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A general procedure is presented for constructing and analyzing approximations of
dynamic programming models. The models considered are the monotone contraction opera-
tor models of Denardo (1967), which include Markov decision processes and stochastic games
with a criterion of discounted present value over an infinite horizon plus many finite-stage
dynamic programs. The approximations are typically achieved by replacing the original state
and action spaces by subsets. Tight bounds are obtained for the distances between the
optimal return function in the original model and (1) the extension of the optimal return
function in the approximate mode! and (2) the return function associated with the extension
of an optimal pohcy in the approximate model. Conditions are also given under which the
sequence of bounds associated with a sequence of approximating models converges to zero.

1. Introductioni and summary. If the state and action spaces in a dynamic
programming model are large (infinite, for example), it is often convenient to use an
approximate model in order to apply a dynamic programming algorithm to obtain an
approximate solution. A natural way to construct an approximate model is to let the
new state and action spaces be subsets of the original state and action spaces; then
define the new transition and reward structure using the transition and reward
structure of the original model. Having defined the smaller model, calculate the
optimal return function and optimal policies for the smaller model and use them to
define approximately optima! return functions and approximately optimal policies for
the original model by a straightforward extension. An interesting question in this
setting is: what desirable properties do these extensions have for the original model? It
is the purpose of this paper to partially answer this question.

We begin in §2 with a definition of the model to be studied, which is the monotone
contraction operator model of Denardo (1967). We indicate how two such models can
be compared in §3 and give tight bounds on the difference between the optima! return
function in one model and the extensions from the other model. These comparisons
can be made when the state and action spaces of one model are subsets of the
corresponding state and action spaces of the other model, but also in other circum-
stances. The special case in which the state and action spaces of one model are in fact
subsets of the state and action spaces in the other model is discussed in §4. Several
different methods for defining the transition and reward structure in the smaller
model are considered. In §5 we prove limit theorems. Under appropriate conditions, a
sequence of approximately optimal return functions generated from a sequence of
approximate models converges uniformly to the optimal return function in the
original model. In §6 we consider a special case of the monotone contraction operator
model^the standard stochastic sequential decision model. Finally, extensions are
discussed in §7. For example, corresponding results exist for finite-stage dynamic
programs, stochastic games and models with unbounded rewards.

* Received June 27, 1975; revised January 12, 1978.
AMS 1970 subject classification. Primary 90C40.
IAOR 1973 subject classification. Main: Markov decision programming. Cross references: Dynamic pro-
gramming.
Key words. Approximation, aggregation, dynamic programming, monotone contraction operators, fixed
points, bounds.
^ Partially supported by National Science Foundation Grant GK-38149 in the School of Organization and
Management, Yale University.

231
Copyright ffi 1978, The Inslilute of Management Sciences



232 WARD WHITT

An account of related work in dynamic programming appears in Hinderer (1978)
and Morin (1978). Our work was originally motivated by the discovery of an error in
the proof of the theorem in Fox (1973); a minor modification of the methods here
provides a new proof. Thomas (1977) has applied the results here to study approxima-
tions of capacity expansion models. The results here have been extended by Hinderer
(1978), who also treats finite-stage dynamic programs. For related investigations in
linear programming, see Zipkin (1977) and references there.

2. Monotone contraction operators. Consider the dynamic programming model
introduced by Denardo (1967) with the following notation. Let the state space be a
nonempty set S. For each s E S, let the action space be a nonempty set A^. Let the
policy space A be the Cartesian product of the action spaces. Each element 8 in the set
A is thought of as a stationary policy, specifying action d(s) to be taken in state s. Let
V be the set of all bounded real-valued functions on S with the supremum norm:
jt̂ ll = sup{ji;(.?)| : s G S). The essential ingredient in the model specification is the

local income function h, which assigns a real number to each triple {s, a, v) with s E S,
a G A^ and i: G K. The local income function h generates a return operator Hg on V
for each 6 G A, i.e., [//5(t.)](5) = h{s, 8{s). v). We make three basic assumptions about
the return operators Hg\

(B) Boundedness. There exist numbers K^ and A'j such that \\H^v\\ < AT, + A 2̂ll'̂ ll
for all vG V and 8 E A.

(M) Monotonicity. If v > u in V. i.e., if v{s) > u{s) for all s E S, then H/^v > HgU
in V for all 8 £ A.

