
and F;'(p,)—F; ' (p,)—= F Y(p,)—F "(p,) when F,~ F in .%,, provided
the sets {t| F(t)= p;} each have only a single element for i =0, 1, 2.

' Proof. To see that .7} has compact closure, note that

P([a, 5]) < Qu((—o0, @)) + Qs((b; 00))

for any P € .9, and apply Prohorov’s theorem; p. 36 of Billingsley (1968).
However, .7, is in fact closed because first-order stochastic dominance is a
closed partial order: P, —P,, P,,»P, and P, S, P,, for all n implies
P, <, P,; Proposition 3 of Kamae et al. (1977). Next, convergence P, — P is
equivalent to pointwise convergence F,(f)— F(f) for all ¢ which are
contmmty points of F, which in turn is equivalent to convergence F;Y(p)—

F~!(p) at all contmulty points p of F~'. Since {¢t]|F(t)= p;} has a single
element, p; is a continuity point of F~'.

Remarks. . (1) The condition on the sets {t|F(¢)= p;} in Theorem 6.3
automatically holds for all p, if F is an element of a location-scale farmly'
based on a strictly increasing ¥.
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(2) In order to compare two-parameter continuity results with the
continuity in Section 4, let the set of possible probability measures be the -
intersection of %% in Section 4 with Fay, Fyiem- OF F, here. If g(x) =M x

Jin Z'%, then constraints can be chosen so that %y € Fyem = 75

7. PORTFOLIOS

Let Z=(Z,,..., Z,) be a random vector in R* with associated joint c.d.f.
H = H(x,,..., x;). We call Z the random rate of return vector associated with
k investment opportunities. Let a portfolio be a vector = (n,,..., 7} in R,
that is, a function 7: R¥— R, defined as 7(x, ..., X;) = 7, X, + -~ T X, where
T, + -+ + m,=1 and z; > 0 for all j. The portfolio associated with a specific
random rate of return vector Z is-n(Z)=n,Z, + --- + n, Z,, which has c.d.f.

Fo()=P@(Z)<1) N o
i— f—x2—- - d . dx '
- - * S H(_"—_&) .
Ty Tk
Since 7 is a. continuous function, we ean apply the continuous mapping
theorem, Theorem 5.1 of Billingsiey (1968), to show that 7r(Z )= 7(Z) in

law for any portfolio z if Z,— Z in law. ,
Let IT be the set of all possﬂ)le portfolios, i.e.,

= {(“1""’ )i+ m=1Lm20, 1< i<k}

and II(Z) the set of all probability measures associated with a random rate
of return Z and the set II of all portfolios. It is easy to show that II(Z) is a
compact subset of the metric space X. It is significant that JI(Z)} is not a

_convex subset of X even though the set of all possible portfolios IT is a

convex subset of R*. Continuity of the admissible set for portfolios follows
from ' :

THEOREM 7.1.. If Z,— Z in law, then I(Z,) — II(Z).

Remarks. (1) This sections shows that continuity in the -sense of
Section 3 holds for portfolios. For portfolios, of course, it is necessary that
the joint distributions H,, converge. - :

"(2) As a consequence of the remark followmg Theorem 5.4, if Z,-71
in law where Z has a multivariate normal law or a multivariate stable law
such that all portfolios have the same characteristic exponent and skewness
parameter, Chapters 6 and 12 of Press (1972), thén adm, (I1(Z), m(t,)) =
adm, ,(TI(Z), %,), so that adm, ,(II(Z,), m(t,)) and adm, d(]I(Z") ?/2) tend
to be close in the sense of Theorem 3.3. - *
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8. CONCLUSIONS AND EXTENSIONS

We f' rst brleﬂy review how the various results in this paper can be
combined to at least partially answer the question originally posed. For this
purpose, let %, be the set of risk-averse utility functions defined in Section 4
and let %,,, be the two-parameter. set of evaluation functions containing the
mean and variance defined in Section 5. Let M be a location-scale family of
probability measures on the real line with uniformly bounded second
moment. By Theorem 6.2, adm(+7,, %,,y) = adn(x7;, %,). Suppose &7, ~ 5,
where ~ means approximately equal. At the outset we asked the question: is
adm(s?,, Zyy) ~ adm(;, Z,)? In this paper we have answered this question
affirmatively based on several specific interpretations for the approximation
relation ~. First, for any pair (&, %) of these &/ and Z sets we regard
adm, d(.y/ #)~adm,, 4, (', %) for appropriate ¢ and d. In other words,
we assume that the convergence involving (¢, d)-dominance in Theorem 3.3
adequately represents the relation ~. Then Theorems 3.3 and 4.1 imply that
adm(e7}, %) ~ adm(s7,, %) for any g consistent with the uniformly
bounded second moment. Next Theorems3.4 and 4.2 imply that
adm(s|, Z*¥) ~ adm(«,,%,) and adm(sfy, Z*)~ adm(s7,,%,) for
appropriate g within the class above. As a conscqu_ence, adm(;, 7,) ~

adm(s7;, %,). By Theorems 3.3 and 6.1, adm(#,, Z,y)~ adm(ss;, Zyy).
Finally, by transitivity, we have the desired relatlon adm(ﬂ’z,%mv)«f
adm(s7;, ).

