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Approximations for Departure Processes and
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Methods are developed for approximately characterizing the departure process from a
single-server queue and calculating approximate congestion measures for several single-
server queues in series. These methods are medifications of the previously described
asymptotic method and stationary-interval method for approximating a stochastic point
process. The approximations are evaluated by comparing approximate congestion meas-
ures for queues in series with previous simulation results.

Two basic methods for approximating a general stochastic point process by a renewal
process partially characterized by two or more parameters are described in Whitt {26]:
the stationary-interval method and the asymptotic method. With the stationary-interval
methed, the renewal-interval distribution is chosen to match the distribution of the
stationary interval between points in the process being approximated. If the parameters
partially characterizing the approximating renewal process are the first X moments of
the renewal interval, then we use the first kK moments of the stationary interval in the
process being approximated, or approximations for these moments. The parameters
could also be other characteristics of the renewal-interval distribution such as percen-
tiles. With whatever parameters we use, the idea is to match the renewal-interval
distribution and the stationary-interval distribution. The same idea also applies with
other approximating processes such as batch-Poisson processes or switched-Poisson
processes.

The stationary-interval method has a potentially serious drawback, however. It does
not take account of the dependence among successive intervals. The asymptotic method
is an attempt to capture this dependence. The asymptotic method chooses the parameters
of the renewal interval (or other approximating process) to match the long-run behavior
of the process being approximated. For example, if the parameters are the first two
moments of the renewal interval, they are chosen so that the renewal counting process
has the same two normalization constants in its central limit theorem as the point
process being approximated. For stationary processes, the asymptotic method obviously
yields the same intensity (the reciprocal of the mean of the renewal interval) as the
stationary-interval method, but the second moments of the approximating renewal
interval can be very different. An essential idea behind the asymptotic method is that
renewal processes can be used as approximating processes without ignoring the de-
pendence among the intervals in the process being approximated.

These basic methods were presented as building blocks to develop reﬁned hybnd
approximations. For superposition arrival processes to single-server queues, refined

‘hybrid procedures were developed and tested by Albin [1,2]. Albin obtzined significant

improvements over either basic procedure alone by letting the squared coefficient of
variation (variance divided by the square of the mean) of the approximating renewal
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interval be a convex combination of the squared coefficients of variation cbtained from
the two basic methods. Based on theoretical considerations and extensive simulation
experiments, weighting functions were derived that depend on the number of processes
superposed, the rates of these processes, and the traffic intensity of the single-server
queue. The appropriate approximation depends on the context, so that it is natural to
use the traffic intensity of the queue to refine the approximation. In fact, another
procedure is to generate the entire approximation by looking at the impact of the given
point process on a test queueing system [25,27].

A major goal in this work has been to develop approximations for non-Markovian
networks of queues, having non-Poisson arrival processes, nonexponential service-
time distributions, and non-product-form equilibrium distributions. The flows in such
a network are complicated stochastic point processes, obtained by applying the op-
erations of superposition (merging), partition (splitting or thinning), and departure to
other point processes. (Even in Markovian networks, the flows are typically compli-
cated [19].) The superposition operation is now relatively well understood due to Albin
[1,2] and the partition operation, at least based on independent trials, is relatively well
understood because a split renewal process is again a renewal process. However, the
departure operation is not yet well understood. it is of course well known that, except
in special cases, the departure process from a GL/G/m queue (with renewai arrival
process independent of independent and identically distributed (i.1.d.) service times)
is not a renewal process ([3] and references therein). As far as exact analytic results
are concerned, for the most part, departure processes are intractable.

The purpose of this article is to investigate methods for approximating departure
processes. In this article, we show how the two basic methods can be applied for this
purpose. Since we are primarily interested in the departure process from a queue as
an arrival process to another queue, we evaluate the approximations for departure
processes by comparing approximate congestion measures (e.g., the expected waiting
time) at the next queue with simulation results. The approximate congestion measures
at the next queue are obtained by combining the approximations for departure processes
with approximate congestion measures that depend on the arrival process only through
the characterizing parameters.

The resuits here have been combined with the previous results for superposition
processes to generate approximations for networks of queues. In particular, a software
package called QNA (Queueing Network Analyzer) has been developed to calculate
approximate congestion measures for open non-Markovian networks of queunes [28,29].
The approach in QNA is to analyze all the queues in the network separately as
Gl/G/m queues. in which both the service-time distribution and the interarrival-time
distribution are partially characterized by their first two moments. The first moments
of the interarrival-time distributions are obtained from the familiar traffic rate equations
and the second moments are obtained from a similar system of lincar equatmns based
on the apprommatlons
 The results in this article are also being applied to analyze various de51gn problems
for queues in series. For example, in Whitt [30] we develop heuristic principles for
ordering several nonexponential single-server queues in series so as to minimize the
expected equilibrium sojourn time.