(C) Contraction. For some fixed c, 0 < c < 1,

for all u,vEV and 8 G ^.
The contraction assumption implies that Hg has a unique fixed point in V for each

5 e A. The unique fixed point of H^, denoted by Vg, is called the return function
associated with policy 8. Let / denote the optimal return function., defined by f{s)
— sup{(;g(.^) : S G A}. Let f be the maximization operator on K, defined by [F(L")](5)
= sup{[//5(t-)](5) : S G A } . Perhaps the key structural property of this model is that
the operator F inherits properties (B. M, C) and h a s / as its unique fixed point. Call a
policy 8 optimal if v^ = / a n d e-optional if v^{s) > f{s) - e for all s G S.By Corollary 1
of Denardo (1967), there exists an e-optimal policy for each e > 0. We frequently
apply the following basic result, which is Theorem 1 of Denardo (1967).

THEOREM 2.1. For all S e A and v G V,

V. - V and \\f-v\\ <{l - c) v - v

PROOF.

I- 1= \ k rrrr I

3. Comparing dynamic programs. Let (S, {A^, s E S), h, c) and (5 , {/I;, i"
E S], h, c) be two dynamic programming models as defined in §2. We say that these
models are comparable and that the second is the [mage of the first if the following
mappings are defined: (1) a mapping/? of S onto S, (2) a mapping/? of A^ onto Ap^^y
for each s E 5, (3) a mapping e of S into S such that p{e[s]) = s for each SES and (4)
a mapping e, of A ,^~. into A^ such that p{e^[a}) = a for each a E A ^^y and s E S. Given
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two comparable dynamic programs, define additional mappings: (1) e : V^ V with
e{v){s) = v{p{s)) for each s E S, {2) p : V^V with p{v){h) = v{e[s]) for each sG S,
(3) e : A ^ A with e{8){s)^ e^(8[p{s)]) for each 5 G 5 and (4)£ : A_-̂ A with p{8){s)
= p[8{e[s])] for each s E S. Note that _e(5) G A for every 5 e A. Note that the
composition p " e is. the identity map on V and A, while e ° p on V and A is typically
not. The models can be said to be in one-to-one correspondence if e <> /? is in fact the
identity map; we shall not dwell on this case. The "distance" between these two
models can be expressed in terms of

K{v) = sup \h{s, a,, V) - h{p{s),p{a,),p{v))\, v E V, (3.1)

with K{v) understood to mean K(e[v]), ); G l̂ . It turns out that K(v) is much more
useful than K{v).

THEOREM 3.1. \\p{f)-f\\ < | | / - e{f)\\ < (1 - c)-'K{f).

PROOF._ The first inequality is obvious; we consider the second. Since ^ ^ < Ff = f
for each 8 e A, we can substitute e{f) for v in (3.1) to obtain

<e{f){s)+K{f)

for each s E S and 6 E A. Then, as a consequence of properties M and C plus
induction,

for all n and 8. Since \\H^v - v^\\^0 as « ^ o o ,

v,{s)<e{f){s)^{\~c)

for all 5 e A, so that

f{s)<e{f){s)^{\-c)-'K{f).

Similarly, for any e > 0, there exists a 6 G A such that

for al! s E S. Then, reasoning as above.

so that

f{s)>e{f){s)-{\-c)-'K{f).

THEOREM 3.2. For any 6 G A.

PROOF. Substituting e(5) for 8 and 0^ for v in (3.1) yields

\^ei.h)e{vi) - e{vs)\\ < K{v-^),

which implies the desired conclusion by virtue of Theorem 2.1. i
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LEMMA 3.1. For all w, A:(i7) - K{v)\ <{c + c) u - v\

PROOF. By the triangle inequality.

K{u) < sup , e{u))

l . " ) l } .

so that K{u) < c|ie(w) - e(v)\\ + K(v) + c\\u - v

COROLLARY. If 8* is an e-optimal policy in A, then

^eiS'P) < m < V,^i.y{s) + 2(1 - c)-^K{f) + {\+ C)(l - .•)" '€,

for all s E S.

