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Approximating a Point Process by a Renewal
Process, I: Two Basic Methods

WARD WHITT

Bell Laboratories, Holmdel, New Jersey
(Received December 1979; accepted November 1980)

This paper initiates an investigation of simple approximations for stochastic
point processes. The goal is to develop methods for approximately describing
complex models such as networks of queues and multiechelon inventory
systems. The proposed approach is to decouple or decompose the model by
replacing all the component flows (point processes) by independent renewal
processes. Here attention is focused on ways to approximate a single point
process by a renewal process. This is done in two steps: First, properties of
the point process are used to specify a few moments of the interval between
renewals; then a convenient distribution is fit to these moments. Two different
methods are suggested for specifying the moments of the renewal interval.
The stationary-interval method equates the moments of the renewal interval
with the moments of the stationary interval in the point process to be approx-
imated. The asymptotic method, in an attempt to account for the dependence
among successive intervals, determines the moments of the renewal interval
by matching the asymptotic behavior of the moments of the sums of successive
intervals. These two procedures are applied to approximate the superposition
(merging) of point processes. The purpose here is to provide a better under-
standing of these procedures and a general framework for making new
approximations. In particular, the two basic procedures can be used as
building blocks to construct refined composite procedures. Composite pro-
cedures for the ¥G,/G/1 queue (with a superposition arrival process) are
discussed by Albin in Part Il. Albin has developed a hybrid procedure for
approximating the mean sequence length and other characteristics in the
¥G;/G/1 queue for which the average error when compared with simulated
values was 3% over a large number of test systems.

OMPLEX stochastic models such as networks of queues are neces-

sary to capture the essence of many complex systems such as
communication networks. However, complexity means that approxima-
tions are often needed. Motivated by this need, we develop a general
framework and several specific procedures for approximating a point
process by a renewal process characterized by a few parameters.

The approximating processes are renewal processes rather than more
general processes, not because it is impossible to describe a point process
Subject classifications: 569 approximating a point process by a renewal process, 683 approximations for
point processes and queues, 694 approximations for networks of queues.
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126 Whitt

in more detail, but because it is usually difficult to obtain useful descrip-
tions of models involving more general processes. What seems desirable
for the practical analysis of complex stochastic systems is a procedure for
obtaining simple parametric characterizations of stochastic processes and
an elementary calculus for transforming the parameters to represent the
basic operations of composition, decomposition, flow through a queue,
overflow, etc. In fact, such comprehensive programs have recently been
proposed for analyzing networks of queues in computer systems; see
Chandy and Sauer [1978], Kuehn [1979a, b], Sauer and Chandy [1975],
and Sevcik et al. [1977]. These authors suggest approximating all the
flows (point processes) in a network of queues by renewal processes
characterized by two parameters. It was discovered that one parameter
(representing the rate of the process) is usually not good enough, but two
parameters (representing the rate and the variability) often are sufficient.
Closely related parametric approximation procedures are the equivalent
random method (Cooper [1980], Eckberg [1976], Freeman [1976], Heffes
[1973], Kosten [1977], Kuczura [1973a], Wilkinson [1956, 1970]) and
diffusion approximations (Borovkov [1976], Chandy and Sauer, Halachmi
and Franta [1978], Halfin and Whitt [1981], Whitt [1974]). Other simple
parametric approximations for queues appear in Al-Khayyal and Gross
[1977], Greenberg [1980], Marchal and Harris [1976], and Morse [1958].

In this paper the parameters are the moments of the renewal interval
in the approximating renewal process. It is often appropriate to consider
other parameters such as distribution percentiles instead of moments; see
Bux and Herzog [1977], and Lazowska [1977], but we focus on moments
here. As shown by Holtzman [1973] and Eckberg [1977], there can be
considerable variability in queueing characteristics such as the blocking
probability in a loss system over the set of all possible (interarrival-time)
distributions with two moments or two other parameters held fixed. The
two-parameter approximations apparently work reasonably well, because
extreme cases tend not to arise. The variability in queueing characteristics
with fixed interarrival-time moments is substantially reduced if the
interarrival-time distribution must also have a reasonable shape, e.g., if
it is unimodal or if it has a bounded failure rate; see Klincewicz and Whitt
[1981].

Our research stems from an investigation of Kuehn’s [1979a] procedure
for approximating the superposition (sum) of two independent renewal
processes by a renewal process. Kuehn used what we call the stationary-
interval method or MICRO, but it seemed that a different procedure
(what we call the asymptotic method or MACRO) might be both easier
to use and more accurate. With the stationary-interval method, we take
a microscopic view and try to match the behavior of the point process
during a relatively short time interval. In particular, with the stationary-
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interval method the interval between renewals in the approximating
renewal process is given the stationary distribution of an interval in the
superposition process. This is an approximation because the successive
intervals in a renewal process are independent while the successive
intervals in the superposition process are not. The asymptotic method is
an attempt to take account of the dependence. With the asymptotic
method, we take a macroscopic view and try to match the behavior of
the point process over a relatively long time interval. In particular, with
the asymptotic method, the moments of the interval between renewals in
the approximating process are obtained by matching the moments of the
renewal counting process over a large time interval with the correspond-
ing moments of the point process over a large time interval. Qur original
idea, which is equivalent for the first two moments, was to choose the
approximating moments by matching the normalization constants in the
central limit theorem. As expected, the stationary-interval method and
the asymptotic method yield the same rate, i.e., the same first moment of
the interval between renewals, but the approximating second moments
or variances can be very different.