The applications just mentioned should make the advantages of heuristic analytic
approximations over simulation obvious. For example, with the software package QNA
we can quickly and easily analyze a network with 100 nodes, but it would take a very



Whitt: Departure Processes and Queues 501

long simulation run to get good estimates of the equilibrinm distributions. To get
comparable accuracy with n nodes, roughly # times as many events (service comple-
tions) must be simulated as with one node. In fact, even for the relatively small
networks considered here to test the approximations, e.g., with two nodes, the statistical
accuracy of the simulation results is not especially good.: Moreover, QNA can easily
be run many times to study the impact of alternate designs. In some cases, as in
arranging the queues in series, closed-form approximation formulas are available to
provide insight.

Even though approximation has important advantages over simulation, both are
clearly important. It is not either/or. Exact analysis, approximation, and simulation
all should contribute significantly to our understanding of complex systems such as
networks of queues. Here we use exact analytic results, including various limit theo-
rems, together with simutation to develop the heuristic approximations. In applications,
heuristic approximations are especially valuable in the formative stages of a project,
while simulation becomes more important in fine tuning. In applications, the heuristic
approximations may help identify the appropriate models to simulate. In turn, simu-
lations certainly piay a vital role in developing the heuristic approximations.

In this article we see what the basic methods yield for departure processes. For the
stationary-interval method, we consider the departure process from the standard
Gl/G/ 1 queue having independent sequences of i.i.d. interarrival times and service
times. We .present two different applications of the stationary-interval method, one
based on an analysis of the system in equilibrium at an arbitrary time and the other
based on Marshall’s | 18] characterization of the stationary departure interval in terms
of the waiting time distribution. We show how previous heuristic approximations of
Sevcik et al. [22] and Gelenbe and Mitrani [1!] fit into this framework.

For the asymptotic method, we consider more general models. We show in consid-
erable generality that the asymptotic method approximation for the departure process
coincides with the asymptotic method approximation for the arrival process.

Qur object is to provide a theoretical framework for making approximations. This
article provides appropriate background to begin developing refined hybrid procedures
for departure processes. Also, preliminary experiments are described here.

The basic approach in Whitt [26] is to approximate the point process by a renewal
process partially characterized by the first few moments of the renewal interval. As
with our previous treatment of superposition processes, we consider moments beyond
the first two. In particular, we treat the third moment in detail, so that we provide a
basis for three-moment procedures. (A three-parameter extension of the algorithm in
QNA has been developed, but is still being tested.) We also consider parametric
approximations that do not correspond to a renewal process. In particular, following
Fraker (8], we consider the lag-1 correlation (the correlation between successive in-
tervals) as an additional parameter.

The rest of this article is organized as foliows. We consider the asymptotic method
in Section 1, the stationary-interval method in Section 2, the Jag-1 correlation in Section
3, refined hybrid procedures in Section 4, and comparisons with simulation results for
single-server queues in series by Fraker [8] and Shimshak |23] in Sections 5 and 6.
The conclusions are summarized in Section 7. :

In the experiments in Sections $-and 6, we compare the relatively simple charac-
terization of departure processes used in QNA with refinements based on the lag-1
correlation (Section 3) and hybrid methods combining the asymptotic method and the
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stationary-interval method (Section 4). While these methods for refining the approx-
imation seem to have potential, we have not yet succeeded in finding a refinement
that offers significant improvement. However, the relatively simple characterization
used in QNA that is based on the stationary-interval method alone works quite well.
In QNA the squared coefficient of variation (variance divided by the square of the
mean) of the renewal interval of the approximating renewal process is just a convex
combination of the squared coefficients of variation of the interarrival time («) and
service time (v}, namely,

¢ = prei + (1 — pY)cl, (n

where p is the traffic intensity [see (23)]. Evidently, the dependence among successive
intervals is less important for departure processes than for superposition processes.

It is also significant that formula (1) is consistent with the interesting property
established by Friedman [10] and by Weber [24) that, for any arrival process, the
order of several -/D/1 or -/M/1 queues in series (all the same type) does not affect
the departure process. Formula (1) yields this property as an approximation for any
series system in which all queues have service-time distributions with the same squared
coefficient of variation. _ ) '

For background on departure processes, see Daley [6], Disney {Chap. VIL of [7]
and references therein). For other work on approximations for queues in series, see
[8,17,21,23] and references for approximations of networks of queues in [28]. Ad-
ditional simulations are contained in [4,20].

1. THE ASYMPTOTIC METHOD

In this section the queueing system can be quite general. Let D(r), A(f), and Q(¢)
represent the number of departures in [0.¢], the number of artivals in [0,¢], and the
queue length (number in system including anyone in service) at time ;. We assume
that these random variables are related by -

DN =A@ - Q) + @), =0 (2)

Given that A(7) diverges to + 2 and Q(f) converges in distribution to a proper limit
as 7 — =, the distribution of D(#} for large ¢ is very close (relative to 1) to the distribution
of A(r), so that the asymptotic-method approximation for the departure process is just
the arrival process, provided that the arrival process is in the class of approximating
processes, €.g., a renewal process. Otherwise, the approximating process for D(1)

obtained by the asymptotic method is the same as the approximating process for A(¢).