PROOF. Since £-(5*) E A, v^^,^ < / . The triangle inequality plus Theorems 3.1 and
3.2 imply that

with Lemma 3.1 being used in the last step, i
REMARKS. (1) It is easy to construct examples in which the inequalities here are

equalities.
(2) Note that the bounds here involve K(v) rather than K(t:). The first part of the

proof of Theorem 3.1 can be imitated to obtain e{f){s) < f(s) + (I — c)^^K(f), but
the second part does not yield corresponding results. More generally, it is easy to

e(vxfiy orconstruct examples which show that it is not possible to bound
IKs - i-Vo(fi)ll using K{v) in (3.1). Bounds on [|/— e{f)\\ in terms of / and different
distance measure appear in §5 of Hinderer (1978).

(3) It is possible to examine the effect of replacing a good policy 5* by the "cruder"
policy e ° p{8*). If 5* is t-optimal, then v^.^^^.p) > f(s) - (I - cy\3K(f) + 6e).

4. Smaller models. We now consider the special case of two comparable models
in which S d S and (,j C A ^^ for each 5 E S. We can obtain the maps
p : A^^A ^^y e : S-*S and e^ : A^^^-^-^A, by constructing partitions of S and A^ for
each 5 G 5, and then selecting one point from each partition subset. In particular, let
(Sy, J G / ) be a partition of subsets of 5, i.e., 5 = U ._, S', and 5, n \ =(f)ifi ^ i
with no restriction on the cardinality of /. Let S = (5,, / E / } be obtained by selecting
one point from each subset in the partition of S. For each / G / and each s G 5"., let
{A-,JGJ^) be partitions of nonempty subsets of A^, where again there is no
restriction on the cardinality of the index sets 7,. We require that the cardinality of the
partitions of A^ be the same for all s G Ŝ , but it may vary with i. Moreover, thejth
subset A^ of A^^ is matched with theyth subset A^j of A^^ for all 5j, 52 E 5,. For s G S,
and each / G /, let A^ = {a^^,J G J^) be new action spaces obtained by selecting one
point a . from each subset Jl •. Let A^, A- and fl,y represent the quantities ^ , , / I , . and
a^ . associated with states 5, G S. The mappings p and e here can be thought of as
projections and extensions: {V) p : S-~* S defined by p{s) = 5, for s E 5,, (2) p : A^
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-> Ap^^^ define_d by p(a^) = a^j if s E S, and a^ E A^j, (3) e : S^ S defined by e(5,) = 5,
and (4) e^ : A^^^-^--^ A^ defined by e^(ay) = a if p{s) = s^. We have constructed the
defining mappings from partitions and identified points in each partition subset, but
we can go the other way. The mappings determine partitions and identified points in
each partition subset, e.g., S^ = p^\s,) = {s E S : pis) = s^} for .v. G S a.nd a^j = e^a^j)

To complete the definition of the smaller model, we need to define a local income
function h such that the induced operators H^ on V satisfy properties B, M, C.
Motivated by the desire to have the small model be a simple approximation for the
original model, we are led to the definition

h (s^, a-, v) = his-, a^. ^{^)) (4.1)

for all a- G A-, Sj & S, v E V. Obviously, the associated return operators H^ on V
satisfy B, M, C with a contraction modulus less than or equal to c.

There are, of course, many other possible definitions for the approximate local
income function h. For example,

sup h{s,a^,e(v))+ inf h{s,a^,e{v)) (4.2)

and

hjiS:, a-, V) ^^ I ' ' 1 ^ , fl,, £?(u)) dii.:(s, aA (4-3)

where B^ = {(s, aj) : s E 5,, a^ E A^}, (i-j is a probability measure on B.j such as the
uniform distribution (when applicable) and the appropriate measurability assumptions
are made so that the integral makes sense. Obviously (4.1) is a special case of (4.3).
Obviously A'(t;) in (3.1) as a function of h is minimized for every fixed v by (4.2). In
both (4.2) and (4.3) properties B, M, C hold with a contraction modulus less than or
equal to c.

Recall that the theorems in §3 apply to all such smaller models, but bo th /and K(v)
change from model to model, so that the bound K(f) varies in an unpredictable way.
To obtain a bound applicable to a variety of models, let

Liv) = sup sup |/?(5', a^., v) - his", a^-, v)\ (4.4)

for any u G K. As with K(v) in (3.1), we write L(i3) for L(e(v)). As an immediate
consequence of (3.1) and (4.4), we obtain

LEMMA 4.1. / /

inf h{s, a,, v) < h (s,, a,^,p(v)) < sup h(s, a,, v) (4.5)

for all i and J, then K(v) < T(v).