The relation ~ is established in each case above by a limit theorem. When
the spaces of alternatives and evaluation functions are subsets of compact
metric spaces, the convergence can be expressed in the Hausdorfl metric A
defined in Section 1. However, from the decision making point of view, one
might wonder whether the Hausdorff metric measures distance in a way that
is consistent with preferences. We now mention one way that is does.

Consider a fixed set 2 of test functions and the pseudometric

m(P, Q)= sup |u(P) — u(Q).

In many applications m will be a metric on X, but clearly m(P, @) =0 need
not imply P = Q if the set % is small. Since order is defined on . via Z, it
is natural to define the topology on & via % too, which is what m does.
Suppose # is a compact metric space and u,(P)— u(P) whenever u, 5 u in
Z . Then it is easy to see that if the sequence {P,} converges to P in any
metric d on X Such ‘that A3 holds, then m(P,,P)—0. Thus, m is an
appropriate distance on X.

Let B<™ be the e-ball about B in X using the pseudometric m instead of
the original metric d. Let

h. (B, %) =infle > 0| 2, < F5"™ and Z, = 25"}



APPROXIMATING THE ADMISSIBLE SET 233

be the associated Hausdorff metric. We now define another distance between
sets of alternatives, which measures the dltferencc in maximum expected

utility, namely,
k(&ﬁ,%)=sugi Sup u(P)— Sup u(P).

The idea is that decision makers should like the distance k. However, it is
not difficult to see that k(S , o4) < hy(s), 4,); p. 15 of GW. Combining
the remarks above, we obtain the following justification for our mode of con-
vergence.

THEOREM 8.1. Swuppose A1-A3 hold and X and Y are compact. If
A=, then k(,, ) — 0.

The relation ~ is established in each case above by a limit theorem. The
conclusion means the adm(s7,, %) is approximately equal to adm(=/;, %,)
if o7, is close enough to =7}, but we have not specified what “closed enough”
is. For that we need estimates on the rate of convergence. We now describe a
result in this direction. Again we use the pseudometric #1 on X,

THEOREM 8.2. (a) If &, € &3, then (adm,_ s4,)° N o7, < adm, ,5.5;.
() If ol and <52, then adm,_,,; o, < (adm,.)’ <
(adm;5573) ™.

Proof [GW, p. 14].

Obviously the condition in Theorem 8.2(b) can be expressed with the
Hausdorff metric, but unfortunately the conclusion cannot.

Our application of the general continuity properties has been to second-
order stochastic dominance, where the order is determined by %Z,. We now
briefly discuss the application to first-order stochastic dominance, where the
order is determined by %, the set of all bounded nondecreasing real-valued
functions on the real-line; Lehmann (1955) and Kamae et al. 1977). Without
loss of generality, we assume the functions in %, are bounded below by zero
and above by one. Let Z" be the subset of right-continuous functions in 7.
The set Z" can be identified with the set of all (possibly defective)
distribution functions, which is known to be a compact metric space using
the Lévy metric; pp. 267, 285 of Feller (1971).

Since the elements of #Z" need not be continuous, we need a stronger

‘topology on the space X of probability measures than weak convergence.

One approach is to assume that %" is the set of all probability distributions
that are absolutely continuous with respect to Lebesque measure with a
density f which is of bounded variation, p. 99 of Royden (1968):

P =

P€X|P(A)=I f(¢) dt for all 4},
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where f= g, — g, with g, and g, both nondecreasing, right-continuous and
0 < 8,(8), g,(t) < A() for all £, [®, A(2) dtf < M. Note that the decomposition
S =g, — g, is unique for each f. Just as with Z', 7" is 4 compact metric
space with the Levy metric, here applied to g, and g, separately, i.e.,

(1 2) =2A(8&11» 821) +A(812> £22)- _

THEOREM 8.3. %" and P as defined here are compact ﬁtetric space in
which u,(P,)—u(P) if u,~uinZ" and P, > P in 5.

Proof [GW, p. 39].

Other settings for which continuity in first-order stochastic dominance
holds can be obtained from Proposition 18 on p. 232 of Royden (1968). Joint
continuity #,(P,)}— u(P) holds if P,— P setwise and u,— u pointwise for
{u,} appropriately dominated.
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