In order to compare the two methods, we considered the YGI;/M/1
queue: a single-server queue with an exponential service-time distribu-
tion, an infinite waiting room, a FIFO (first in, first out) queue discipline,
and an arrival process which is the superposition of two or more inde-
pendent renewal processes. Such a superposition process naturally arises
when the arrival process is the superposition of independent overflow
processes or departure processes in a network of queues and these
processes are individually approximated by renewal processes, for exam-
ple as in Kuczura [1973a], Rath and Sheng [1979], or Kuehn [1979a]. If
all the renewal processes are Poisson processes, then the superposition
process is a Poisson process and we have the elementary M/M/1 queue.
If all but one renewal process is a Poisson process, then all the Poisson
processes can be combined into a single Poisson process and we have a
GI+M/M/1 queue. With some difficulty, analytical results can be ob-
tained for this system; see Sahin [1971], Kuczura [1972], and Fujisawa
[1976]; for related theory, also see Kuczura [1973b,c], and Rolski
[1978]. However, we know of no analytical results for the ¥GI,/M/1
queue when two or more of the component processes are general (non-
Poisson) renewal processes. If the renewal-interval distribution in each
component renewal process is constructed from exponential building
blocks, e.g., a mixture of convolutions of exponential distributions (such
as special phase-type distributions, see Neuts [1978], then the method of
stages can be applied to solve this system; see Chapter 4 of Kleinrock
[1975]. But in general the simple system GI+GI/M/1 is remarkably
intractable. To a large extent, the difficulty occurs because the queue
length process is not regenerative: there is no embedded renewal process.
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Hence there is considerable interest in developing approximations for
the YGI;/M/1 queue. We used the stationary-interval method and the
asymptotic method to approximate the superposition arrival process by
a single renewal process. It is then easy to describe the steady-state
distribution of the number of customers in the resulting GI/M/1 system.
We then compared the two approximating steady-state distributions with
the actual distribution as estimated by computer simulation. The results
of our preliminary experiments appear in Whitt [1979], Section 6. Our
suspicions were confirmed to a large extent. The asymptotic method is
easier to use and often works better, especially for queues with heavy
loads, but neither procedure dominates the other.

However, it is apparent from these preliminary experiments that the
simulated values often fall between the two approximations. This suggests
that better approximations might be found by combining the basic
approximations. Moreover, from experience with heavy-traffic limit theo-
rems (Whitt [1974]), we know that the asymptotic method is asymptoti-
cally correct for the YGI;/G/1 queue as the traffic intensity p approaches
the critical value one. Also, from experience with the convergence of
superposition processes to the Poisson process (Cinlar [1972], Khintchine
[1960]), we know that the stationary-interval method is asymptotically
correct as the number n of component arrival processes gets large. These
properties suggest using convex combinations of the two basic procedures
with the weight on the asymptotic method being an increasing function
of p and a decreasing function of n. This possibility has been investigated
by Albin [1980, 1981a, b, 1982] who found that dramatic improvements
can be obtained using refined composite procedures. Hence, we present
the two basic procedures MICRO and MACRO here, not to determine
which is best, but to provide the tools for constructing better approxi-
mations. We regard the procedures here as building blocks that the model
builder can use to construct better approximations. This point of view is
strongly supported by Albin’s results (to be reported in Part II). In this
sequel, Albin develops refined composite procedures for the YG:/G/1
queue.

We began by investigating procedures for approximating the superpo-
sition of independent renewal processes, but it soon became clear that
the basic principles underlying these procedures apply to the approxi-
mation of any point process. Hence, we present the procedures as they
can be applied to approximate any point process before we discuss the
specific application to superposition. Moreover, we not only specify
approximation algorithms; we also try to communicate the ideas behind
the algorithms. A major purpose of this paper is to make the different
approximation procedures easier to understand. This in turn should make
it easier to select a specific procedure in an application.

This paper is organized as follows. In Section 1 we give some back-
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ground on point processes. In Section 2 we describe the basic procedures
for selecting the approximating renewal-interval moments. We then de-
scribe methods for fitting distributions to these moments in Section 3.
We apply the approximation procedures to the superposition of point
processes in Section 4 and briefly discuss experimental results in Section
5. Additional material appears in Whitt [1979] which can be obtained
from the author. In Section 5 therein we apply the approximation
procedures to the decomposition or splitting of point processes. In Section
6 of the same, we present preliminary experimental results comparing
the procedures using the YGI;/M/1 queue. We make a connection to the
equivalent random method in Section 7. In particular, we show that the
asymptotic method developed here is the heavy-traffic limit of the
equivalent random method.

1. A FEW POINTS ABOUT POINT PROCESSES

The stochastic processes we consider are point processes on the positive
real line; see Daley and Vere-Jones [1972] and Cherry [1972], Cinlar, Cox
and Lewis [1966], Eckberg, Haskell [1974], Lawrence [1973], Neuts
[1979], Rodriguez [1976]. In the point processes we consider, the total
number of points is infinite but the number of points in any bounded
interval is finite. Let S, denote the position of the nth point from the
origin, n = 1. Let Sy = 0, but with the understanding that S, does not
correspond to a point. If there are k& points at 0, then S; = 0 for i =
1, --., k. Let X, denote the interval between the nth and (n — 1)st
points, i.e., X, = S, — Sy-1, n > 1. Let {N(¢), ¢t = 0} be the associated
counting process recording the number of points in the interval [0, ¢], i.e.,

N(t) =max{n=0:S,<t},t=0. (1.1)

Since S, < t if and only if N(¢) = n for all n and ¢, the processes {S,} and
{N(t)} can be regarded as inverse processes. Given {N(¢)}, we can
construct {S.} and {X.,.} by setting S, = 0,

S,=min{t=0N({)=n},n=1, (1.2)

and X, = S, — Sp-1. In other words, the stochastic processes {S.}, {X.}
and (N(¢)} are three different representations of the same point process.

