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This paper investigates ways to create algorithms to invert Laplace transforms numerically within a unified
framework proposed by Abate and Whitt (2006). That framework approximates the desired function value

by a finite linear combination of transform values, depending on parameters called weights and nodes, which
are initially left unspecified. Alternative parameter sets, and thus algorithms, are generated and evaluated here
by considering power test functions. Real weights for a real-variable power algorithm are found for specified real
powers and positive real nodes by solving a system of linear equations involving a generalized Vandermonde
matrix, using Mathematica. The resulting power algorithms are shown to be effective, with the parameter choice
being tunable to the transform being inverted. The powers can be advantageously chosen from series expansions
of the transform. Experiments show that the power algorithms are robust in the nodes; it suffices to use the first
n positive integers. The power test functions also provide a useful way to evaluate the performance of other
algorithms.
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1. Introduction
1.1. The Unified Framework
We propose a new class of algorithms for invert-
ing Laplace transforms numerically, called power
algorithms, with parameters that are tunable to the
transform being inverted. Our power algorithms are
constructed using power test functions within a uni-
fied framework for constructing algorithms to invert
Laplace transforms numerically, proposed by Abate
and Whitt (2006). Many pointers to the literature
appear in Abate and Whitt (2006), including Zakian
(1969, 1970, 1973) and Wellekens (1970), which pro-
vided a basis for the framework, even though they
were only concerned with developing a single algo-
rithm.
The goal of the inversion is to calculate values of a

real-valued function f of a nonnegative real variable
from its Laplace transform

f̂ �s�≡��f ��s�≡
∫ �

0
e−stf �t� dt	 (1)

There are many applications of Laplace transforms
and their numerical inversion in operations research,
e.g., in queueing and financial engineering; see Abate
et al. (1999), Petrella and Kou (2004), and references
therein.

The classical Bromwich inversion integral expresses
f �t� exactly via the contour integral

f �t�= 1
2
i

∫
C
f̂ �s�est ds t > 0 (2)

where s is a complex variable and C is a contour
extending from c − i� to c + i�, falling to the right
of all singularities of f̂ ; see Theorem 24.4 of Doetsch
(1974).
For numerical calculation, the unified framework

approximates the function f by a finite linear combi-
nation of transform values; specifically,

f �t�≈ fn�t�≡ fn���t�≡
1
t

n∑
k=1
�kf̂

(
�k
t

)
 t > 0 (3)

where � ≡ ��1 	 	 	 �n� and � ≡ ��1 	 	 	 �n� are vec-
tors of complex numbers, called nodes and weights,
respectively. The nodes and weights do not neces-
sarily depend on the transform f̂ or the function
argument t, but typically depend upon n. This is a
framework rather than a single algorithm because the
nodes and weights are initially left unspecified.
One way to gain insight into the framework (3) is

to make the change of variables z= st, allowing us to
rewrite the contour integral (2) as

f �t�= 1
2
it

∫
C ′
f̂ �z/t�ez dz t > 0 (4)
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where C ′ is the same contour as a function of z. From
(4), we see that t−1 appears both in the multiplica-
tive constant and the argument of the transform f̂ .
From (4), we anticipate that appropriate numerical
integration applied to the integral in (4) will produce
the representation (3). Since the contour can be trans-
formed without altering the integral (under regularity
conditions), there should be freedom in choosing the
nodes.
Abate and Whitt (2006) showed that three pop-

ular numerical inversion algorithms can be repre-
sented in this framework: (i) the Gaver (1966)–Stehfest
(1970) algorithm, which we denote by �, for which
the weights and nodes (and thus the transform argu-
ments) are real, (ii) the Fourier-series method with
Euler summation, from Abate and Whitt (1992, 1995),
which we denote by � because they refer to the algo-
rithm as “Euler,” and (iii) Talbot’s (1979) algorithm, as
modified by Abate and Valko (2004), which we denote
by � , which is based on advantageously deforming
the contour in the Bromwich inversion integral.
Abate and Whitt (2006) showed that the three algo-

rithms �, �, and � can be combined in any com-
bination to produce nine different two-dimensional
algorithms, and examined the behavior of each. They
showed that it can be advantageous to use different
one-dimensional algorithms in the inner and outer
loops.
A key structural property in the framework (3)

is the linearity. Given that sequence acceleration is
often applied in constructing inversion algorithms,
see Valko and Abate (2004) and Wimp (1981), the lin-
earity in (3) implies that a linear acceleration method
is being used instead of a nonlinear one. We will
strongly exploit the linearity in this paper. Despite
the established power of nonlinear acceleration tech-
niques, the linear methods seem to be remarkably
effective in this inversion context. In support, Valko
and Abate (2004) showed that the linear Salzer
scheme exploited by Stehfest (1970) for accelerating
convergence of the sequence of Gaver (1966) func-
tions is remarkably effective compared to several non-
linear methods. Euler summation has proven to be
very effective with the Fourier-series method as well;
see O’Cinneide (1997). We will not directly exploit
sequence acceleration here, though.
An attractive feature of the power algorithms devel-

oped in this paper, like the Gaver-Stehfest algorithm,
is that complex variables need not be considered
at all, because our proposed power algorithms are
real-variable algorithms. Real-variable algorithms are
sometimes preferred because mathematical software
can have difficulties properly evaluating functions of
one or more complex variables. We will be consid-
ering the case in which the function f is real-valued
and the weights and nodes are real, so that (3) applies

directly in the real domain. We briefly discuss exten-
sions to complex variables in Section 9.