Here we give a more precise statement and a proof. We actually assume that

sup E{Q() — QO)} <= _ 3)

for all £ of interest. Assumption (3) covers the case in which Q) remains stochastically
bounded but does not converge in distribution because the interarrival-time distribution
is lattice. . . _

-As in Section 2 of {26], let B;(Z) be the jth cumulant or semi-invariant of the

%
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random variable Z. For the arrival process A(1), let «y; be the time-average limit of

BilA(D], ie.,

y; = lim —L——B'{’: ) 4)

We assume that Eq. (4) is valid, which we know is the case for a large class of renewal
processes (see (2.5) of [26]).

We characterize the time-average limit of B;ID(#)] for j = 1,2,3, and 4. We do
not yet have a proof that covers all j at once (see Section 15 of [12] for properties of
cumulants).

THEOREM 1.1: If (2), (3), and (4) hold, then

lim forj = 1,2,3, and 4. (5)

—x

BAD(] _
{

Vil
PROOF: Let d;,a;, and g; be the jth central moment of D(z), A(r), and @'(z) =
Q) — (0) for some given 1, e.g.,
d; = E{ID(n) — ED(1)V’}.
As a consequence of (3), g/t — 0 as t — o for each j and each o > 0. For j = 3,
BiD(D)] = d;y = ay — 3E{(A(r) — EA(DQ'() — EQ'(0)}}
+ 3E{{A(0) — EA(MQ (1) — EQ' (O} — g,
so that, with the aid of Hélder’s inequality,
IB:ID(D] ~ Ba[A(f)N < 3(a)(g)'"? + @) g3 + g,
from which (5) follows easily. Similarly, for j = 4, B,[D(1)] = d, — 3d%and
[BAD(M] — BJAWNN < 4@y (0" + 6(a))"*(gq.)'"?
+ Ha"(q )" + q4 + 12a,q, + 343,

from which (5) again follows easily. Since B(Z) = EZ and B,(Z) = Var(Z), the
cases j = 1 and 2 are straightforward. Q.E.D.

2.. THE STATIONARY-INTERVAL METHOD

In this section we consider the standard single-server queue with infinite waiting
room and the first-come first-served discipline. We give two different approaches,
both based on the stationary-interval method. The object here, therefore, is to char-
acterize and approximate the stationary interval between departures,

2.1. Conditioning on the Server Being Busy or Not

In this subsection we first consider a general G/G/1 queue in equilibrium with
stationary arrival process as in [9]. Since the departure process is a stationary point
process, if we look at the system at an arbitrary time, then the time to the next departure
has the stationary-excess distribution associated with the stationary departure-interval
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distribution; i.e.. if F is the cdf of a stationary interval between departures, then the
assoctated stationary-excess cdf G is

Gt = ?\f (1 — F(u)]du, t =0, ’ 6)
[

where A is the arrival rate (A "' is the mean of F) (see {1.5) of {26]). Moreover, the
server is busy at this instant with probability p, where p is the traffic intensity (see
(4.2.3) of {9]).

If the server is busy, then the time to the next departure is the residual service time.
If the server is not busy, then the time to the next departure is the residual interarrival
time plus the following service time. Let v, {b) be the residual service time given that
the server is busy; let «, (7) be the residuval idle time given that the server is idle; let
v{i} be the next service time given that the server is idle; and let ¢, be the residual
time to the next departure. In general, then, the distribution of 4, is a mixture: With
probability p it is distributed as v, () and with probability (1 — p) it is distributed
as i, (i) + v{i).

One way to approximate the distribution of 4 is to approximate the distribution of
d . by approximating v .{b), u. (), and v(i). It is easy to go from the distribution of
d, to the distribution of 4 by inverting (6) (sec (1.6} of [26]).

F(ry =1 — AG'(D), t= 0. (7}

Now suppose that we have a GI/G/1 queue, with independent sequences of i.i.d.
interarrival times and service times. Let v and v be generic interarrival times and
service times. Let u, and v, have the associated stationary excess distributions. Then
v(i) is distributed as v and is independent of 4, (i). Also v (b) is distributed as v,
(For justification of this last step, see [ 13).) However, in general « , () is not distributed
as u, . It is, of course, in the M/G/| quenue when # has an exponential distribution.

We summarize these properties in the following theorem. Let F, be the cdf of u«,
etc. Let # denote convolution of cdfs. '

THEOREM 2.1: (a) In the GI/G/1 queve,
Fq, = pF., + (1 — pXF, 4 * F). (&

o,

(b} In the M/G/1 queue, # (i) and u, are distributed as u.