We usually assume the point processes to be approximated are station-
ary, but it is important to note that there are two different kinds of
stationarity: one for the counting process {N(¢)} and the other for the
interval sequence {X,}. We say the counting process {N(¢)} is stationary
if the distribution of the increments is independent of time shifts, i.e., if
the joint distribution of the k-tuple.

[N(ti+h) — N(si+ h), N(t2+ h) —
N(sz2+ h), «-+, N(tp + h) — N(sz + h)]
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is independent of A (A > 0) for all positive integers %2 and all k-tuples
(s1, +++,se)and (&, -+ , L) withO0=s;<#,i1=1, ..., k. We say that the
interval sequence {X,} is stationary if the joint distribution of the %-tuple

[Xn1+h, Xn2+h, MY Xnk+h]

is independent of A (% a positive integer) for all positive integers £ and all
k-tuples of nonnegative integers (ny, - - -, nz).

The counting process {N(¢)} and the associated interval sequence {X,}
obtained from (1.2) are usually not both stationary at the same time.
However, it is significant that under mild regularity conditions there is a
one-to-one correspondence between stationary counting processes and
stationary interval sequences. This one-to-one correspondence is based
on Palm probabilities; see Chapter 3 of Khintchine, Section 7 of Daley
and Vere-Jones, Jagers [1973], and Port and Stone [1977]. To avoid
confusion, let {/N;(¢)} represent a stationary counting process with asso-
ciated interval sequence {Y,) defined by (1.2), and let {N(¢)} be the
associated Palm counting process (obtained from the one-to-one corre-
spondence) with associated stationary interval sequence {X,}. Note that
the interval sequence {X,} is related to the counting process {N(¢)} just
as {Y,)} is related to {INs(¢)}: by (1.1) and (1.2). The Palm counting
process {N(¢)} can be viewed as the stationary counting process {N;(¢)}
conditioned on the occurrence of a point at the origin. The one-to-one
correspondence is valid if the stationary counting process has finite
intensity, i.e., if EN;(f) < o, or if lim,_,., N;(¢)/t < o; see Port and Stone;
we assume one of these conditions is satisfied.

The one-to-one correspondence between the stationary counting proc-
ess {N;(t)} and the Palm process {IN(¢)} applies to the distributions of
the stochastic processes, i.e., the joint distributions, but for our approxi-
mations we use only the one-dimensional distributions. Henceforth, let ¥
be the c.d.f. of X; and G be the c.d f. of Y;. Also let ¥ (¢) = P(Ns(t) = k)
and ®;(¢) = P(N(t) = k). Let A be the intensity of {N,(¢)}, i.e, A =
lim,_,.N; (¢) /¢, which equals EN,(1) if this expectation is finite. Then the
one-to-one correspondence between {N,(¢)} and {N(¢)} implies that

t
Vo(t) = P(Ns(t) =0) =1 — )\J Do(u)du

0

and (1.3)
YV, (t) = P(Ns(t) = k) = AJ [@r1(v) — ®r(u)]du;

see Khintchine, p. 40, or Daley and Vere-Jones, p. 358. Then
Do(t) = =N ()

and (1.4)
@y (t) = Dp_1(2) = N'VWL(D), t = 0.
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Also
t

G(t) =1—Y¥o(t) =)\j

0

®o(u)du = A f [1- Fw)ldu, t=0, (15)
0

and
Ft)=1—-Do(t) =1+ AN Wh(t) =1—-A"'G'(¢),t=0. (1.6)

2. THE APPROXIMATION RECIPES

Consider a stationary counting process {NN;s(¢)} with associated Palm
process {N(t)} having stationary interval sequence {X,} and partial sums
{S.}. Suppose we wish to approximate this point process by a renewal
process. We propose to match the representations in the natural way: the
renewal interval sequence is the approximation for {X,}; the associated
renewal counting process is the approximation for {INV(¢)}; and the asso-
ciated equilibrium renewal process is the approximation for {N;(t)}; see
Ross ([1970], p. 44). With this matching convention understood, it suffices
to specify the renewal interval c.d.f., which we denote by H. Our first
step is to determine two or more moments of H. A specific distribution is
later fit to these moments when it is needed; see Section 3.

The method proposed here is to match the first m moments of the nth
partial sum in the renewal process with the first m moments of S,. To
make this match, it is convenient to work with cumulants or semi-
invariants instead of the moments; see Section 15 of Gnedenko and
Kolmogorov [1968]. Let B8; = B;(Z) be the jth cumulant of the random
variable Z, i.e., the coefficient of ¢/ in the power series representation of
log Ee*”. The cumulants have the desirable property that 8;(Z, + --- +
Z,) = nP;(Z,) for all j and n if the sequence {Z,} is i.i.d. The first two
cumulants are the mean and variance. In general there is a one-to-one
correspondence between the first m moments and the first m cumulants;
see Gnedenko and Kolmogorov (p. 65).