1.2. Creating New Algorithms
Abate and Whitt (2006) suggested that the uni-
fied framework could be used to create new one-
dimensional inversion algorithms. They suggested
choosing a family of test functions and performing
optimization to select nodes and weights that mini-
mize the error for those test functions. We start here
to investigate that idea seriously. In doing so, we have
two main goals: First, we aim to understand better the
process of numerical inversion; and second, we aim to
develop a method to construct algorithms efficiently
in the framework with nodes and weights that are
ideally suited for the specific transform to be inverted
or the function arguments of interest. We focus on real
power algorithms, so we are especially interested in
making comparisons to the Gaver-Stehfest algorithm.
For the optimization, it is evident that there are

many ways to proceed. For example, let F be a set of
test functions and let T be a set of time points (argu-
ments for f ). For n given, we can minimize, over the
vectors � and �, a weighted sum of the rth powers
of the errors for f ∈ F and t ∈ T , defined by
e����F T �≡∑

f∈F

∑
t∈T
c�f  t��f �t�− fn���t��r  (5)

where c�f  t� > 0 are weights to place more emphasis
on certain functions and certain times; we emphasize
the simple special case in which r = c�f  t�= 1.
In general, the optimization problem is quite com-

plicated, because the nodes �k in (3) appear inside the
argument of the transform f̂ . For fixed nodes, opti-
mization over the weights is much more tractable,
because fn�� in (3) is a linear function of the weights.
Thus, we consider only systematic optimization over
the weights, for specified nodes. We experimentally
investigate the consequence of different node sets.
We consider one very natural family of test func-

tions: powers. For real p, the pth power is the function
f �t� ≡ tp, which has well-defined Laplace transform
f̂ �s� ≡ ��p + 1�/sp+1 for all p > −1, where ��p� is the
gamma function, for which ��p+1�= p! when p is an
integer. (Powers with p ≤−1 may also be of interest.
They correspond to pseudotransforms, as discussed
in Sections 12–14 and the appendix of Doetsch 1974,
and they may capture asymptotic behavior for large
t (and small s) via Heaviside’s theorem, p. 254 of
Doetsch 1974, but we emphasize p >−1 here.)
For any integer n > 1, any n positive real nodes,

and any n powers, we are able to find n real weights
that make the inversion exact for those powers for all
t > 0; i.e., we are able to find a weight vector � such
that fn���t� = f �t� for all f ∈ F and all t > 0. More-
over, we are able to find these weights by solving a
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system of linear equations, which is easily done to
high precision with Mathematica. (A useful reference
about transforms related to Mathematica is Graf 2004.)
We call the new inversion algorithms created in this
way power algorithms.
We show that the power algorithms are effective.

They are appealing because they are real-variable
algorithms, like Gaver-Stehfest, but conceptually sim-
ple. Both the derivation, via power test functions, and
the creation, via the solution of a system of linear
equations, are easy to understand. As with the Gaver-
Stehfest algorithm, the biggest disadvantage is the
high precision that is required, but that is routinely
available with mathematical software such as Mathe-
matica. As in Abate and Valko (2004), it is possible to
apply multiprecision Laplace inversion, working with
the precision needed to obtain specified accuracy in
the calculated value (see Section 5).

1.3. Organization of the Paper
We start in Section 2 by establishing properties of the
power test functions and developing the power inver-
sion algorithms. In Section 3 we describe experiments
conducted to understand how to choose the set of
powers. In Section 4 we describe experiments con-
ducted to understand how to choose the set of nodes.
These experiments show that (i) the powers can be
chosen advantageously depending on the function,
and (ii) there is considerable freedom in the choice of
the nodes among positive real nodes. In Section 5 we
discuss accuracy and precision.
In Section 6 we discuss Zakian’s algorithm, denoted

by �, which can be regarded as a variant of the
power algorithm, having only integer powers, but
complex nodes and weights. Zakian’s algorithm is
designed to perform especially well for smooth (ana-
lytic, with derivatives of all orders) functions, but as
a consequence it can perform poorly for nonsmooth
functions, as we will show.
In Section 7 we indicate how the power test func-

tions can be used to evaluate other algorithms. We
“score” the Gaver-Stehfest, Euler, Talbot, and Zakian
algorithms, obtaining revealing results consistent with
experience. In Section 8 we discuss how to use multi-
ple algorithms or multiple instances of one algorithm
to estimate the inversion error while performing the
inversion (of a transform of an unknown function).
We mention some extensions in Section 9, includ-
ing gamma test functions and complex variables. We
draw conclusions in Section 10. A substantial amount
of additional material is contained in the Online Sup-
plement to this paper on the journal’s website (and
the authors’ websites), which provides an important
expansion of the story.

2. Creating Power Algorithms
2.1. Power Test Functions
It is natural to consider the first n nonnegative integer
powers as test functions, because accuracy for them
implies accuracy for polynomials of degree n− 1 by
linearity. By the Weierstrass approximation theorem,
all continuous functions on the positive halfline �0��
can be approximated uniformly over bounded subin-
tervals by polynomials. For continuous functions f �t�
that converge to 0 as t → �, the uniformity can
extend over the entire positive halfline. However, we
do not limit attention to nonnegative integer powers.
Through experiments, we found that it can be desir-
able to include positive fractional powers and neg-
ative powers in the interval �−10�. We discuss the
choice of powers in Section 3.
The polynomial perspective also indicates that, in

general, the specific method and the accuracy should
depend on the function argument t, with the inver-
sion difficulty increasing in t. That can also be seen
from the damping by multiplying f �t� by e−at in
the Fourier-series method; e.g., see Abate and Whitt
(1995). Abate and Valko (2004) found that for some
“good” transforms (their set F) the � and � inver-
sion accuracy is largely independent of t, but for other
transforms the accuracy decreases in t (or, equiva-
lently, the computational complexity increases in t).
Our results are consistent with that conclusion. As in
Abate and Valko (2004), we achieve inversion accu-
racy independent of t for some functions, but inver-
sion accuracy decreasing in t for other functions. Here
we plot inversion numerical results for 0	5≤ t ≤ 10. In
the Online Supplement, we show results for a wide
range of t – small (0	5 ≤ t ≤ 10), medium (10 ≤ t ≤
100), and large (100≤ t ≤ 1000). The difficulties with
exceptionally large or small arguments can often be
addressed by scaling; e.g., see Choudhury and Whitt
(1997).
Since the pth power f �t�≡ tp has Laplace transform

