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APPROXIMATIONS OF DYNAMIC PROGRAMS, 11*§

WARD WHITT}
Yale University and Bell Laboratories

This paper extends a procedure for approximating dynamic programs due to Fox (1971).
Here, the monotone contraction operator model of Denardo (1967) is approximated by
replacing the state space with a subset and defining two approximate local income functions
so that the two associated approximate optimal return functions serve as lower and upper
bounds for the optimal return function in the original model. Conditions are also given
1mply1ng convergence of a sequence of approximate optimal return functlons to the optimal
return function in the original model. -

1. Introduction and summary. In [8] we introduced a general framework for
constructing and analyzing approximations of dynamic programming models. The
purpose of this paper is to discuss a different approach, which is an extension of Fox
(1971). As in [8], the model is the monotone contraction operator model of Denardo
(1967) which includes, for example, Markov decision models with a criterion of
discounted present value over an infinite horizon. The approximation is constructed
by making the new state space a subset of the original state space. Associated with the
smaller state space, we define two approximating local income functions in such a
way that the two approximate optimal return functions f~ and f* are lower and
upper bounds for the original optimal return function f, i.e., f~ < f< f*. Moreover,
this can be done in such a way that if the approximating state space is enlarged, the
new bounds are always at least as good as the old ones, if not better. Finally, we
present conditions under which the sequences of optimal return functions associated
with a sequence of _approximating modeis converge to the optlmal return function in
the original model. :

Our approximation scheme uses a fixed function to characterize future returns
outside the designated subset. The goal is to obtain good decisions for many states
inside the subset without examining the behavior outside the subset in detail. We
actually discuss three approximation schemes which differ only in the function or
functions we use outside the designated subset. Theorems 8-10-apply:to an arbitrary’
function; Theorems 1 and 2 apply to two functions e and g with e < f< g; and
Theorems 3-7 apply to two functions e and g satisfying an extra- monotonicity
condition, namely, (3.3).

It turns out that the lower approximation is better behaved than the upper in two
1mportant ways. First, with our construction, any policy 8* for the original problem
which“is ‘an extension of a policy attaining the supremum f over the - des1gnated
subset 'in’ the lower approx1mate model has a return function ;. satlsfymg f< va.
< f<'f*; for the upper approximate model we can say only that ‘/s? <f<fT,
Corollary to Theorem 3. Second, it is easier to conclude that a sequence of lower
bounds { f,”, k > 1} converges to f than a sequence of upper bounds { fk k> 1}, cf.
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§4. However, both functions are important because together they provide a measure
of the error.

Just as with [8], the results here extend to N-stage contraction models, so that
corresponding results exist for finite-stage models with nonstationary strategies.

The paper is organized as follows. First, the monotone contraction operator model
is defined in §2. Two-sided bounds are established in §3; limit theorems are proved in
§4; and a few concluding remarks are made in §5.

Finally, we mention that related research has recently been reported by White
(1977, 1978). He establishes a priori bounds for both Fox’s (1971) approximation and
a successive approximation scheme similar to the one we suggest in Remark 5.1.

2. Monotone contraction operators. We now introduce the monotone contraction
operator model of Denardo (1967), modified to allow for unbounded rewards. For
further discussion of the treatment of unbounded rewards, see Van Nunen and
Wessels (1977) and references there. Let the state space S be a nonempty set. For each
s € S, let the action space be a nonempty. set A. Let the policy space A be the
Cartesian product of the action spaces. Let a : S—>(0 o) and 8:S—R be gnven'
functions. Let the space V of potential return functions be : :

V= {v: S—>R|sup \a(s)[v(s)~B(s)J|A< oo}. o 2.hH

Let |o]| = sup{|v(s)|: s € S} for any v € RS, where RS is the set of all functlons
mapping S into R. Let

d(”l, ;) = {la(v; = v))l| = sup{la(s)(vl(s) —0y(s)) =5 € S} (2'2)
for v, v, € V. This definition makes (¥, d) a complete metric space. Let a Jocal
income function h(s, a, v) be defined by assigning a real number to each triple (s, a; v)
with s € S, a € 4; and v € V. For each § €A, let H; be a mapping of V into RS
defined by (Hav)(s) = h(s, §(s), v). Assume that the functions H,. satisfy the basic
three properties: o o ,

‘(B) There exist constants K, and K, such that-

_ Ha(Hav—ﬂ)H K|+K2“"(”“.B)”
foralld €eAandvEV. : ' .
M) If v, < v, in V, ie, if v,(s) < v,(s) for all s € S, Hyv, < Hyv, for all § € A.
(C) Foraflxedc 0<c<1 _ N
d(Hsvy, Hs”z) cd(v), ;)
forall § €A and v, 0, E V.