There is a simple relationship between the moments of a cdf F and the moments
of its stationary-excess cdf G (see. (2.2) of [26]). Let m; denote the jth moment about
the origin, Then '

mi(G) = my (F)m(F)j + 1. . 1))

We now combine Eqs. {8) and (9) to obtain an expression for the moments of ‘the
stationary departure interval. Let p, = m/mt. Let u(i) be obtained from w (i)
by (7).

THEOREM 2.2: In the GI/G/1 queue, for each k = 2,
pald) = ki (ds) = php(v)

. . . k=1 . . .
. + (1 = p) 2, (Np/p (v j(uGNE()/Eu] . (10)

i=0
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A simple approximation for GI/G/t queues and more general G/G/1 systems with
nonrenewal arrival processes is to use (8) and (9) with u, (i) replaced by «, . Instead
of (10), we have the approximation

k=1 ’
pi(d) = phisg(v) + (1 = p) 2 (NPl (), (1D
j=0
~which is valid for M/G/1 systems. For example,
ma{d) = pipa(v) + (I — p)ale) + 2p, (12)
so that
cq=pici + (I —p)i+p—ph (13)

where ¢ is the squared coefficient of variation {(variance divided by the square of the
mean) as in [26]. Note that ¢3 in (13) is a convex combination of ¢Z,¢7, and 1 since
PP+l —-p+p—p*=l,and]l —p=0andp — p?=0.

It turns out that the approximation in (11} can be restated in a more elementary
form, which coincides with a natural direct approximation for the stationary departure
interval:

THEOREM 2.3: If u, (i) is replaced by i, in (8), then the corresponding ap-
proximate stationary departure-interval cdf £, obtained from (7) is

Fu=pF + (1 — plF.*F). ' (14)

PROOF: Applying (8), (9), and then (6), we obtain

Foty = 1 — (Ew}F, (D)
o | — R o
=1 - @ 2 — (Bl - PIF D)
v _ o
= F) - (B - p RO TenlD
U
= pFl(r) + (l - p)Fu+\'(r)1
where «, and v (¢ and v) are independent. Q.E.D.

REMARK 2.1: By Theorem 2.3, the stationary departure-interval distribution is
approximated by a simple mixture: With probability ‘p it is-a service time and with
probability {1 — p)} it is a service time plus an independent interatrival time. (This is
used as a direct heuristic approximation on p. 133 of [11].)

REMARK 2.2: Approximation formula (13) for ¢ is the exact formula for the
GIIGI I queue having a batch-Poisson arrival process with gcomemcally distributed
batches. To see this, substitute the expected waiting time as given in Sectton 5.10 of
{5] into Marshall’s [18] formula for ¢, given here in (21).
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2.2. Expressions Involving the Waiting Time

Let 7,, D,, W,, and v, be the arrival epoch, departure epoch, waiting time (before
beginning service), and service time of the nth customer. Let u, = T,,, — T, and
d, = D,,, — D, be the associated interarrival time and interdeparture time. For the
standard single-server queue,

D, =T, + W, + v, n=1, (15)

~s0 that
dy =, + Wopy — W, + v,y — v, (16)

Since
- W, = max{O,W, + v, —u,} =W, +v, —u, + X, (17)

where ‘

X, = —min{O,W, + v, — u,}, (18)
d, = v, + X, (19)

Hence, for the GI/G/1 queue the stationary interval between departures d can be
expressed as

d=v+X, (20

where v is independent of X, X is distributed as —min{0,W + v — u}, and W is the
equilibrium waiting time. Formula (20) is an alternative to (8).

Marshall [18] showed how (17} and (20) can be exploited to give expressions for
the moments of 4. From (6)—(9) of [18],

¢ = ¢k + 2p%2 — X1 — p)EW/Eu. @1

s
Formula (21) was first used together with an approximation for EW to approximate
departure processes in networks of queues by Kuehn [16}. It is also used in [28]; there
EW is approximated by the simple formula

(Evyp(cl + &)

EW ,
2(1 — p)

(22)

so that

ch= (1 — pHel + p’cl. (23}

REMARK 2.3: Approxitnation formula (23) was suggested as a direct heuristic
approximation by Sevcik et al. [22].

Fonhula {21} and higher moments of & ar_é obtained from (20} plus the moments
of X. The motments of X in turn can be obtained calculating the moments of W, ., — X,
in two diffetent ways: first, directly and, second, in the form W, + v, — u,, using
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(17). The first three moments of X are

EX = —EY, , .
E(X?) = E(Y) + 2EY EW, (24)

E(Xh = = [E(YY) + 3E(YDHEW + 3EY E(WY)],
where ¥ = v — u. Hence, :
E(vY) + 3E(vDEX + 3Ev E(X%} + E(XY)

—E(WH(3EY) — EW[3E(Y?) ~ 6Ev EY]
— E(YY) + 3Ev(EYY) — 3EQWDEY + E(VY). (25}

E(d%

i

For any random variable Z, let 6. = E(ZYHEZ) . From (25), we obtain

0, = (8, + 6p*ch) — 3p(p’c; + cZ + 1 — pHEW/Ev :
+ 3(1 — p)p’E(WHI/{Ev):. (26)
REMARK 2.4: Formulas (21) and (26) can be checked by considering the

M/M/1 queue, for which EW/Ev = p/{1 — p), E(WH/(EV) = 2p/(1 — p)*, c3= 1,
and 8, = E(d*)/(Ed)’ = 6 since the stationary departure process is Poisson.