��p + 1�/sp+1 for p > −1, we see that the framework
(3) is exact, using real weights and nodes, for the pth
power for p ∈� ≡ �p ∈�� p >−1� if

1
t

n∑
k=1

��p+ 1�
��k/t�

p+1�k = tp (6)

which, by eliminating t > 0, is equivalent to the power
relation

n∑
k=1

��p+ 1�
�
p+1
k

�k = 1	 (7)

Of course, we cannot expect to achieve equality
in the power relation (7) when we are considering a
large number of powers. In general, we can select n
real weights and n positive real nodes by minimizing
the error in the power relations, over � and �, for m



Avdis and Whitt: Power Algorithms for Inverting Laplace Transforms
344 INFORMS Journal on Computing 19(3), pp. 341–355, © 2007 INFORMS

powers pj with −1< p1 < · · ·< pm, by considering the
following mathematical program:

min
��#

m∑
j=1
cj#j

s.t. 1−#j≤
n∑
k=1

��pj+1�
�
pj+1
k

�k≤1+#j 1≤ j≤m

#j ≥ 0 1≤ j ≤m
�1 ≥ $ �k−�k−1 ≥ $ 2≤ k≤ n

(8)

where the parameter $ is a small positive quantity
to maintain minimum separation between successive
nodes. The positive numbers cj weigh the violation of
the jth power constraint, 1≤ j ≤m.
The mathematical program is a complicated non-

convex nonlinear program, because of the node vari-
ables �k appearing in the denominator of the power
constraints in (8). With an additonal assumption, this
particular nonlinear program can be regarded as a
signomial program; see Section 3 of Ecker (1980). To
obtain a signomial program, we make the additional
assumption that the weights alternate in sign (which
experience indicates is appropriate). Then the sum in
the power relation (7) becomes the difference of two
posynomials (positive sums of powers of ratios). That
is a way to attack the problem, but it is not elementary
because of the nonconvexity.
We obtain great simplification if we fix the nodes.

Then the mathematical program (8) becomes a lin-
ear program (LP). That suggests an iterative algorithm,
searching over the node vectors, using an LP for
each. (That is one approach for signomials.) For fixed
nodes, the resulting LP is not large by LP standards,
but nevertheless it is challenging because we need
to work with high precision; standard double preci-
sion will not suffice. However, we do not consider
the mathematical programs further here. Instead we
make a further simplification.

2.2. A System of Linear Equations for Given
Nodes

In addition to fixing the nodes, we go further by con-
sidering n given (distinct) positive real nodes and n
distinct powers when we look for the n weights. Then
the power relations in (7) for the n values of p become
a system of n linear equations in n unknowns, where
the weights are the unknowns. We discuss how to
select the powers p and the nodes �k in Sections 3 and
4, respectively.
We can write the linear system in matrix form as

A�= b≡
[

1
��p1+ 1�

 	 	 	 
1

��pn+ 1�
]T
 (9)

where T denotes transpose and A≡An� is the node
matrix

A≡An� ≡




(
1
�1

)p1+1
	 	 	

(
1
�n

)p1+1
(
1
�1

)p2+1
	 	 	

(
1
�n

)p2+1

			
			

(
1
�1

)pn+1
	 	 	

(
1
�n

)pn+1




	 (10)

Fortunately, it is not difficult to solve the linear sys-
tem A�= b in (9) and (10) with Mathematica because
the node matrix A in (10) is a generalized Vandermonde
matrix with positive real “points” 1/�k and “expo-
nents” pk+ 1, k= 1 	 	 	 n, with pk >−1. Without loss
of generality, we assume that

0< 1/�1 < · · ·< 1/�n and 0< p1+ 1< · · ·< pn+ 1	
The generalized Vandermonde matrix is nonsingular,
even totally positive; see p. 99 of Gantmacher (1959)
or p. 76 of Gantmacher and Krein (2002). Hence, the
linear system of equations in (9) always has a unique
solution.
Even though the generalized Vandermonde matri-

ces are nonsingular, they are notoriously ill-conditioned
(have high matrix condition number). That tends to
make the linear system (9) unsolvable in practice with
standard double precision. We circumvent that diffi-
culty by using Mathematica, which supports high pre-
cision. We discuss the required precision for specified
accuracy in the calculation in Section 5.
It is also significant that new efficient methods

for solving generalized Vandermonde linear systems
have been developed; see Demmel and Koev (2005).
They achieve greater accuracy with less precision
by avoiding subtractive cancellation. In Section 8,
they show, by comparing to a Mathematica 100-digit-
precision calculation, that they are able to solve
generalized Vandermonde linear systems accurately
with standard double precision. Thus there is the
potential to achieve much greater efficiency with our
power algorithms. We do not consider that approach
here, leaving it as an interesting direction for future
research. We emphasize simplicity by showing that
our power algorithms are effective by a straightfor-
ward application of Mathematica.
We summarize our algorithm to construct power

algorithms in Figure 1. In the next two sections we
examine how to choose the set of powers � and the
set of nodes � . We will justify the default choices �∗

and � ∗. In Section 5 we discuss accuracy and preci-
sion. From n terms in the sum (3), we expect to get
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Constructing a Real-Variable Power Inversion Algorithm

1. Let the number of terms be n; e.g., n= 30.
2. Let the computer precision be 1	5n; e.g., 45 significant digits.
3. Choose n distinct real numbers p >−1 to form the power
set �; e.g., with an integer n divisible by 5, let

� =�∗ ≡�

(
−5j
n
�
k

2

)

≡
{
−5j
n
� 1≤ j ≤ n

5
− 1

}
∪
{
k

2
� 0≤ k≤ 4n

5

}
.