Property (B) implies that the range of Hy and the ranges of associated extremal - -

operators are contained in V. Property (C) implies that Hy has a unique fixed point,
say v;, in V for each & € A. The function v, is called the return function for policy &.
Let f(s) = sup{vs(s) : 8 € Ay. "The function f is called the maximal return functzon Let
the maximal operator F be defined as (Fv)(s) = sup{(Hau)(s) 8 €A). As in [1], the
operator F inherits properties B M, C, and has f as its unlque fixed point. Parallelmg
Theorem 1 of [1], we have :

d(vs, v) <(1.— c)_"'_-'d(Hau, v) . fo_r 3118 EA. ' (23) '

3. Two-snded bounds. Assurné that. we have found functions e and g in % such.’

that e< f< g We shall use the functions e and g together with subsets. SA of the -~

state space S in order to gererate approxxmate models. Let y(¢). vy, S ) be a functlon ’
in V defmed by Co : :
v,(s). SE Sk, .

.Y(vi~_'va%'Sk.)(3.)-:"= { o(s). SES-S, (-3.1)_._.
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forany vy, t; € V. Forany v € V, let v, = (v, g. S,) and ¢, = y(¢, e, S,). For each
k and § € 4, define new return operators H,; and H,; on V by

Hiv=(Hyel), and Hgo = (Hgl), - (3.2)

Also define associated maximal operators F,*, defined by F*c = (Fr ) or, equiva-
lently, by F*v =sup{ Hjt, 8 € A}. This is a minor modification of the scheme on
page 666 of Fox (1971). While H,; is defined on V with state space S, it is obviously
equivalent to a monotone contraction operator model with state space S,. It is easy to
verify that H,; and H,; are operators on V satisfying B, M, C for each k and § € A.
Let vg5, 05, fi© and f,_ denote the fixed points of H,3, H, F," and F,, respectively.
Just as with f, £~ = sup{uvs, § € A}. To avoid confusion, let (f); = Y(f, g,Sk)-

Tueorem l. f < f< f'.

Proor. Consider only +. By property (M), F,'f=(Ff.")e > (FNi =N > f.
By property (M) plus induction, F,*"f > f for all n > 1. Since d(F.", f")—0 as
n—-o, fr >f

The quality of the bounds obviously depends on the functions e and g. Bounds for
Theorem 1 are always available using K, from condition (B):

THEOREM 2. Forall§ €A, B—(1—¢) 'Kia '< ;< B+ (1 —¢) 'Kja™ .

PrOOF. Using the triangle inequality, (C) and (B) with v = 8, we obtain

la(H38 = B < 3 lla(HB ~ Hi'8)I

< S a(HyB - Bl <(1- ) 'K,
k=1

so that la(v; — B)|| < (1 —¢) 'K, &

ReMARK. The standard Markov decision model with discounting in which all
one-step rewards are bounded by K, is covered by Theorem 2 with a(s)=1 and
B(s)=0forall s € S.

To get monotone approximations, we now assume the functions e and g satisfy

Hje > e for some §, €A and Hzg < gforall § €A. (3.3)

Such functions e and g exist because v, and f are possible assignments, but we are not
providing a procedure for finding them. Let A, = {§ €A : Hge > e}. Let S, and S, be
subsets of S with S, C S,.

LEMMA 1. Let e and g be given satisfying (3.3).
(a) ForanyvE€ V withv < gand § €A, Hyyv < Hjju < g.
(b) For any v € V withv > eand 8§ €A, e < H 5o < Hyv.