A stationary-interval approximation for E(d"} or 8, is obtained from (26} by applying
approximations for EW and E(W?). Following Whitt [28], we can approximate E(W?)
using

E(W?) = P(W > 0)E(DY), (27)

where D is the conditional delay given that the server is busy. We can approximate
E(D? by the M/G/{ formula:

EDY = (EDY (2p + 41 ~ p)0¥3 (¢ + 1) _ (28)
= [(EWY/P(W > 0)][2p + 4L — p)BY3(cT + 1YY,

and approximate P(W > 0) by the Kraemer and Langénbach-Betz [15] formula:

PW=>0)=p+ (c2 — Dp{l — plk (p.ci.cd), (29)
with -
I+ ¢ + pet
h Z, ? = 2 . , * !245_ l’
O R B | S e
4 (30)
= p o |

T+ prdd + Y
(see Section 5.1 of [28]). Of course, (26} using (27)-(30) lacks the simplicity of (21),

but it is linear in 8,, so that it is convenient for approximating networks of queues.

3. THE LAG-1 CORRELATION AS AN ADDITIONAL PARAMETER

The lag-1 correlation provides a compromise between the stationary-interval method
and the asymptotic method. Using the fag-1 correlation plus moments of the stationary
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interval is closely related to the stationary-interval method because it is based on the
local behavior of the process, i.e., the stationary distribution of two consecutive
intervals. It is also closely related to the asymptotic method because it partially char-
acterizes the dependence. The asymptotic method approximation for the variance
includes all the covariances, whereas the lag-1 correlation involves only the covariance
between consecutive intervals (see Section 2 of [26]).

Approximations of the lag-1 correlation and the first two moments of stationary
interval have been used to approximate departure processes and waiting times of queues
in series by Fraker [8] and Marchal [17]. We describe a modification of Fraker’s
procedure, obtained by substituting approximations in Whitt [28] for some of the
quantities in Fraker’s expressions. Let « be the lag-1 correlation, i.e., the covariance
of two adjacent intervals divided by the variance. Fraker's approximations are devel-
oped and tested for Erlang (£,) service times, but apply more generally by just
substituting ¢2 for k™' as the variability parameter of an E, distribution. Fraker’s basic
approximation for the lag-1 correlation of the departure process, oy, in 2 G/E/ 1 queue
is

a (G/E/) = a {GI/E/1) + P(W = Q)e,lc}/c?), (31
where u indexes the arrival process as before (see (11) on p. 41 of [8]), where

(1 —pXe® =1+ p){c2 - c},(GI/E/l))
¢ 1 — ci(M/D/T)

v {GI/E/ 1) = (32}
(see (2), (9), and (10) of [8]).

We obtain a modification of Fraker’s procedure by inserting our approximations for
c} and P(W = Q) into (31) and (32). In_particular, if we use ¢ = p’c? +
(1 — p¥c? as in (23), then we obtain

(1 —ple™®— 1+ p) (c,% — ci)

IVE/]) =
(G ) p*c? + (1 — pAc? el

= (1 —p)}e™ — 1 +p)I — /01 — p*(1 — 1),

where r = ¢i/cl. Note that the approximation (33) depends on only the two parameters
p and r. We complete the approximation for o, by using the Kraemer—Langenbach-
Belz approximation (29) for P(W > 0) in (31).

To use the lag-1 correlations in approximations for queues in series, we must not
only have an approximation for the lag-1 correlation of a departure process given the
lag-1 correlation of the arrival process and the other parameters, but we must also
have an approximation for the mean waiting time that depends on the lag- correlation
of the arrival process.

Fraker’s approximation for the expected waiting time as a function of ¢2,¢2, and &,

(33}

is

(EW)P(W > D)o, ¢}

EW(G/E/) = EW(GI/E/) + TS . (34)
Using appmxima_tion (22) for EW(GLl/G/1), we obtain
' i
EW(G/E/1) =~ Ev(i — p)~! [p (—C"—Z-C—Z +p I P(W> O)Cﬁau], (35)

where (29) is used for P{(W > 0) again in (35).
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Even though Fraker’s approximations were developed for G/G/1 systems with
Erlang service-time distributions, formulas (31)—(35) can be used for G/G/1 systems.
Hence, we have developed a modification of Fraker’s procedure applicable to G/G/1
queues in series where the initial arrival process is characterized by the three param-
eters A,c2, and «,. The arrival process to each subsequent node (queue) is just the
departure process from the preceding node, so that ¢2, = ¢3,_; and @, = g,
where n indexes the node.