4. Choose n distinct positive real numbers to serve as the
node set � ; e.g.,

� ≡ ��k� 1≤ k≤ n�=� ∗ ≡ �1 	 	 	 n�.
5. Using the specified computer precision, solve the system of
n linear equations

n∑
k=1

��p+ 1�
�
p+1
k

�k = 1 p ∈�,

to obtain the n real weights �1 	 	 	 �n.
6. Apply the created power inversion algorithm. Using the
computer precision, nodes and weights specified above,
calculate the required transform values f̂ ��k/t� and the
weighted sum to obtain the real-variable numerical inversion

fn�t�≡ fn���t�=
1
t

n∑
k=1
�kf̂

(�k
t

)
.

Figure 1 Algorithm Summary

from n/6 to n/2 significant digits in our computation
of f �t�, with higher accuracy for smaller values of t.
The approach we have taken to construct power

inversion algorithms within the unified framework
via the linear system with the Vandermonde matrix
relates to classic methods; e.g., see Chap. 19 of
Bellman (1970), especially Sections 7–11. To a large
extent, these old methods are made effective today by
the evolution of computer technology and the accom-
panying mathematical software, allowing us to com-
pute rapidly with high precision. Such technology
changes invite reconsidering old ideas.

3. Choosing the Powers
A natural initial candidate for the set of n powers is
the first n nonnegative integers, because that yields
an exact inversion for all polynomials of degree n−1.
That is also appropriate for smooth functions (with
continuous derivatives of high orders) because match-
ing �n − 1�-degree polynomials matches the first n
coefficients (derivatives at 0) in the Maclaurin series
expansion (Taylor series expansion about 0) for the
function f : With f �n��x� being the nth derivative of f
evaluated at x,

f �t� = f �0�+ f �1��0�t+ f �2��0� t
2

2!
+···+f �n−1��0� t

n−1

�n−1�! +O�t
n� as t→0	 (11)

However, there are situations in which we might
want to do something different. The first involves a
smooth function that has some of its derivatives equal
to 0. For example, an odd function like sin�t� has an
expansion in odd powers,

sin�t�=
�∑
j=0

�−1�j
�2j + 1�! t

2j+1 (12)

while an even function like cos�t� has an expansion
in even powers. Thus, to approximate sin�t�, it would
be better to fit a degree-�2n−1� polynomial with only
odd powers than to fit a full degree-�n−1� polynomial
(both using n terms).
The second involves functions that are not smooth.

In particular, we often encounter functions that have
series expansions in fractional powers of t, and thus
fail to have derivatives of all orders at the origin.
A simple example is e−

√
t . Since

e−t =
�∑
j=0

�−1�j
j! tj (13)

the function e−
√
t has an expansion in half powers.

Similarly, by (12), sin�t1/m� for positive integer m has
an expansion in powers of the form �2k − 1�/m for
k≥ 1.
Of course, here we are considering numerical trans-

form inversion, which is usually considered only
when we know the transform f̂ but not the function f .
Thus we want to start with the transform f̂ . Fortu-
nately, starting from the transform f̂ , we are often able
to establish a series expansion for it, and then obtain
a corresponding series expansion of the function f by
doing a term-by-term inversion. Indeed, such concepts
are a fundamental part of Laplace transform theory;
see Sections 30–37 of Doetsch (1974).
We suggest exploiting this basic theory for constructing

the power set. Starting from the transform f̂ , we sug-
gest identifying the series representation (expressed
as a function of a real variable s)

f̂ �s�=
�∑
k=1

ak
spk+1

 −1< p1 < p2 < · · · (14)

or an initial portion for all suitably large real s, think-
ing of s as large. In establishing (14) we aim only
to identify the powers pk; we do not use the coef-
ficients ak. Laplace transform theory tells us that,
under regularity conditions, we will have an associ-
ated series expansion for f , namely,

f �t�=
�∑
k=1

akt
pk

��pk+ 1�
(15)

for the same powers, thinking of t as small. Theorem
30.2 of Doetsch (1974) provides theoretical support.
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Thinking of t as small, we anticipate that the initial
powers in (14) and (15) will be most important to
include in our power set.
Such analysis is often not difficult to perform di-

rectly, as we will illustrate. To cover a broad range
of cases approximately, without any analysis, we pro-
pose a standard default power set of size n. Assuming
n to be an integer multiple of 5, we use �n/5�−1 nega-
tive powers, evenly distributed in the interval �−10�
and �4n/5�+ 1 half powers, extending from 0 up to
2n/5. We call that the default power set and denote it by

�∗ ≡ �

(
−5j
n
�
k

2

)

≡
{
−5j
n
� 1≤ j ≤ n

5
− 1

}
∪
{
k

2
� 0≤ k≤ 4n

5

}
 (16)

as in Step 3 in Figure 1.
We will illustrate by describing results from

numerical inversion experiments. We compare the
performance of these power algorithms to the Gaver-
Stehfest algorithm. We chose Gaver-Stehfest because
it also uses real nodes and weights, and because it has
been well studied and is known to work very well
in practice, e.g., see Abate and Valko (2004), Valko
and Abate (2004), and Abate and Whitt (2006). We let
n= 30. For the power algorithms, we use the default
node set � ∗ = �12 	 	 	 30�. In Gaver-Stehfest, the
nodes are also evenly spaced, at k ln�2�, 1≤ k≤ n= 30.
(The results are essentially the same when we use the
Gaver-Stehfest node set instead of � ∗.)
A fundamental property of the Gaver-Stehfest algo-

rithm is that its weights alternate in sign; see (32)
of Abate and Whitt (2006). Figure 2 shows that the
default ��∗� ∗� power algorithm closely mimics this