PrROOF. (a) Since v < g, v, < v, < g. By (M), Hyo, < Hyv| < Hsg < g.
Therefore, :

Hyv = (H502+)2+ <(H<s’31+)|+ = HI-EDA
and ’

H1§U=(Hsvl+)|+<(Hsgl+);+=(Hesg)|+< g =g

(b) The reasoning is similar. 8
Let (N = v(f, & S fee = sup{vg, 8 €A,} and f, = sup{v,, § €4,).
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THEOREM 3. Let e and g satisfy (3.3).

(a) Foreach 8§ €EA, v5< vy < v5< g

(b) For each § €A,, e < v15 < vy < ¢,

@e<fe<fa<f<f<f<fir<g

PROOF. (a) By Lenima 1. stvw Husbus v 5 By Property (M) and 1nductlon
Hy"ols < u,s forall n. Since d(H25 ¢, t55)—0 as n— oo, Uy < 1,15 Similarly, Hjv;
= (Hy(vy); )2 > (Hyog)y = (vs); > ts, s0 that ¢ > ¢s. Finally, H ;g < g by Lemma
1, so that ;5 < g by the same reasoning.

REMARK. If e= —(1—-9¢) lK and g=(1 - ¢)"'K, in the standard ‘Markovian
decision model with discounting in which all one-step rewards are bounded by K,
(a(s) =1 and B(s) = 0 for all 5), then Hze > e and Hsg < g for all § € 4, so that the
functions e and g satisfy (3.3) with A, = A, '

Suppose 8, and §," are policies in A which are extensions of e- optlmal policies in
the lower and upper approximate models with respect to S, which exist by Corollary
1 of [1] extended to the case of unbounded rewards. Obviously vge > e if 8 €4, by
(3.3). However, note that v5+(s) > fiH(s) — €/ a(s) for all s € S, need not hold, but

COROLLARY.. Assume (3.3). If §; €4,, then -

£ ()= o/a(s) < o5 (5) < f(5) < fit (), se'sk.

4. Convergence Suppose that. we have functions e and g satrsfymg (3 3) and a
sequence { Sy, k > 1} of subsets of S such that S, C S, for all X and Ur=iS, = S.
From Theorem. 3, it follows immediately that the sequences { v, k > 1} (for 8 €4,)
‘and {ovg, k> 1} converge pointwise on S monotonically to limits us and v;" such
that e < v, < v; < v, < g However, we need not have ¢; = v; = vy ; see the first
example on page 669 of Fox [2]

"THEOREM 4. If h(s, 8(s), v,)— h(s, 8(s), v) whenever v, — U pointwise monotomcally
zthhenvs = 05 and, ifé6 €4, v5 = :

PROOF. Con51der only + . It suffices to show that the unique fixed point of Hy is

. Since Uks = H3005 =(Hs05)8"» Uy (5) = h(s, 8(s), vy) for.s € S,. For any fixed s,
vks(s)—> u,S F(5) monotonlcally By the continuity condmon h(s 8(s) vks)—>
h(s, 8(s), vy, ). Hence, Hyvy" = v, as desired. : '

ReMARks. The first example on page 669 of [2] illustrates . how the cont1nu1ty
condition in Theorem 4 can fail to hold. Notice that this condition is always satisfied
in the affine case (Markov decision model), see Lemma 3 of [2]. The monotonicity:is
important for treating unbounded rewards.

Let f~ and f * be the pointwise-convergent 11m1ts of { fk } and ( fk

THEOREM 5. Under the condrttons of Theorem 4, f f

PrOOF. For any s € S and € >0, there exists a- 8* e A such that us.(s) fe(s) =€
By Theorem 3

f(s) fke(s) Uk;;(?)- vge(8) — |'/k5~(3) b.s'(f).lA
> f(5) = €~ fonar(s) '/s-(s)’ -

" By Theorem 4, |vk,s.(s) vs.(s)| N as k — o0, s0 that lim sup,\__wlfe(s) f,“, (s)|

Since € and s were arbitrary, the proof is complete. 1 -

REMARK Obv1ously Theorem 5 is ‘most useful when f, = f, Wthh certamly occurs_ =

when A, = A: See the remark. following Theorem 3. :
The second example on page 669 of [2] shows that fr = f need not hold wlthout -
extra condmons Extra condltrons are contained in the easrly ver1f1ed ' P
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THEOREM 6. If v5(s)— vs(s) as k — oo uniformly in & for § € A, then f* (s) = f(s).