Note that (4.5) is satisfied for v = e(v) and the choices of ^~in (4.1)-<4.3).
REMARK. It is interesting that any of these smaller models {§, {A^, s G S], h, c)

can be embedded in the setting of the larger model by setting 8Xs) = 8[p(s)] and

h'is, 6'isy v) = h{p{sy E[p{s)lp{v))
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for any s G S, 8 E K and v E V. (Note that 8' might not be in A.) Operators H^. can
then be defined on V in the usual way by [Hl(v)](s) = h'(s, 8'{s), v). This embedding
is the symmetric extension introduced in §7 of Denardo [2]. The primed model here is
specified completely by^5" = 5, A'^ = Ap^^y for s E S, and h' above. It is elementary
that Vs' = e(vg) for al! 6 E A, cf. Theorem 5 of [2]. Hence^ the new model (S',{A'^, s
E S'], h') is a representation of the smaller model (S, {^,, / G / } , h) with the same
state space as the larger model. Moreover, the theorems in §3 comparing the models
(5, [A^, s G S], h) and (.S", {A-, i E I], h) are natural generalizations of the symmetry
theorem in §7 of [2], comparing the models (S ' , {A'^, s E S'}, h') and (S, {A^, i
El), h).

5. Limit theorems. Given a dynamic programming model as defined in §2, we
should expect that it is possible to construct a sequence of approximating smaller
models as defined in §4 such that the smaller models become better and better
approximations for the original models as the partitions associated with the smaller
models become finer and finer. In particular, we should hope that the sequences of
return functions {£„(/„)} and {v^ /§.)} generated from the sequence of smaller models
converge to the optimal return function / . The results in this section apply to al! the
!oca! income functions in (4. l)-(4.3); we only assume h has modulus c and (4.5) is
satisfied for all v E Î . In fact, it is only used for v = p{f)-

THEOREM 5.1. //(4.5) holds for v = e^ " p^if) for all n, then there exists a sequence
of finite partitions of S and A^, s E S, such that lim^^^

REMARKS. (1) The proof is constructive, but the construction is of limited practical
value because the optimal return function / is used. This does suggest a heuristic
method: first make a rough estimate o f / and then apply the construction using it. For
example, use <?„_[(/„_[) to define the partitions in the nth approximating model with

(2) By Theorem 3.1 and Lemma 4.1, Theorem 5.1 implies that j | / — ^/,(//j)ll~*O, but
this is shown directly in the proof.

The proof uses the following lemma, which applies to a single approximate model.
For any v E V, let

0}{v) = s u p ( | t ; ( / ) - v { s " ) \ : s \ s" E S . , i E I ) . (5.1)

LEMMA 5.1. Assume (4.5). / / w( / ) < e and 8' is any policy in A such that

sup{\h{s, a,,f) -f{s,)\ -.iELsE S,. a, G A,^. S'(s,) = a,^] < t,

then

(a)

\\f-p(f)\<{\+c){\-cy't.and

K/)-/ 2(1 -

PROOF OF LEMMA 5.1. (a) To simplify notation, let Sup represent the supremum
over i E I, s E S, and a^ E A^j, where S'(s^) = a^j. By (4.5) for v = e ° p(f), the triangle
inequality and the two conditions.

, «,, e o pif)) - h{s, «,,/)! + Sup\h{s. a,,f) - / ( . ,

< c\\e o p(f) -f\\ + e< cw(/) + € < (1 -̂  c)£,

which, with Theorem 2.1, implies that

' {\+ c){\ - c)- 'e .
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(b) By (4.5) and the first condition, for any 5 E A with 6(5,) = a^j.

sup his,a^,e o pif))^ sup
s^S, J e s,-

< sup fis) + C€< Pif)is,) + (1 + c)e,

SO that, by the argument used in Theorem 3.1,

vsi^d<
Since 6 was arbitrary.

On the other hand, by part (a).