The approximation procedure then is to select m and n, calculate or
estimate 8;(S,),j =1, 2, --- , m, and then set

BJ(H) = Bj(sn)/n’, .] = 1, 2) e, . (2-1)

The stationary-interval method and the asymptotic method are the
extreme cases in (2.1): The stationary-interval method uses #z = 1 and the
asymptotic method uses n = .

With the stationary-interval method, we let the cumulants and mo-
ments of the renewal c.d.f. H be precisely the cumulants and moments of
the c.d.f. F of the stationary interval X;, but we ignore the dependence
between the successive intervals. If instead of the Palm process {IN(¢)}
we begin with the stationary counting process {NV;(¢)} and the c.d.f. G of
Y,, then we can first calculate the stationary-interval distribution F using
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(1.6). However, it is possible to calculate the moments of F from the
moments of G without using (1.6). If u;(F) and y;(G) are the jth moments
about the origin of F and G, respectively, then

tix1(F) = p(G)pa(F) (j + 1), (22)

see Cox ([1972], p. 64).

For n = 2, the cumulants 8;(S,) are affected by the dependence among
the random variables X,,, n = 1. For example, the variance B82(S,) includes
the covariances, i.e.,

B2(Sn) = ¥%=5 (n — k) Cov(Xy, X144), (2.3)

where Cov(X;, X;) = Var(Xy).

Note that 81(S,) = nf:1(X1) for all n because the expected value of the
sum is the sum of the expected values, even if the random variables are
dependent. Hence, the procedure in (2.1) yields 8:1(H) = B:(X;) for all n.

The asymptotic method is the limit of (2.1) as n — . The general
idea is to fit the renewal process to the point process by matching the
behavior over relatively long time intervals. We assume that the limits
lim,_,., B8;(S»)/n exist. The procedure then is to set

BJ(H) = lim, BJ(Sn)/n, j= 1,2 --.,m. (2.4)

To help fix tnese ideas, consider the following simple example.

Example 2.1. To see how the stationary-interval (MICRO) method and
asymptotic (MACRO) method differ, suppose P{(X;, Xi+1) = (1, 2) or (2,
1)} = 1for all i and P(X; = 1) = P(X; = 2) = 1/2. Then the stationary-
interval method gives X distributed as X; while the asymptotic method
gives P(X =1.5) = 1.

It is also possible to implement the asymptotic method directly from
the counting process {N(f)}. We point out that this is particularly
convenient for treating superposition processes; see Section 4. To do this,
we use the cumulants of N(¢) instead of the cumulants of S,, assuming
that B;(IN(t))/t converges as t — . We then let

YJ(H) = ]-imt—mo B](N(t))/t, J = 1’ 2) s,y (25)

where y;(H) are parameters from which we can calculate the moments of
H. In particular, the parameters y;(H) are the functions of the moments
of H that arise as limits when {N(¢)} is actually a renewal process. Smith
[1959] showed that the limits in (2.5) exist for renewal processes under
mild regularity conditions and determined their form. Moreover, Smith
showed that for a renewal process there is a one-to-one correspondence
between the first m limits y;(H) and the first m moments y; = y;(H) of H;
also see Chapter 4 of Cox, and Chapter 1 of Murthy [1974]. Assume that
Wm+1 < o0 and that the &-fold convolution of F has an absolutely continuous
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component for some 2 = 1. Smith showed that if {N(¢)} is a renewal
counting process with interval c.d.f. H, then

B(N@) =vyt+8+0), 1=j=m. (2.6)

Moreover, Smith indicated how to calculate y; as a function of {u, -- -,
7} and & as a function of {1, - -+ , gi+1}, 1 < < m. By combining pp. 4,
20 and 24 of Smith and replacing p; with wjui’ for each j and ¢ with tui*
because of the assumption that yu; = 1 there, we can obtain the coefficients
v; and §; for any j. We list the values forj =1, .- . , 4:

n=pr
yo = ur?(p2 — pi)
ys = pi® (—pspr + 3ps® — 3pap® + p*) (2.7)

va = p1" (papa® — 10papizps + 15p5° + Bpaps® — 18p2%u”
+ Toapa* — °)

and
81 = pr((1/2) p2 — pr®)
8 = ui*((5/4) s’ — (2/3) paps — (1/2) popss®)
83 = pr°((3/4) paps® — Bpspzpn + (11/2) p® + 2papa®

— (15/4) p’ps® + (1/2) popir®) (2.8)
8 = pi®(—(4/5) pspa® + (17/2) papizps”® + (16/3) s

— 44psps’ 1 + (279/8) pa* — (9/2) papir® + 30pspiaps®

— 33u’® — (14/3) papa® + (35/4) p’wa* — (1/2) popsa®) .

Of course, y; = y;(H) in (2.6) are of principal interest because they are
what we use in (2.5). To get the moments of H, we invert (2.7), obtaining

1

pr=v1
pe = pr’ye + p®
ps = —p'ys + 3" — Bpop + pa® (2.9)
pa = p°ys + 10pspapi’ — 15p2°u1" — 6papr + 18p5°

= Tpapa® + pi*.