THeEOREM 7. If, in addition to the condition of Theorem 4, A_ is a compact topological
space and h(s, a, v) is a continuous function of a. then v ks(s)—’ t5(S8) uniformly in 9,
8 € A;-and vi5(s)— vs(s) uniformly in 8. 8 € A,.

ProOF. By Theorem 4 and its proof, for all k sufficiently large, vg(s) — {,-5(5)
s = h(s, 8(s), ves) — h(s, 8(s), v, ) >0 monotonically. By Tychonoff’s theorem. page

a 166 of Royden (1968), A is compact. By Dini's theorem, page 162 of Royden (1968),
and the new conditions, the convergence is uniform in §. 1
n S A stronger mode of convergence than pointwise convergence follows from stronger
! ‘l conditions. What is more important, it is no longer necessary for the functions e and g
¢ . to-satisfy (3.3) or even e < f < g. Any function w in V can be used outside of S,. We
(& use 4, (V),, etc. without + or — to indicate that w is used outside S,. Let
n ' :
y w(v, 8, k) = sup {a(s)lA(s. 3(s). (©)¢) = A(s, 3(s), o)l}- (4.1)
. s k : R
y
THEOREM 8. If w(v, §, k) >0 as k— oo for each v € V, then d(uv,4. (vs),) — 0.
Proor. Consider only +. By (2.3),
d(vis» (vs),) <(1 — C)—ld(Hks(vs)k.a (05).):
: <10 (v, 8. k).
) : since H 5 ()i = (Hg(05)i)i- B :
h ~ ReMaRrRk. Obviously d(v,,, t5)—0 is not possible.
' ~ . To obtain corresponding results for the optimal return function, let
w(v, k) = sup w(v, 8, k). . A L (42)
v : . ] dea . i
" THEOREM 9. If w(v, k)= 0 as k — oo, then d(f,, (/) )—0. .
$ ' . . * "PROOF. As in the proof of Theorem 8, o
, | | d(fe ()6) = d( 3P vigs SUP (%))
y - ' o SUP (45, (l’&)k) "*’(" k). ®
1 R
s ' N With some extra conditions, there is pointwise convergence of v, to vs for- each 6
~and pointwise convergence of f, to f, using the arbitrary fixed function w outsl_de S,
for each k. _ : '
. Tueorem 10. (a) If
, ‘ : (i) S is countable, v
_ l (i). Hy maps V) into itself, where '
S ;.'V—wEVy@)um )

“and yl(s) yz(s) are real-valuea’ functtons and S N
(m) (s, 8(s), v )—> h(s, 8(s), v) as n—> oo for each s E S ¢ E Vo ana’ sequence
_ {v n>1}in V, convergmg pointwise 1o ¢, s 1
Athen Ugs converges pointwise to vs as k-— co. ) e ‘
(b). If, in “addition, (ii) holds for all § € A and the conwrgeh‘c m (111) is untform in 6
then f, converges pomthse to fas k— 0.

PROOI’- (a) By (1) and (n) V w1th the product topolcgy Isa eompact metrlc space
By (i), y € V), forall k. Hence every subsequence of: fe,‘s k > 1} hasa convergent

TS S
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subsequence. Let v, be the limit of some convergent subsequence. By the continuity
condition (iii), for k sufficiently large (so that s € S,), v,(s) = h(s, 8(s). Lk,,)
— h(s, 8(5), vy) as k — oo, while v,5(s) — vy(s) as kK — o0, so that Hyv, = v,. Since v;.1s
the unique fixed point of Hy in ¥}, t4 = v,. Since all convergent subsequences of {v,,}
have the same limit, the sequence {v,,} itself converges to this limit.

(b) Note that

| fe(s) = ()1 = | sup v (s) — sup vg(s)]
_ sea s€A
< Sup |05 (5) = v, (s)|
_ s€a
o= sup [h(s, 8(s), vgs) — h(s, 8(s). v5)|—>0. a

ReEMARrks. (1) Condition (ii) of Theorem 10 holds for the discounted Markov
decision problem with

Vo= {UE Vifla(w=B)I<(1—¢) (M, + Mz)}
if .
la(rs — (1= B < My, [la(qsB — B < M

and
lagsa || = sup a(s) 2 (l/a(J))qs(J )| <e<,

where 7; is the one-step reward function and ¢; is the Markov transition kernel, cf.
Lemma 3.2.2 of [4] or Theorem 6.1 of [9].