5 10 15 20
k

–5.0

–2.5

2.5

5.0

7.5

10.0

12.5

log10 �ωk �

Figure 2 The Successive Weights of � (Circles) and �∗ (Squares) for
n = 20 in a Logarithmic Scale. Absolute Values Are Shown,
with Positive Weights Filled in (Dark) and Negative Weights
Empty

pattern, but does not follow it exactly. Figure 2 depicts
the base-10 logarithm of the absolute value of the
weights �k from � and (�∗� ∗) for n = 20; plots
for other n appear in the Online Supplement. The
� weights appear as circles, filled in if �k > 0 and
empty if �k < 0, whereas the ��∗� ∗� weights appear
as squares, filled in if �k > 0 and empty if �k < 0.
In our experiments, we consider the following 6

alternatives for the power set, each containing n= 30
powers:
1. Nonnegative integers: ��k�≡ �k� 0≤ k≤ n− 1�.
2. Nonnegative even integers: ��2k�≡ �2k� 0≤ k ≤

n− 1�.
3. Nonnegative odd integers: ��2k + 1� ≡ �2k + 1�

0≤ k≤ n− 1�.
4. Nonnegative integer multiples of 1/2: ��k/2� ≡

�k/2� 0≤ k≤ n− 1�.
5. All integer multiples of 1/2: ���k − 1�/2� ≡

�k/2� − 1≤ k≤ n− 2�.
6. The default power set with �n/5� − 1 negative

fractional powers and �4n/5�+ 1 nonnegative integer
multiples of 1/2, i.e., �∗ in (16).
Figure 3 shows inversion results for six different

transforms for some of these power sets. In each case
we compare to the Gaver-Stehfest algorithm. The six
transforms considered in Figure 3 are chosen to con-
tain cases in which each of the first five power sets
performs best. A list of the transforms we have used
appears in the Online Supplement; the indices corre-
spond to their listing there. The functions f1, f3, f4,
and f5 are the functions with those same indices from
Table 1 of Valko and Abate (2004). (The third function
is f3�t� ≡ e−tI0�t�, where I0�t� is the modified Bessel
function, as in Section 9.6 of Abramowitz and Stegun
1972.) The function f9 is the exponential function e−t ;
the other functions are f12 ≡ cos�t� and f13 ≡ t−1/2+ f4.
Figure 3 shows the base-10 logarithm of the abso-

lute error �f �t� − fn�t�� between the function f and
the numerical inversion fn as a function of t, 0	5≤ t ≤
10	0, for the six different transforms f̂ with known
inverses f . For clarity, we do not show the perfor-
mance of all power sets in each plot.
Since the exponential function f9 has a series expan-

sion in terms of nonnegative integer powers with
all coefficients nonzero, as shown in (13), we should
expect the integer power set ��k� to perform best
for f9�t� ≡ e−t , and it does. That can be determined
directly from the series expansion of its transform

f̂9�s�≡
1
1+ s =

�∑
j=0

�−1�j
sj

 (17)

so that we could apply (14), (15), and (17) to de-
duce (13).
For f9, the half-power set ��k/2� performs next

best; it does not omit any initial integer powers
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Plotted as a Function of t for 0�5≤ t ≤ 10�0

but the noninteger half powers are largely wasted,
because they appear at the sacrifice of higher integer
powers. Similarly, the default power set �∗ performs
reasonably well, but the negative powers and nonin-
teger powers are largely wasted because they appear
at the sacrifice of higher integer powers. In contrast,
the even and odd power sets ��2k� and ��2k+1� per-
form quite poorly, because they are missing important
low-order integer powers.
Indeed, the performance of the different power sets

for all the examples can be explained, to a large
extent, by the series expansions, which hold for both
the function f and the transform f̂ , in the relation
described in (14) and (15) above. First, the odd power

set ��2k + 1� performs best for f1�t� ≡ sin�t�, as
expected from (12). We can deduce (12) from the rela-
tion between the series expansions in (14) and (15),
starting from the series expansion of the transform f̂1,
namely

f̂1�s�≡
1

1+ s2 =
�∑
j=0

�−1�j
s2j

	 (18)

Similarly, the performance for f12�t�≡ cos�t� can be
explained by the series expansion

f̂12�s�≡
s

1+ s2 =
�∑
j=0

�−1�j
s2j+1

	 (19)

We deduce that the even power set ��2k� performs
best.
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Now consider

f̂3�s�≡
1√

s�s+ 2� 	 (20)

We first ignore the square root in the transform f̂3�s�,
to obtain

f̂3�s�
2 ≡ 1

s�s+ 2� =
�1/2s�
1+ �s/2�

= �1/2s�
�∑
j=0

�−2�j
sj

= �1/2�
�∑
j=0

�−2�j
sj−1

	 (21)

Next, by exploiting fundamental operations on series,
as in display 3.6.18 on p. 15 of Abramowitz and Ste-
gun (1972), we deduce that the form (the powers, but
not the coefficients) is preserved by taking the square
root of the function. Hence we deduce that f̂3�s� has
an asymptotic expansion of the same form, as a func-
tion of s, as does f̂3�s�2. Thus we expect that the inte-
ger power set ��k� should perform best for f3, and
indeed that is true for all sufficiently small t, even
though there is a crossover for larger t.
Finally, the two functions f4 and f13 are examples

for which it is best to have noninteger values in the
power set �. First consider f4. It is easy to see that
f̂ �s�= 1/�s+√

s� has a series expansion in half pow-
ers starting at s, so that we want exactly the power
set ��k/2�. And, indeed, that half power set performs
best. Next consider f̂13. From the analysis of f̂4, we
see that f13 will again have an expansion in half pow-
ers, but now starting at p1 =−1/2, so that ���k−1�/2�
should be best, and it is.
If we cannot construct the series expansion of f̂

analytically, then we may be able to proceed numer-
ically. Anticipating the series expansion (14), we can
find p1 and a1 by searching over p to find when
sp+1f̂ �s� is approximately constant as a function of
positive real s for large s. We then let that constant
limiting value be a1. Given p1 and a1, we can find p2
and a2 by repeating that analysis for f̂ �s�− a1s−�p1+1�,
and so forth. We make p1 and p2 our first two powers.
From the initial powers, we may be able to deduce
the entire power set. For example, we may decide to
use only positive multiples of p1 if p1 > 0 and p2 = 2p1.
However, we do not carefully explore this approach
here, leaving it as an important direction for future
research.
As a general observation from Figure 3, we see

that in each case the best power algorithm is able
to improve upon Gaver-Stehfest for all sufficiently
small t and performs similarly for 5 ≤ t ≤ 10. More-
over, we see that the default power set �∗ consis-
tently performs quite well. We also see that the power
set can make a big difference, and we have shown
how to choose it. However, we find that the default
power algorithm tends to perform slightly worse than