For a renewal process, the equations in (2.6)-(2.9) are exact, but for
other point processes they are approximations. The Poisson case is a
convenient check: then y;=pi', § = 0, and y; = u/j! for j = 1. The
expansion in (2.6) is for renewal processes, but a similar expansion holds
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for delayed renewal processes such as the equilibrium renewal process.
The only change in (2.6) is a change in the constants §; in (2.8); see
Chapter 1 of Murthy.

It is worth noting that with the asymptotic method the first two
cumulants (the mean and variance) of the approximating renewal interval
c.d.f. H could also be obtained by matching normalization constants in a
central limit theorem, either for {S,} or {N(¢)}. To be precise, let =
denote convergence in distribution and let V(0, 1) be a standard normal
random variable with mean 0 and variance 1. Recall that for a renewal
process,

(S — nBi(H))/vnB(H) = N0,1) as n— o (2.10)
and
(N@t) — tyi(H))/Nty2(H) = N(0,1) as t— ; (2.11)

see pp. 259 and 372 of Feller [1971]. However, in order to apply (2.10) or
(2.11) it is necessary to assume that the point process to be approximated
satisfies such a limit theorem, which is usually a stronger assumption
than assuming B2(S.)/n or B2(N(t))/t converges. In most applications,
though, it is safe to assume that all the limits—(2.4), (2.5), (2.10) and
(2.11)—exist. It is important to note that these four formulas yield the
same two approximating moments. Moreover, these limits are the same
for a renewal process and the associated equilibrium renewal process.

In closing this section, we mention again that it may be desirable to
consider other parameters besides the moments of the renewal interval,
e.g., distribution percentiles.

3. FITTING A DISTRIBUTION TO THE MOMENTS

Having specified several moments of the interval between renewals, we
can completely specify the approximating renewal process by fitting a
convenient distribution to those moments. However, the moments them-
selves will be sufficient for many applications. Further steps in approxi-
mating complex systems often will involve only manipulations of these
parameters. Moreover, the moments can be used to bound the distribu-
tion or its Laplace transform; see page 228 of Feller, Eckberg, and
references there.

It is important to realize that since the procedures are approximations
there is no guarantee that there exists any c.d.f. with the m numbers as
moments. It is easy to see that the procedures here always produce
nonnegative numbers for the mean and variance, so there is no problem
if we work with only two moments. However, if we use more than two
moments, then it is possible for the candidate moments to be inconsistent.
We remark that this phenomenon actually occurs in practice, even for m
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only three or four; the third moment can be inconsistent in the superpo-
sition approximation; see Whitt [1979], Example 4.2.

Hence, in programs implementing the approximation procedures with
more than two moments we have included a moment consistency check.
Fortunately, relatively simple necessary and sufficient conditions for
moment consistency are available; see pages 106, 171 of Karlin and
Studden [1966]. Let 1, - - - , um be numbers that are prospective moments
for a nonnegative random variable. For m =< 5, these numbers are
moments for some probability distribution on the positive real line if and
only if for each k, £ =1, ... , m, the following hold:

m=0,k=1,
pe— w?=0,k=2,
pips —p=0,k=3, (3.1)
papts — pa® — pa(paps — papis) + po(paps — po®) =0, k = 4,
pa(psps — pa®) — po(uapis — papte) + pa(pizps — ps’) =0, k= 5.

If the c.d.f. of the renewal interval is exponential, i.e., if H(t) =1 — e™,
t = 0, then the moments of H are

“‘J(H) =j!}\_j’ J = 1’ 2, ce (32)

and the coefficient of variation ¢ = c¢(H), defined as the ratio of the
standard deviation to the mean, is always one.

Even when ¢ # 1, it is convenient to use exponential building blocks;
see Morse, and Kuehn [1979a]. There are two cases, depending on
whether the coefficient of variation c is less than one or greater than one.
A sum of independent exponential random variables always has a coef-
ficient of variation less than one, while a mixture of exponential distri-
butions has a coefficient of variation greater than one (see the proposition
in Section 3.1 here or p. 142 of Kleinrock for a proof of this last property).
Hence, we propose using a sum of independent exponentials when ¢ < 1
and a mixture of exponentials when ¢ = 1. Since we usually work with
only two or three moments, it suffices to consider relatively simple special
cases. When ¢ = 1, this approach forces us to use an exponential
distribution.

3.1. High Variability: Mixtures of Exponentials

When ¢ = 1, we let the interval distribution be a mixture of exponential
distributions. A mixture of m exponential distributions, called a hyper-
exponential distribution and denoted by the symbol H,, has a density

h(x) = Y2 pihie™, x=0 (3.3)
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and jth moment
= f ©h(x)dx =j! § pAT,  j=1, (34)
0 ‘ =t

where p;, A; = 0 for each i and p; + --- + pn = 1. For simplicity, we
usually restrict attention to the case m = 2. It should be noted that the
hyperexponential density is strictly decreasing, which might not be desir-
able for an approximation in some applications.

We now discuss how to go from the moments in (3.4) back to the
parameters {p;, A;} in (3.3). First, however, we would like to know
whether there is any hyperexponential distribution with moments equal
to specified numbers. Obviously the general consistency check in (3.1) is
necessary but not sufficient for the hyperexponential fit. Fortunately, it
is possible to check whether m numbers y,, - - -, yu» are the moments of
some hyperexponential distribution by a simple modification of the
classical criteria in (3.1). Let [x] be the greatest integer less than or equal
to x.