4. REFINED HYBRID PROCEDURES

One way to develop hybrid procedures, as in [1,2], is to look for convex combi-
nations of the parameters from the two basic methods. A candidate hybrid approxi-
mation for the variability parameter of the departure interval, say, c%, obtained from

" Section 1 and (23) is

ch

xe + (1 = x) [pled + (1 — phel] (36)
(1 — x)pick + (1 — (1 — x)pilei,

where x is a weighting function with 0 = x < |.

As with Albin’s [1,2] treatment of superposition -processes, we should anticipate
that the weighting function x might involve the traffic intensity of the next queuve. Of
course, without feedback, both the superposition process and the departure process
are independent of the next queue, but the way they should be approximated may well
depend on the next queue. As with superposition processes, heavy-traffic limit theorems
provide a theoretical reference point for choosing weighting functions x in (36). In
particular, heavy-traffic limit theorems suggest that x should indeed depend on both
the traffic intensity of the current node, say, p,, and the traffic intensity of the next
node, say, p,. Given two queues in scries, if the second is in heavy traffic but the
first is not (p, is close to I but p, is not), then the heavy-traffic behavior of the second
queue is the same as if the first queue were not there (see Theorem 1(a) of [14]). The
heavy-traffic behavior of the second queue depends on its arrival process only through
its central-limit-theorem behavior. The centrai-limit-theorem behavior in tumn is the
same as the asymptotic method and, by Section 1, the asymptotic method approximation
for the departure process from the first queue is the same as the asymptotic method
approximation of the arrival process. In other words, with a criterion involving the
expected waiting time or the expected queue length at the second facility, the asymptotic
method of approximating the departure process from the first facility is asymptotically
correct as p, — 1 with p, fixed. Hence, x ought to approach 1 as p, — 1.

The heavy-traffic behavior of the two queues in series is much more complicated
if both queues are in heavy traffic (if p, and p, are both close to 1). Hence, what is
important for having x close to 1 is to have p, relatively closer to 1 than p,.

- Related theoretical reference points. for ‘approximating departure processes from
multiserver queues are contained in [28].

5. FRAKER’S EXPERIMENT

We now compare approximations with simulations of queues in series. We first
consider Fraker's [8] experiment. Fraker simulated eight different cases of eight single-
server queues in series. In each case the external arrival process is Poisson and all
service-time distributions are Erlang. Each of four traffic intensities (p = 0.3,0.5,0.7,
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and 0.9) and each of four Erlang service-time distributions (M = E,E,.E;, and
D = E.) is assigned randomly to two of the eight nodes.

The simulations consisted of three separate runs of 2500 customers each, w1th the
first 500 being discarded to damp out the transient effects. Statistics were collected
for six blocks of 1000 customers each. Unfortunately, the simulation runs were not
long enough for good statistical accuracy. No single estimate can be relied upon, but
the total experiment clearly yields meaningful comparisons of approximations.

Fraker estimated three quantities: the expected waiting time, the variance of the
stationary departure interval, and the lag-1 covariance of the departure intervals. Fraker
also developed approximations for these three quantities, with the expected waiting
time being a function of the variance and lag-1 covariance of the amrival process. A
detailed description of Fraker’s resulis is contained in Appendix 1 (available from the
author).

Tables 1-3 compare various approximations with Fraker's simulation results in the
first three cases. Fraker's results based on a mean interarrival time of 640 have been
adjusted to a mean interarrival time of 1. The estimated lag-1 covariances have been
converied to estimated lag-1 comelations by dividing by the estimated variances. Since
the mean is 1, the variance of the interarrival time at each node is ¢?. The lag-1
correlation estimate o, is obtained by dividing the lag-1 covariance estimate by the
associated ¢ estimate. {Recall that ¢? and o, for node n are just ¢ and a, for node
n—1.)

Five approximations for the expected waiting time are considered. The M/M/1
approximation is the exact result when all service-time distributions are exponential.
Each queue is regarded as an independent M/M/1 queue with the specified arrival
rate and service rate. The M/G/1 approximation is the M/M/! value multiplied by
(1 + ¢2)/2, which is tantamount to assuming that each arrival process is Poisson at
rate 1 and the service-time distribution is as specified. By Section 1, since the external
arrival process is Poisson, the M/G/1 approximation coincides with the asymptotic
method.

We give Fraker’s approximations for all three characteristics, but we do not describe
the methods or formulas here. We only remark that they are especially designed for
Erlang service times, but they can be extended by substituting ¢Z for k~'. We also
give two different versions of the QNA approximations in [28]. For the standard
version, ¢ is given by (23) and EW is given by the following modification of (22):

(Ev)p(ci + chg

EW = , 37
201 — p) G7)
where g = g(p,cl,c2) is defined as
2l - pd =y
(p,c2,ct) = ex {-— s i<,
& ? 3p dta (38)

= 1, cl= 1.