(2) For the discounted Markov decision problem above with «(s) = 1 and B(s)=0
for all s, condition (iii) of Theorem 10 always holds. Convergence uniformly i_ﬁ-& for
Theorem 10(b) obviously holds if

lim, sup 2 gs(j | 5) = (4.3)

nm—o0

In this case, pointwise convergence of f, to f has also been established under stronger
conditions by D. J. White (1977, 1978) by different methods.

5. Closing remarks. (1) A promising approach is to combine the technique
here with successive approximations For example, we could calculate
FY™F ... F'"ig, where F. v= sup{H,s v : 8 €A} and 7, is a positive mteger or
a positive mteger -valued stoppmg time, as described in [4]. Obviously, f," < F 1+"g
Kgand ff < F ™. F"Mg < F 1. . F'Mg. :

(2) We could also work with subsets of the action spaces, but then only the
inequalities for the lower approximation are valid.

(3) This approximation scheme applies to two-person zero-sum stochastic games,
just as indicated in §V of Fox (1971). Let the local income function A(s, 6(s) &(s) v)

= [[h(s, ay, ay, 0)d(s)(da,)&(s)(da,), where 8(s) and £(s), are probability measures. on.

action- spaces A,(s) and A,(s). The associated return operator is [Hsgv](s) -

= h(s, 8(s), &(s), v). If the initial bounds e and g satisfy Hy,g < g and H.e > e for
all§and £ thene < f,” < f< f;* < g asin Theorem 3, where f is the value. In order
toget f~ = f=f*, it suffices to have 4,(s) and 4,,(s) be compact metric spaces and
h(s, a,, a,, v) continuous in (a,, a,). Then, by basic weak convergence theory, the

_spaces of probability measures on A4,(s) and 4,,(s) with the topology of w_eak'
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ity convergence are metrizable as compact metric spaces and h(s, 8,(s), §,(s), v)
;ks) — h(s, 8(s), &(s), v) whenever §,(s) = (s) and §,(s) > &(s).

518 Acknowledgments. I am grateful to the referees for their helpful comments and D.
ko) J. White for sending me his unpublished papers. Theorem 10 here was added after

seeing these papers.

References

[1] Denardo, E. V. (1967). Contraction Mappings in the Theory Underlying Dynamic Programming.

~ SIAM Rev. 9 165-177. _

[2] Fox, B. L. (1971). Finite-state Approximations to Denumerable-state Dynamic Programs. J: Math.

_ Anral. Appl. 34 665-670. '

(31 Royden, H. L. (1968). Real Analysis, second edmon MacMillan, London.

[4] Van Nunen, J. A. E. E. (1976). Contracting Markov Decision Processes. Mathematlcal Centre Tract No.
71, Amsterdam.

and Wessels, J. (1977). Markov Decision Processes with Unbounded Rewards. Markov
Decision Theory, Tums H. and Wessels L (eds) Mathematical Centre Tract No. 93, Amsterdam,

1-24.

[6] White, D. J. (1977). Flmte State Approximations for Denumerable State Infinite Horizon Discounted
Markov Decision Processes. Note Number 43, Department of Decision Theory, University of
Manchester.

. (1978). Finite State Approximations for Denumerable State Infinite Horizon Discounted
Markov Decision Processes: The Method of Successive Approximations. Note Number 46, De-
partment of Decision Theory, University of Manchester.

[8] Whitt; W. (1978).. Approximaticas of Dynamic Programs, 1. Marh. Oper Res. 3 231-243.

[9} . (1978a). . Representation and Approximation of Noncooperative: Sequential Games. - Bell
La'boratories, Holmdel, New Jersey.

*

[€0)4 : [5]

(71

BELL LABORATORIES, HOLMDEL, NEW JERSEY 07733

ger

jue
ite
or

iy

the
es, b

on .
for [
ler
nd
‘he