(c) By the triangle inequality,

Mh-fW < l l^( /)- ^ ^/'C/)!! + We-'Pif)-f\\

PROOF OF THEOREM 5.1. Since/ E V, property B implies there exists a constant K
such that \his, 8isyf)\ < K for all 5 E 5 and 6 E A. Hence, for each « > 1, a finite
partition of nonempty subsets of the set of all state-action pairs can be constructed by
letting

Bk = {{s,a) : s E S, a E A^, k/n < his, a,f) <{k + \)/n], -oo <k < oo,

where we suppress the dependence on n. For each s E S and subset B^, define the
5-section of B,^ in the usual way as

Associate with each state s the necessarily finite set /̂  of indices for which the
5-sections are nonempty, i.e.,

h={k:iB,)^^0].

Define an equivalence relation on S by saying that 5, is equivalent to 2̂ if /̂  = I,. Let
(^i, . . . , 5^} be the finite partition of equivalence classes in S. Form the state space
S of the smaller model by selecting one point 5, from each subset Sj of this partition of
S. For eaeh / and s G 5*,, use the subcollection of fi^ subsets for k E I^ to form the
partitions of the action space A^. For example, suppose one such subcollection has
been relabeled as {S , 1 < j < k}. Then let

A^j = {aE A, : (.9, a) E B^), \ < J ^ k, s E S,.

Then select one point a^j from each subset A^j associated with the subcollection
{BJ, 1 < 7 < k). Let the projection be defined as p(s) = s- and p(aj = a^^ if s E S^
and a^ G A^j. After reintroducing n, this construction yields L^if) <«"" ' . cf. (4.4).
t o^ ( / )<«- ' , c f . (5.1), and

snp[\his, a,,f) -f(s^)\ : / G /, 5 G S,. a, E A,^, S'is,) = a,^} < n-\

where 8'is^) attains the maximum over y of his,,ajj,f), so that both conditions in
Lemma 5.1 hold with e < n^K Finally,
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In order to guarantee convergence of sequences of approximately optimal return
functions associated with a sequence of approximating finite models via Theorem 5.1,
great care must be taken in the choice of partitions. With appropriate continuity and
compactness, the approximation scheme is relatively insensitive to the specific choice
of partitions. In the following, there is only one action space A and the same partition
of A is used for all s E S.

THEOREM 5.2. / /

(i) 5 and A are compact metric spaces,
(ii) h[-, -.v) is continuous for each continuous t in V, and

(iii) for each n> \. {5,,|, . . . , S^ .̂J and {A„•^ A^^J are finite partitions of S
and A such that the subsets S^- and A^- are all contained in ^^-balls, where £„ ̂ 0 as
n^cc, then lim^^^ L^(l) = 0.

PROOF. Since /?(•, -. v) is continuous for each continuous v, F[c)[-)
= supsei//^t;(-) is continuous for each continuous t-. Hence, F maps the closed
subset of continuous functions in V into itself, so that the unique fixed point / of F is
continuous. Hence. / is uniformly continuous on S and h[-, •,f) is uniformly
continuous on SxA, i.e., for any « > 0, there exists an e ' > 0 such that if
{ 5 i , . . . , S ^ } and {A^ A^} are finite partitions of S and A such that the
diameter of each partition subset is less than e'. then

sup{/i(5, a,f)- h[s',a',f)\ : s, s' E S^,a, a' E Aj, i E I,f Ej] < e.

The rest of the proof follows the proof of Theorem 5.1. i
REMARK. By virtue of Theorem 3.1, the Corollary to Theorem 3.2 and Lemma 4.1,

the conclusion in Theorems 5.1 and 5.2 implies that | | / - e^(/,)j|-»O and | | / - v^^g.-jW
-^0 and «-*Go.

6. A stochastic sequential decision model. We now consider a special case. Let the
sets S and A^, s E S, he endowed with a-fields; let r[s, a) be a real number bounded
in absolute value by M for each s E S and a G A^; let q[- {s, a) be a subprobabiiity
measure on S for each s G S and a E A- and let the local income function be

h{s, a, v) - r{s, a) + c ( v[x)q [dx | 5, a).