ProposITION. The numbers p1, «-+ , wn are the moments of a hyperex-
ponential distribution if and only if w, pe/2!, -+, w./m! satisfy the
classical criteria (in (3.1) for m < 5), in which case [m/2] + 1 exponen-
tials will do.

Proof. The classical criteria are necessary and sufficient for there to
exist a probability distribution concentrated on [m/2] + 1 points; see
Karlin and Studden. Make the correspondence with (3.3) by letting
probabilities p; be attached to the m pointsA;'. Note that the jth moment
of this distribution with finite support is Y7, p;/A/, while the jth moment
of an H,, distribution with these parameters is j!Yp:/A/.

As a consequence of the proposition, we see that there is an H,
distribution with y; and p. as the first two moments if and only if yu; = 0
and ¢® = popui® — 1 = 1. If s is given too, then an H, distribution exists
with these three moments if and only if in addition to these conditions
psa = 1.5 po’. If ps turns out to be too small when attempting an
H,-fit, one procedure is to replace ys by something slightly larger than
1.5 p®/pa.

For the parameter fit, we work with H, distributions. Since there are
three parameters, we can fit to three moments; see Whitt [1979], Appen-
dix 3:

A= {(x + 1.5y* + 3u%y)
+ V(x + L5y — 3p’y)® + 18u°y"}/(6py) = 0,

(3.5)
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and
pr= (=)A= =0, p:=1-—p,=0, (3.6)

where x = pips — 1.5p° and y = p» — 2% Note that x, y = 0 by the
Proposition.

It is much easier to obtain a two-parameter fit. For example, suppose
we assume balanced means as in Morse, and Kuehn [1979a], i.e.,
PAT! = paAs’. Then

pi=[1=xV(c*=1)/(c* + 1)]/2
and i =2pipit, & = (u2 — wi®)/pd. (3.7)

3.2. Low Variability: Sum of Exponentials

When the coefficient of variation is less than one, we let the interval
distribution be the distribution of a sum of independent exponential
random variables. The sum of m independent exponential variables each
with mean A" is an E,, (Erlang) distribution with mean m/A and coeffi-
cient of variation ¢ = 1/vm. Since an Erlang distribution can only have
a coefficient of variation of this special form, in order to construct
distributions with any coefficient of variation less than one we need to
make further modifications. We consider sums of independent exponen-
tial random variables with different means. Let Mi(\1), - -+ , M (An) be
m independent exponential random variables with means A7%, - - -, A5},
and let the sum be

Xn=Xn(Ay, oo+, An) =Mi(A) + -+ + Mn(A). (3.8)
The mean and variance of X,, are
p=EXn=Y2 A" and o’=VarX, =Y A2 (3.9

The coefficient of variation of X, (xA;, - -+, xA,) is independent of the
scalar x and varies between m™/2 and 1, with the minimum attained
when all means are equal and the maximum approached when one mean
dominates all the others.

A special case of interest is the sum of two independent exponential
variables. This class of distributions can produce any coefficient of
variation between 1/v2 and 1. Given the mean p and coefficient of
variation c, the parameters A; and A; can be obtained by solving the two
equations in (3.9):

A= (w/2) (1 £ V2 1), (3.10)

In order to achieve any coefficient of variation between zero and one,
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we can use the sum of an exponential random variable and a constant
(the special case of 2 =  in E;). We call this distribution the shifted
exponential distribution, and denote it by M?% it has density

flx) =Ae* 9 x=d, (3.11)

where A™? is the mean of the exponential variable and d is the constant.
The two parameters A and d are related to the mean p and the variance
o” by

p=A"+d, o’ =pl® =272

3.12
A=¢"", d=p-A". (3.12)

4. MERGING STREAMS: SUPERPOSITION

In this section we apply the general methods introduced in Section 2
to approximate the superposition or sum of n independent point processes

by a renewal process. If {N;(¢)},i=1, ---, n, are n counting processes,
then the superposition counting process {N(¢)} is defined as
N(t) = Ni(t) + -+« + N,.(2), t=0. 4.1)

Although the component processes need not be renewal processes, we
think of them as renewal processes because it is always possible to first
approximate each component process by a renewal process.

It is well known that the superposition of two independent renewal
processes is itself a renewal process if and only if all three processes are
Poisson; see Section 2 of Cinlar. It is significant that the procedures here
satisfy the obvious consistency check: they all produce the correct Poisson
superposition process when the component processes are all Poisson. If
one or more of the component processes is not Poisson, then the super-
position process not only fails to be Poisson but is not a renewal process
either. Of course, this is the reason we are interested in approximations.
It is possible to give more detailed exact expressions (see Cherry, Disney
[1975], Lawrence, and other papers mentioned in Section 1), but we want
simple expressions.

It is also well known that superpositions of independent equilibrium
renewal counting processes (and more general stationary point processes)
converge to a Poisson process as the number of component processes gets
large and the individual processes get sparse with the total rate fixed; see
Section 3 of Cinlar. This means that a Poisson process is often a good
approximation for a superposition process if many processes are being
superposed (see Albin [1980b]). Our interest is in the case in which
relatively few processes are being superposed; then approximations are
needed.
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4.1. The Stationary-Interval Method

Consider n independent stationary counting processes {N,;(¢)}, i = 1,
..., n. We are interested in approximating the stationary superposition
process {Ns(t)}, defined by

Nu(f) = Na(t) + -+ + Nou(t),  £=0. (4.2)

To apply the stationary-interval method, we need to know the moments
w: of the c.d.f. F of the stationary interval associated with {N;(¢)} (using
the Palm correspondence and (1.6)).