Gaver-Stehfest for very large t, of the order 100 ≤
t ≤ 1000; see the Online Supplement. Overall, the
default power algorithm performs about the same as
the Gaver-Stehfest algorithm, which in turn performs
much better than the original Gaver (1966) algorithm
(without the Salzer acceleration added by Stehfest
1970).
The power algorithms (with appropriate power

sets) consistently produce good performance for small
values of t, as should be expected, but they yield
inconsistent performance for larger values of t. The
accuracy as measured by number of significant dig-
its holds for larger values of t, with t ≥ 10, for the
functions f3, f4, and f13, but not for f1, f9, or f12.
The problem with f9 can be remedied by scaling;
see Example 4.1 of Choudhury and Whitt (1997). The
other cases can be understood from the analysis of the
Gaver-Stehfest algorithm in Valko and Abate (2004)
and Abate and Valko (2004). The good transforms f3,
f4, and f13 yielding good performance are in their
class F, with all singularities of the transform lying on
the negative real axis and the function being smooth,
while the last two transforms, f1 and f12, are not in
their class F, because they have singularities off the
negative real axis.
All the transforms in Figure 3 have known closed-

form inverses, so inversion is not actually needed
for these examples. We note that it is easy to obtain
transforms without closed-form inverses by consid-
ering operations on these transforms and others. For
example, we can consider products of transforms. An
m-fold product of Laplace transforms is the trans-
form of the �m− 1�-dimensional convolution integral
of the corresponding time-domain functions, which is
somewhat difficult to compute directly. Similarly, in
queueing, the steady-state waiting-time distribution
in the M/G/1 model can be expressed, as a function
of the Laplace transform of the service-time distribu-
tion, via the Pollaczek-Khintchine Laplace transform;
see (1.1) of Abate and Whitt (1992). For service-time
distributions with nonrational Laplace transforms, the
associated waiting-time distribution is quite compli-
cated, even though the Pollaczek-Khintchine Laplace
transform is relatively simple. Many other probabil-
ity operators that are advantageously approached via
Laplace transforms are given in Abate and Whitt
(1996).

4. Choosing the Nodes
We have just seen that the choice of the power set can
make a big difference in the performance of the inver-
sion. In contrast, surprisingly, the node set makes lit-
tle difference, provided that the nodes are distinct
positive real numbers, specified to high precision, and
we solve the linear system with high precision to get
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the weights. In particular, we find that the default
node set � ∗ ≡ �12 	 	 	 n� used in Step 3 of the algo-
rithm summary in Figure 1 is an excellent choice. In
this section we provide justification.
Our starting point for considering possible real

node sets was the Gaver-Stehfest algorithm, which
has n evenly-space real nodes at k ln�2� ≈ 0	79k. We
first did many experiments with power algorithms
based on the Gaver-Stehfest nodes, but then consid-
ered modifying the node set. We found that our default
node set � ∗ = �12 	 	 	 n� produces essentially the
same performance as the Gaver-Stehfest node set.
We conducted several experiments to evaluate the

impact of the node set, varying the nodes in many
ways, while using the same default power set �∗.
We will describe the most revealing experiment in
detail, and summarize the rest, leaving the details
for the Online Supplement. We consider node sets of
the form

�k = ,+ k$ 1≤ k≤ n= 30 (22)

as a function of a positive real shift , and a posi-
tive real spacing $. For each candidate node set over
a wide range of parameters , and $, we solve the
system of linear equations to obtain the correspond-
ing weights and examine the resulting inversion error.
Figure 4 shows the surface of the average error (mea-
sured in the logarithm to base 10) in the inver-
sion of the standard exponential transform f̂0, for
, ∈ �00	25 	 	 	 4	75� and $ ∈ �0	10	25 	 	 	 2	95�. Sur-
faces of the average error for other transforms and
other values of n (n= 203040) appear in the Online
Supplement.
On the one hand, we find that small spacing, such

as $< 0	7, is bad, especially when combined with zero
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Figure 4 The Average of the Logarithm of the Absolute Inversion Error
as a Function of the Shift � and the Spacing � of the Nodes
in (22) for f0� f �t	= e−t , f̂ �s	= 1/�s+ 1	

shift. The performance degradation seems to be due
to the largest node being too small; e.g., having all
30 nodes in the interval �13- produces poor results.
On the other hand, there is little performance differ-
ence across the node sets for $> 0	7, where the largest
node is at least 21. Thus we conclude that the default
values ,= 0 and $= 1	0 associated with � ∗ are fine.
We also carried out several more experiments to

examine how the structure of the node sets affects
performance. Since the location of the largest node is
important, we explored that in more depth, by mov-
ing the largest node of the set � ∗ = �12 	 	 	 n� to the
right to n + k for different values of k, k = 0 	 	 	 n
while leaving the rest of the nodes in � ∗ intact. Mov-
ing the largest node further out does not yield sig-
nificant improvement. In addition, we compared the
performance of node sets with nodes linearly and
evenly spaced against the performance of node sets
with nodes geometrically spaced in the same interval.
The experiments on a few transforms showed that lin-
ear spacing is superior to geometric spacing.
Furthermore, we performed experiments with ran-