where the integral is an abstract Lebesgue integral if v is measurable and an upper
integral otherwise, cf. Example 3 of §8 in Denardo (1967). Given such a stochastic
sequential decision model, consider finite or countably infinite partitions of measur-
able subsets of S and A^ for each s G S, according to the scheme of §4. (We could also
express everything in the more general setting of §3.) Let r(s^, a,.) be a real number
bounded in absolute value by M for each i, J; let q[- \ s-, a^) be a subprobabiiity
measure on S for each /,y; and let the local income function h be defined by

j j s,,
n

In order to compare the models, let

K,= sup

} \p(s),p[a^,))l (6.1)

y[v) = supi;(i) - inf 1̂ (5), v G V, and

y[v)=y[e{v)), 6EV.
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We now obtain a bound for K(v) in (3.1) using K^, K^ and y in (6.1).

c\\v K^.THEOREM 6.1. (a) For any vEV, Kiv) < ^

(b) / / q(S I s, a,) = qiS | pis), p{a,)) = 1 for all a, G A, and s E S, then

K{v)< K,+ cyiv)K^/2.

Theorem 6.1 yields an obvious bound on K(f) which does not require that we solve
either problem. For this a priori bound, let

7;= sup ?{pisypia^))- inf ?ipisypia,)y (6.2)

COROLLARY, (a) c(\ -() if) K ^
s. a,) = qiS | pis), p(a^)) = 1 for all a, G A^ and s E S, then(b)

PROOF OF THE COROLLARY, (a) Note that Ili;̂ !! < (I - c)" ' | | r (- , 5(-))ll <
(1 - c)'"'W. (b) Note that y( / ) < (1 - c)"'y?- •

In the proofs of Theorems 6.1 and 6.2 we use the fact that the upper integral
fg V dfi is countably additive as a function of B. We first state a lemma which does
not exploit partitions.

LEMMA 6.1. / /fi , and iij are two finite measures on S, then

PROOF. Observe that the upper integrals satisfy

d}Li- (vdiij<
s&S

min

— min{

— min( inf 1

To obtain the inequality in the other direction, change the subscripts of |x^ and ti-2- •
We now exploit the partitions. For this purpose, let

y^(t:) = sup v(s) - inf vis) and

s)\.

Note that w(r) = sup^ y^(t;) for w in (5.1). Let

M= 1

î ^ measures on 5.where jx, and ^2 ^^

LEMMA 6.2. (a) / / /x, and lÛ  are two finite measures on S. then

fvd^^- (v
• 'S •'S
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(b) If also jU|(S) = ii2{S), then

PROOF, (a) Apply the triangle inequality with Lemma 6.1, using the fact that
min(ji:,/} ={x-\- y '-\x -- y\)/2 in the last step.

(b) Apply the proof of Lemma 6.1 on the partition subsets to obtain

f ^ I C • f J \
I i; du.2— 2^\ \ ^ du, — \ V dn21

- min

s u p v{s) - in f v{s)\

})supu(.y)

{ l i i . l ^2{n)]) {)

M5J) + y{v)KJ2.
n

Since y^{v) < w(f) and min{x,/} = {x + y - \x -y\)/2, the second inequality in (b)
holds too. I

PROOF OF THEOREM 6.1. (a) Note that

\h{s,8{s),e{v))-^h{p{s),p[8{s)lv)\

(e{v){x)q{dx\s,d{s))-(e{v){x)q{dx \p{s),p[8{s)])K+c

by Lemma 6.2(a), since <^{c(v)) = 0.
(b) Apply Lemma 6.2(b) above, i
It is easy to construct examples in which all the inequalities here are equalities.

Even though the bounds in Theorems 3.2 and 6.1 are tight, combining them does not
yield a tight bound for \\v^0-) - e{Vg)\\. The extra structure of the stochastic sequential
decision model yields a better bound. Suppose y^= M^- m^, where

^ < r{s, a^) < M,, for al! s G S,a^

^ < r{p{s), p{a^)) < M^, for all s G S.a^ (6.4)

T H E O R E M 6 . 2 . If q(S \ s, 8{s)) = q{S \ p{s), p[8{s)]) = 1 for all s G S and SEX

then
or all 8 G I,(a) lk,(5) - e{vM <a = [l-c{\- KJDY \K, + c(l - c) J

and
(b) /(;'(^)) < /(^) + « lor all s G S.