Let the stationary interval in the ith component process have c.d.f. F;
with jth moment p; and let the intensity of the ith counting process be
\; = pii. Then the c.d.f. F and its mean p. satisfy

B A=At e 4 A (4.3)

and

n

1-F(x) = 21 /N1 = Fi(x)] [T AjJ [1— Fi(s)]ds. (4.4)
= I JHEL x
Equation (4.4) follows from the Palm theory (see Proposition 10 of
Jagers), but it also can be established in other ways. (See Whitt [1979],
Appendix 4, for more discussion.)
If Iis a random variable with c.d.f. F' (the stationary interval), then for
k = 2 (see Whitt [1979], Appendix 5)

EI* = f kx*'[1 — F(x)]dx
0 (4.5)

=k(k—1DA! ﬁ A [ {xk‘2 In[ [1- F,-(s)]ds}dx.

In order to calculate the second moment (and thus the variance and
coefficient of variation), we must perform the integration in (4.5) for
k = 2. This can always be done in any specific instance, either analytically
or by numerical integration. However, following Kuehn [1979a], we
suggest avoiding the integration by first approximating the c.d.f’s F;. In
this scheme each c.d.f. F; is assumed to be either hyperexponential (H,)
or shifted exponential (M?); see Sections 3.1 and 3.2. This can be achieved
by calculating the moments of F; and fitting one of these distributions to
these moments. Moreover, only two processes are superposed at a time.
Hence, it suffices to calculate the integral in (4.5) only for three cases:
when F, and F; are both H,, both M?, or one of each. Here are the results
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(Kuehn [1979a]) for the three cases:
(1) If Fy is Ha(Ay,A2; p1,pe) and F3 is Ho(m,m2; 1,92), then

EI’ = 2/(#11 + le) 2?=1 212'=1 piqj'/(}\i'flj()\i + ﬂj)), (4.6)

where i1 = Y1 (pi/Ai). If F; has balanced means as in (3/7) and F; =
F,, then we have the simple relation between the coefficients of varia-
tion:

AF) — 1= (ci(F) —1)/2; 4.7)

see Whitt [1979], Appendix 6. Obviously (4.7) reflects the convergence of
the stationary superposition-interval distribution to the exponential dis-
tribution.

(2) If Fy is M? (A, dy) and Fs is M? (A, d2) where d; < ds, then

EP = 2(pu + po1) ™! {pupnady — di® (pn1 +p21)/2 + di*/3
+ ,U«21}\i_2(1 - e—h(dz—dl)) + )\1—3[(1 + Ade) e M(d—d) (4.8)
-1+ Aldl)] + )\IIAEI(AI + A2)‘le—)\l(‘12*dl)};

see Whitt [1979], Appendix 7. Let I, be the stationary interval associated
with the superposition of n independent and identically distributed M
renewal processes. Then

L) =1-(2/(n+ 1)1 - (/AW™), n=1; (49

see Whitt [1979], Appendix 8.
(3) If Fy is Hax(A1, A2; p1, p2) and F; is M%(q, q), then we obtain the
following from (4.5):

EP = e™p./(An(A + 1) + €™ po/ (Aan(ha + ) = pA®
-(1— e Md Alde—hd) _pz}‘2—3(1 — e hd _ Azde_)‘zd) (4'10)
+((1/n) + D IPAT(L = e™) + pAz*(1 — e,

To summarize, here are the steps for specifying the first two renewal-
interval moments when approximating the superposition of two inde-
pendent renewal processes using the stationary-interval method:

1. Begin with first two moments of the interval distributions F; in each
component process.

2. Compute the mean of F using (4.3).

3. Compute the second moment of F using (4.5) assuming that the
c.d.f’s F; have been approximated by H; and M distributions. No
actual distribution fitting need be done. Use formulas (4.6)-(4.10)
depending on the coefficients of variation.

4. If desired, fit a distribution to the moments, using the methods in
Section 3.
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The procedure above is clear whenever two processes are being super-
posed, but there is some ambiguity when more than two are being
superposed. The procedure then is to combine two at a time. Kuehn
[1979a] suggests a recursive scheme in which the 2th component process
is added to the approximation of the sum of the first 2 — 1 component
processes for each £ > 2, but we suggest a balanced scheme in which
component processes are added and then the approximations are added.
The recursive scheme has some advantage in ease of implementation, but
the balanced scheme has fewer steps ([log.n] instead of n — 1 where [x]
is the smallest integer greater than or equal to x). The different schemes
and different orders give slightly different results; see p. 35 of Albin
[1981a].

4.2. The Asymptotic Method

Since the superposition counting process is the sum of independent
counting processes, as shown in (4.1), it is easier to work with the counting
processes than the intervals or the associated partial sums. In particular,
the jth cumulant of the superposition counting process is the sum of the
Jth cumulants of the n component processes:

Bi(N(t)) = Bi(N:1(t)) + - -+ + Bi(Nn(8)), t=0. (4.11)

Our basic assumption, as in (2.5), is that

limg e Bi(N:(8))/t = vy (4.12)
for each pair (i, j),i=1, ---,nandj=1, ..., m. (We do not need
stationarity here.) Then (4.11) and (4.12) imply that

limeo Bi(N@)/t=vi=vy+ -+« + Ynj. (4.13)

To get the moments of the interval-distribution in the approximating
renewal process, simply apply (2.9). Of course this step is an approxima-
tion unless the superposition process is a renewal process.