domly generated sets of nodes. We perturbed one or
more nodes by multiplying each by a random number
uniformly distributed in the interval �1−#1+#�, for
various small positive #. The resulting inversions dif-
fer little from the unperturbed version, provided that
we re-solve the system of linear equations to get new
weights. We even used entirely random node sets. We
generated 100 independent replications of node sets
with n= 30 i.i.d. nodes, uniformly distributed in the
closed interval �130-. We then applied the solution of
the system of linear equations to several transforms.
In each case, we observed a relatively narrow band of
performance results across all the replications.
We conclude that, given a high-precision solution

to the linear system, the power algorithm is robust to
the choice of the real node set � , confirming that the
default node set � ∗ is satisfactory.
We also performed a sensitivity analysis to small

changes in the weights and nodes. In contrast to the
robustness described above, the power algorithm is
not robust to small changes in the nodes, for given
weights. The algorithm breaks down if we perturb
any of the nodes, but do not re-solve the linear sys-
tem of equations for new weights. The algorithm also
breaks down if we perturb the weights, after having
solved the linear system, for any given node set.

5. Accuracy and Precision
In this section, we investigate accuracy and precision,
measured in the number of digits. We first investigate
how the number n of terms in the sum (3) and the
computer precision affect the precision of the weights
obtained by solving the linear system (9) using the
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Table 1 Minimum Precision of the Computed Weights (Number of
Significant Digits, Specifically � log10 �wp+1−wp�/�wp��, Where
wp Stands for the Weight Computed with Precision p) as a
Function of the Computer Precision (Number of Significant
Digits) and the Number of Terms, n

n

Precision 20 30 40 50 60

10 0.5 × × × ×
20 13 1.7 × × ×
30 26 14 × × ×
40 35 23 10 × ×
50 44 32 19 7 ×
60 55 42 29 19 2
70 64 52 39 29 19
100 95 81 69 60 47

default node set � ∗ and power set �∗. Table 1 shows
the minimum precision of the n computed weights as
a function of the computer precision and the num-
ber of terms, with each ranging over several multiples
of 10. From Table 1, we see that the required com-
puter precision to solve the linear system as a function
of n is approximately 1	2n. We have used 1	5n as the
precision requirement in Figure 1 to be safe. For any
given n, the precision of the weights increases with
the computer precision, as shown in Table 1.
We find that the precision of the inversion, as mea-

sured by the base-10 logarithm of the absolute error
�fn�t� − f �t�� primarily depends on n provided that
the computer precision is above the threshold 1	2n.
The performance of the default power algorithm with
node set � ∗ and power set �∗ tends to be simi-
lar to Gaver-Stehfest, as described in Section 7 of
Abate and Whitt (2006), but the power algorithm per-
forms slightly better for 0 < t ≤ 10, significantly so
for smaller values of t. The ordering is reversed for
larger t, though; see the Online Supplement. A spe-
cific performance comparison for the transform f̂4 is
shown for five values of n in Figure 5. The precision
was set high here, so as not to be a factor. Reduction
to 1	2n produces no significant change.
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6. Zakian’s Algorithm
Zakian’s (1969, 1970, 1973) algorithm is described
in Section 2 of Abate and Whitt (2006); also see
Wellekens (1970), Singhal and Vlach (1975), Sec-
tion 3.3 of Davies and Martin (1979), and references
therein. It can be derived by introducing a ratio-
nal approximation for the exponential function in the
Bromwich inversion integral (2), i.e.,

ez ≈
n∑
k=1

�k
�k− z

 (23)

where z, �k, and �k are all complex numbers. Zakian
chose the complex numbers �k and �k to match
the first 2n coefficients in the MacLaurin series ex-
pansions of the functions in (23). That is accom-
plished through a Padé approximation; see Baker and
Groves-Morris (1996) and Saff and Varga (1978). The
Padé approximation arises when we apply Gaus-
sian quadrature to the integral (4). We implemented
Zakian’s algorithm based on the �n − 1�/n Padé
approximant of e−z, following pp. 522 and 523 of
Zakian and Edwards (1978).
Zakian’s approach yields the same system of equa-

tions as in (7) for the integer power set ��k�, namely,

n∑
k=1

�kj!
�
j+1
k

= 1 j = 012 	 	 	 2n− 1	 (24)

Unlike our real power algorithm with n nodes in � ∗,
here the nodes and weights are both variables, so that
there are 2n (nonlinear) equations in 2n unknowns.
The Padé theory guarantees that there is a unique
solution and provides an efficient algorithm. It is sig-
nificant that the nodes and weights from Zakian’s
algorithm are complex numbers, not real numbers.
By considering only integer powers, the Zakian

algorithm is especially tuned to polynomials and other
smooth functions with derivatives of high orders.
Since the nodes and weights are complex numbers,
the Zakian algorithm can be quite different from the
real power algorithms we consider, even for integer
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Figure 6 Good and Bad Performance of Zakian’s Algorithm

powers. The special structure of the Zakian algorithm
(�) makes it especially effective for such smooth func-
tions. Unfortunately, that special focus comes at a
penalty, because the Zakian algorithm turns out to
perform poorly for nonsmooth functions. We illus-
trate this sharply diverging performance in Figure 6.
For comparison, we show results for the algorithms
�, �, and � , together with � in Figure 6. For the
smooth function f1 ≡ sin�t�, Zakian produces far bet-
ter accuracy than any of the other algorithms, but for
the nonsmooth function f4, Zakian performs worse
than the other algorithms. All the algorithms perform
poorly for f1 for large t; see the Online Supplement.
We also exhibit this diverging performance by con-

sidering inversions of different functions only for �
in Figure 7.