PROOF, (a) We use the following extension of Lemma 6.1 for measures /x, and 1X2
and bounded functions v-^ and Cj:

I \

i/fi2< supi ) , ( .v ) - inf t,-2(5)

min

'mf
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Moreover, if Uj is constant, then

Applying these inequalities on the partition subsets, we obtain

,- - / c,\ y>f .!^-\i c\ — t-{ P £>( Si \( vW -U ^ I t' - (

241

l 8[p[s)]) - c

s, e[8){s))

,} \p[s), 8[p[s)])

:,(5,(5)(l - Q[s, 6 )

-cmle[6i)[s){l-Q[s,8)),

where

— I — T "

Since Q[s, 8) > I - KJ2,

( l - c ) " ' m , <

s,] \p[s),

1= 1

s, e[8)[s)) -

and e[vi)[s)<{\ -

Similarly, e[v'^)[s) — v^^3^j[s) has the same upper bound, so that

(b) For any e > 0, there is a 6 E A such that Vg[p[s)) > f[p[s)) — €. Then

f[p{s)) < H{P{S)) + € < tV(5)(^) + « + £ < f[s) + « + £. I

REMARKS. It is easy to construct an example showing that the bound in Theorem
6.2 is tight. We have not yet determined a tight upper bound for f[s) - f[p(s)).

7. Extensions. (1) The contraction assumption (C) can be replaced by the A'-
stage contraction assumption, cf. §5 of Denardo (1967). For example, suppose

HgU - Hgv\\ < m||w - i;|| a n d Hl'u < c u - v for all A, where c < 1
but not necessarily m̂ < 1; then the bound in Theorem 3.1 becomes (1 + m + • • • +
m'^~')(l — c)~^K[f). This extension includes many A'-stage dynamic programs (usu-
ally with m = 1 and c = 0). The representation of finite-stage dynamic programs as
monotone contraction operator models is facilitated by including the stage as part of
the state description. For example, after this modification, there is no loss of
generality in considering only stationary policies. Approximations of finite-stage
dynamic programs are studied directly by Hinderer (1978).

(2) Corresponding theorems hold for the case of unbounded rewards, cf. Wessels
(1977). For example, suppose b : S-^R, jx : S-*[0, oo).

= iv sup\[v[s)- b[s)]/ii[s)\< oo
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and

d{u, v) = sup\[u{s) - v{s)]/{i{s)\, u,vEV.
sES

Suppose the operators H^ satisfy properties (B. M, C) on the complete metric space
(V, d). Let V and d be defined just as V, d with 5 instead of S and suppose that
e(v) E V for all v E V. Let the operators Hg satisfy properties (B, M, C) on (V, d).
Then Theorem 3.1 extends: d{f, e{f)) < (1 - cy^K{f), where

K{v)= sup

(3) The results here extend to zero-sum stochastic games, cf. Example 2 of Denardo
(1967), which is very important because with randomized strategies the policy spaces
are invariably large. Theorem 3.1 remains valid if / and / represent the value of the
stochastic games and

K{v) = sup \h{s. 8{sl y{sl e{v)) - h{p{s),p[8{.s)lp[y{s)],
S

yer

where 8{s) and y{s) {8{s) and 'y(^) are the randomized policies of players I and Ii in
the original (small) model,

h{s, 8{s), y{s), v)= ( ( h{s, a, b, v)S{s){da)y(s){db),
•'A/B,

A^ and B^ are the action spaces for players I and II in state s and

h[s, a, b, v) = r{s, a, b) + c j v(x)q(dx \ s, a, b).

To see how the analogue of Theorem 3.1 can be proved, suppose 5* and f* are
optimal policies for players I and I! in the small model. Then, for any 5 G A,

= h{s, 5(5), e(y*), e(f~))

so that

Similarly, for any y ET,

The convergence results can be used to prove that a stochastic game with large state
and action spaces has a value. Approximations of noncooperative sequential games
are discussed in Whitt (1977).

(4) Our purpose was to define and analyze deliberate approximations, but the
second model could arise in other ways, for example, because of lack of information.
When the system is in state s, the decision maker may only know that the system is in
some subset p(s) of S or the decision maker may only have some j^robability
distribution p(s) on the set S of possible states. The distance ||/— e(f)\\ may be
considered the value of information in this context.

(5) The approach in the proof of Theorem 5.1 yields a new proof of a Dubins-
Savage measurable selection theorem, cf. §9 of Wagner (1977) and Whitt (1976).
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