Approximation (37) with the correction factor {38) is the Kraemer and Langenbach-
Belz [15] approximation for ¢2 << 1. They have another correction factor for ¢Z > 1,
but we do not use it.

The second QNA approximation is a modified version using Section 3, in particular,
using the second term in (34) together with (37) after approx1mat1ng the lag-1 cor-
relation using (31) (33), and (29)
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Table 4. The expected waiting time at the nodes with p = 0.7 in Fraker's eight queues in
series.?

Approximation methods

Simulated imati ; ; ;
Case Node value of Approximation minus simulation
No. No. EW M/M/ 1 M/G/H Fraker QNA
1 4 0.73 0.90 0.29 —0.11 ~0.10
2 2 0.84 0.79 0.08 0.08 0.08
8 0.78 0.85 0.85 0.04 0.11
3 4 . 1.08 0.55 0.55 ~0.04 -0.04
8 0.55 1.08 0.37 0.00 -0.02
4 3 1.52 0.11 0.11 -0.04 —0.04
6 0.02 1.61 0.80 0.09 Q.16
5 3 0.74 0.89 0.28 0.10 0.11
6 5 0.33 1.30 0.49 (.05 0.01
7 4 0.78 0.85 0.14 —0.06 -0.02
7 0.17 1.46 0.65 0.02 -0.01
8 5 0.50 1.13 0.52 0.04 0.02
Average 0.67 0.96 0.43 0.01 0.03
Average absolute difference 0.96 0.43 0.05 0.06

*The value for each approximation is the approximation value minus the simulation value.

Tables 4 and 5 give summary evaluations of the approximations. Table 4 (5) gives
the estimated errors (approximation value rinus simulation value) for all nodes having
traffic intensity 0.7 (0.5) in all eight cases, except those cases where that node is the
first node because the approximations are all exact at the first node. Only the standard
QNA approximation is given in Tables 4 and 5.

The tables show that the M/G/1 approximation is much better than the M/M/1
approximation and that the other approximations are much better than the M/G/1
approximation. The standard QNA approximation performs about the same as the
Fraker approximation, both providing accuracy adequate for most engineering appli-
cations. »

Tables 1-3 show that the adjustment in the expected waiting time using the lag-1
correlation is never large. Moreover, the modified QNA is not an improvement. This
experiment suggests that the lag-1 correlation may not be of critical importance. At
least this application of it does not do the job. Further experiments with longer sim-
ulation runs and other experimental designs seem worthwhile, however.

From Tables 1-3 it is'evident that both Fraker’s method and QNA track the simulation
values of ¢Z quite well. Fraker’s approximation for the lag-1 correlation also tracks
the simulation, at least to some extent. However, QNA performs erratically. In cases
1 and 3, QNA performs about the same as Fraker's pracedure, yielding average errors
in the lag-1 correlation of 0.027 and 0.025 as compared with 0.032 and 0.015. But
in case 2, the QNA approximation performs very poorly for the last four nedes. It is
interesting, however, that this has little effect on the approximation for the expected
waiting time. Examination of the approximation formulas in Section 3 reveals an
instability that can cause approximation errors to grow in successive iterations. First,
{33) can get large when r is small and p is large (r = O and p = 0.9 at node 4 in
case 2). Then the second term in (31} tends to perpetuate large or small values of o,
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Table 5. The expected waiting time at the nodes with p = 0.5 in Fraker's eight cases of eight
queues in series.”

Approximation methods

Simulated Approximation minus simulation
Case Node value of
No. No. EW M/M/ 1 M/G/1 Fraker QNA
1 2 0.30 0.20 0.20 0.08 0.08
3 0.19 0.31 0.06 -0.06 ~0.03
2 6 0.02 0.48 0.29 0.03 0.04
7 0.02 0.48 0.23 0.00 0.00
3 3 0.24 0.26 0.26 -0.01 0.00
5 0.23 0.27 0.09 —-0.04 0.00
4 8 0.04 0.46 0.27 0.00 0.01
5 2 0.23 0.27 0.02 0.02 0.02
7 0.05 0.45 0.23 —0.01 —0.01
6 2 0.09 0.41 0.19 0.06 0.08
8 0.27 0.23 0.23 0.01 0.01
7 2 0.19 0.31 0.06 .04 0.04
3 0.31 0.19 0.19 0.13 0.12
8 3 0.09 0.41 0.19 0.04 0.08
4 0.10 0.40 0.21 - 0.05 0.06 -
Average 0.16 0.34 0.18 0.02 0.03
Average absolute difference 0.34 0.18 0.04 0.04

*The value for each approximation is the approximation value minus the simulation value.

We also ran several versions of QNA using hybrid approximations as described in
Section 4 with x{p,,p,.¢2,c2} a function only of p, and p,. However, none of these
offered a clear improvement over the standard version of QNA with x = 0. Again,
further experimentation is in order.