This procedure leads to very simple formulas. Let p;; be obtained from
vy in (4.12) by (2.9); let \; =i = vi; and let ¢ = (pi2 — i)’ = piryie.
Then

A=p'=Y2 N and %= Y% (Ai/N)cd. (4.14)

Similar formulas also hold for appropriate parameters related to higher
moments. In particular, if a; = y;/u1 where y; is given in (2.7), then

o = 27:1 ()\,/)\)a,,, j =2, (4.15)
in the superposition approximation.

If the ith component process is a renewal process initially characterized
by the first m moments of the interval distribution F;, then we first use
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(2.7) to obtain the corresponding time-average limit cumulants of the
counting process {IV;(¢)} needed in (4.13).

To summarize, here are the steps for approximating the superposition
of n independent renewal processes by a renewal process using the
asymptotic method:

1. Begin with the first m moments of the interval distribution F; in
each component renewal process.

2. Use Smith’s relation (2.7) to calculate the time-average limit cu-
mulants y;; for each process.

3. Add these time-average limit cumulants to obtain the time-average
limit cumulants for the superposition process; see (4.13).

4. Use Smith’s inverse relation (2.9) to calculate the moments y; of the
interval-distribution in the approximating renewal process.

5. If desired, fit a distribution to the moments, using the methods in
Section 3.

Note that if we start with independent renewal processes, the Step 4 is
the first approximation. It is not exact because Smith’s relations (2.7)-
(2.9) apply only to renewal processes. Step 2 is exact when the component
processes are renewal processes and Step 3 is exact when the component
processes are independent.

A variant of this procedure of going back and forth between (2.7) and
(2.9) with only two moments appears on the bottom of page 73 in Cox.
The two-moment version of the asymptotic method has also been used
in a two-echelon inventory application by Heyman [1978]; see Section
4.1 of Heyman [1975].

It is interesting to see how the asymptotic method compares with the
stationary-interval method for approximating superposition processes.
For the superposition of two independent renewal processes, the approx-
imating coefficients of variation in 100 cases are displayed in Whitt [1979]
Appendix 10. The two procedures tend to be similar when both coeffi-
cients of variation are less than or equal to one (or slightly above one),
but the two procedures are quite different when one or more coefficient
of variation is much bigger than one.

A special case of considerable interest arises when the n renewal
processes being superposed are identically distributed. From (4.15), it is
clear that the parameter «; in the superposition process has the same
value as the corresponding parameter a; in each component process; see
Whitt [1979], Example 4.1, for more discussion.

If we use the asymptotic method to approximate the superposition of
a large number of independent stationary point processes, then we are
confronted with two different limiting operations. With the asymptotic
method we let time go to infinity, but we can also let the number of
processes being superposed go to infinity. Then, the superposition process
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converges to a Poisson process. It is important to note that the order of
the two limits (n — « and ¢ — ) makes a difference; see Whitt [1979],
Section 4.3.

Hence, it is clearly important to consider modifications of the asymp-
totic method for superposition processes as the number of processes
increases. To understand what adjustments should be reasonable, it is
appropriate to consider the rate of convergence to the Poisson process as
n — o, Fortunately, considerable work has been done on this problem;
see Section 6 of Cinlar, and Section 6 of Dudley [1972]. It has been shown
that the rate of convergence is of order n™". If the component processes
are not identically distributed and may have different intensities, then
the rate of convergence is of order Y%, (An:/A.)?%, where A,; is the intensity
of the ith component process in the nth system of n processes and A, =
Ani+ oo + Aune

For example, if ¢,” is the squared coefficient of variation obtained by
the asymptotic method, as a refinement it would be natural to replace it
with é* where

¢*—1=(c’ = 1) T (A/N). (4.16)

5. THE PROOF OF THE PUDDING: THE Y G;/ G/1 QUEUE

As indicated in the introduction, these approximation procedures have
been applied to a single-server queueing model with ix}lﬁnite waiting room
and FIFO queue discipline in which the arrival process is a superposition
of independent renewal processes; see Whitt [1979], Section 6, and Albin
[1980, 1981a, b, 1982]. When the service-time distribution is exponential,
standard formulas are used to solve the approximating GI/M/1 queue
after the superposition arrival process is replaced by the approximating
renewal process; otherwise the approximation of GI/G/1 due to Kramer
and Langenbach-Belz [1976] is applied. The approximations for the mean
queue length and other characteristics such as the probability of delay
have been compared with the actual behavior as estimated from computer
simulation. For the superposition of two renewal processes, the asymp-
totic method performs somewhat better, especially for higher traffic
intensities. However, over a representative class of queues with from 2-
to-16 component renewal processes, neither the asymptotic method nor
the stationary-interval method performs well (20-30% error). However,
when ¢ > 1 (¢ < 1) the asymptotic method tends to overestimate
(underestimate) the mean queue length while the stationary-interval
method tends to underestimate (overestimate) it. This of course suggests
using appropriate convex combinations. Such hybrid procedures have
been developed by Albin and perform very well (3% error); they will be
discussed in Part II, Albin [1981b].

Of course, the YGi:/G/1 queue is just one possible application of these
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approximations. The approach should be useful in other contexts, e.g., in
inventory and reliability.
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