6. SHIMSHAK’S EXPERIMENT

Shimshak [23] also developed approximations for the expected waiting times of
queues in series and compared them with simulation. He simulated two single-server
queues in series with three different renewal arrival processes. In Shimshak’s exper-
iments I, IlI, and IV the interarrival-time distribution is, respectively, exponential with
c? = 1.0, hyperexponential {(a mixture of two exponential distributions) with ¢2 = 4.0,
and Erlang (E,g) with ¢2 = 0.1. (In experiment II the second queue has ten servers,
so it will not be considered here.) Experiments III and IV are interesting additions to
Section 5 because the external arrival process is non-Poisson. '

In each case the arrival rate is I, so that the mean service time at each node coincides
with the traffic intensity. Each experiment consists of eight cases, containing all
combinations of three variables each with two possible values. The three variables are
three of the two traffic intensities (p = 0.6 and 0.8) and two Erlang service distri-
butions (E, and £, ¢2 = 1.0:0r 0.1) at the two nodes. In each case one of these four
variables is held fixed. In experiment 1 the service-time distribution at node | is always
E\p; in experiments Il and 1V the traffic intensity at node 1 is always 0.8.

Sh*mshak’s simulations were obtained using GPSS and the regenerative method.
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The number of customers simulated in each case ranged from 15,000 to 25,000
depending on the traffic intensity. The statistical reliability is indicated by 95% con-
fidence intervals. The simulation runs are significantly longer than Fraker’s, so that
the statistical accuracy is clearly better, but even longer runs are needed (e.g., see
11.2)).

The results of the simulations and the approximations appear in Tables 6-8. The
Fraker, Page, and Marchal approximations are approximations devised by Shimshak
using previous approximations. The M/M/I, M/G/1, QNA, and modified QNA
approximations are added here and are as described in Section 5.

The results support the conclusions of Section 5. The M/M/1 and M/G/1 approx-
imations are much worse than the others. As should be anticipated, in experiments 11
and IV with non-Poisson arrival processes they perform very poorly. In experiment
L1l the M/G/| approximation is even worse than the M/M/1 approximation. With
high variability in the arrival process (¢;, = 4.0) and low variability in the service
times (¢} = 0.1), two errors in the opposite directions cancel to some extent in the
M/M/ | approximation. This phenomenon often occurs in models of packet-switched
communication networks with bursty arrival processes and constaat or nearly constant
packet service times.

QNA performs as well as each of the three Shimshak approximations in each case.
Overall QNA dominates the others because it is significantly beiter than Page and
Marchal in experiment IV and Fraker does not apply to all cases in experithent lil.

As in Section 5, the modificd Fraker approximations obtained by using QNA plus
lag-1 correlation as described in Section 3 does not provide improvement. Various
hybrid methods based on Section 4 did not help either. However, there is some evidence
that the errors in Table 6 are consistent with Section 4 to some extent. The asymptotic
method would suggest putting more weight on the variability parameter of the external
arrival process when p; is relatively large, e.g., in systems 6 and 8 in Table 6. Since
¢y = 1.0 > 0.1 = ¢2, we should anticipate observing more congestion than the
QNA approximation based on the stationary-interval method predicts. And, indeed,
the approximations fall about 10% below the simulation estimates in these two cases.

7. CONCLUSIONS

In this article we have provided a theoretical framework for approximating departure
processes and single-server queues in series. We have indicated what the asymptotic
method and stationary-interval method in [26] vield for departure processes. We have
indicated three ways the approximations might be improved: (1) using the third mo-
ment, (2) using the lag-1 correlation (Section 3), and (3) developing a hybrid procedure
(Section 4). However, we examined the last two methods and did not find an im-
provement. On the positive side, the relatively simple implementation of the stationary-
interval method in QNA seems to work quite wel.

The simulation experiments were far from conclusive, however. We relied on the
previous simulations of others, which were too short to provide good statistical ac-
curacy. The possibility of developing improved approximations for departure processes
remains, perhaps by building on the techniques in this article. There is certainly a
need for additional well-designed simulation experiments to develop a better under-
standing of departure processes. We need- better reference points for developing ap-
proximations. In general, simulation and numerical methods have hardly begun to be
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exploited to the extent they should be in order to understand basic operations frequently
arising in stochastic models such as superposition and departure. Simulation has great
potential for contributing to our understanding of relatively simple models as well as
relatively complex models. The simplicity provides the environment corresponding to
a controlled experiment. There is a need for more studies such as those done by Albin
[1,2].

Perhaps the main conclusion, in support of Shimshak [23] and other earlier work,
is that relatively simple approximations are a useful alternative and/or supplement to
simulation of queueing systems that are beyond existing exact analytic methods. More-
over, it seems possible to develop a theoretical framewark and supporting methodology
for developing such simple approximations. Creating appropriate approximations will
no doubt always be largely an art and will depend on the context, but analysis and
simulation can provide a useful perspective and the proper tools.
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