7. Evaluating Established Algorithms
We now show how power test functions can be used
to evaluate the performance of the established algo-
rithms: Talbot (� ), Euler (�), Gaver-Stehfest (�), and
Zakian (�). As shown by Abate and Whitt (2006),
these other algorithms all can be expressed in the uni-
fied framework (3) by appropriate node and weight
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Figure 7 The Extremes of Zakian’s Algorithm

vectors � and �. Thus the algorithms are character-
ized by these vectors � and �, which are specified
in Abate and Whitt (2006). The Zakian weights and
nodes for n= 30 are given in the Online Supplement.
We display all the node sets in Figure 8.
In order to see how well these inversion algo-

rithms perform in the inversion of power functions,
we numerically identify the set of powers p for which
the power relation (7) holds to within a small spec-
ified error #, and the complementary set where it is
violated. For that purpose, let p+# �n� to be the smallest
nonnegative number p for which the pth power condi-
tion is violated by at least a small positive number #,

p+# �n�≡min
{
p≥0�

∣∣∣∣	
{ n∑
k=1

��p+1�
�
p+1
k

�k

}
−1

∣∣∣∣>#
}
	 (25)

Similarly, let

p−# �n�≡max
{
p≤0�

∣∣∣∣	
{ n∑
k=1

��p+1�
�
p+1
k

�k

}
−1

∣∣∣∣>#
}
	 (26)

We call these functions of n, p+# �n� and p
−
# �n�, the pos-

itive power threshold and the negative power threshold,
respectively. As candidate powers p, we consider all
numbers k/2, −200 ≤ k ≤ 200. As mentioned in Sec-
tion 1, for p ≤ −1, the powers correspond to pseud-
ofunctions, as discussed in Sections 12–14 of Doetsch
(1974) and the appendix there, and possibly to asymp-
totic behavior for large t, as characterized by Heav-
iside’s theorem on p. 254 of Doetsch (1974). We will
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Figure 9 Scoring the Gaver-Stehfest ��	, Euler ��	, Talbot �� 	, and
Zakian ��	 Algorithms Using Power Test Functions in Half
Powers. The Error Tolerance Is �= 0�05

show that these algorithms, with the exception of
Zakian, tend to satisfy the power relations for nega-
tive powers.
Thus the range �p−# �n� p

+
# �n�� is the smallest con-

tiguous interval of p among half powers for which the
pth power relation is satisfied within #. In Figure 9
we show p+# �n� and p

−
# �n� for the four algorithms �,

�, � , and � for 2≤ n≤ 40 and #= 0	05. We obtain the
points shown by fixing n and evaluating the power
conditions numerically. For p ≥ 0, the points to the
right and under each curve meet the power condi-
tions within #, while the points to the left and over
do not. Similarly, for p≤ 0, the points to the right and
over each curve meet the power conditions within #,
while the points to the left and over do not.
The single most striking observation from Figure 9

is that the positive and negative power thresholds
p+# �n� and p

−
# �n� are linear in n, demonstrating con-

sistent regular behavior as n changes. Moreover, for
p ≥ 0, all four existing algorithms meet the first few
power conditions within #, although they vary widely
in how many they meet. Figure 9 shows that Euler
performs slightly better than Gaver-Stehfest and that
Talbot performs much better than either of them,
which is consistent with extensive experience, includ-
ing numerical inversion examples for ten transforms
by all these methods in the Online Supplement.
Zakian’s algorithm is the best for p≥ 0, which trans-

lates into the spectacular inversion for f1 shown in
Section 6. On the other hand, for p < 0, Zakian’s algo-
rithm does not satisfy any power conditions; p−# �n�= 0
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Figure 10 p+
� �n	 and p−

� �n	 for � = 5 × 10−j , j = 1�2�3�4�5 for the
Euler Algorithm

for all n. In contrast, the Gaver-Stehfest, Euler, and
Talbot algorithms do meet some power conditions
within # for p < 0 with the same ranking as for p≥ 0.
Figure 9 helps explain why the Zakian algorithm is
fundamentally different from the other algorithms.
The Zakian algorithm evidently is highly tuned for
smooth functions (i.e., analytic functions, with deriva-
tives of all orders) at the expense of nonsmooth
functions.
We also observed that when p � �p−# �n� p+# �n��, the

pth power conditions rapidly diverge from 1. Further
analysis indicates that the lines in Figure 9 have addi-
tional regularity as we change the error tolerance #.
That is illustrated by Figure 10, which plots p+# �n�
and p−# �n� as functions of # for the Euler algorithm �.
Our experiments lead us to conclude that the power
thresholds are approximately linear in the two vari-
ables n and log10�#�. The positive power threshold
p+# �n� has approximately the linear formula

p+# �n�≈ cnn+ c# log10�#�+ c (27)

where the three parameters cn, c#, and c depend on
the algorithm, as indicated in Table 2.
In closing this section, we emphasize that the scor-

ing we have done is based on the power functions,

Table 2 The Positive Power Threshold p+
� �n	 =

cnn+c� log10��	+c for Different Algorithms

Algorithm cn c� c

Gaver-Stehfest 0.47 0.79 0�24
Euler 0.70 2.08 −0�52
Talbot 1.39 0.47 −0�17
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specifically, the power functions with half powers.
We have done experiments indicating that our results
extend to quarter powers, but it remains to consider
other test functions. Thus one should be careful in
extrapolating these results to all test functions.

8. Error Estimates
In this section, we briefly discuss a standard practi-
cal method to obtain error estimates (but not bounds)
while performing the numerical inversion. We rely on
multiple calculations, using different methods or dif-
ferent parameter settings. In doing so, we want to
be sure that we produce a genuinely different cal-
culation. That is easily achieved by using a different
algorithm. That can easily be achieved with power
algorithms by changing the node set, provided that
we re-solve the system of linear equations to get new
weights in each case.
Suppose that calculation i produces estimate xi for

the desired function value f �t�, 1 ≤ i ≤ m. We then
estimate the absolute error, say e�f �t��, by

e�f �t��≈min��xi− xj �� 1≤ i j≤m i �= j�	 (28)

If the pair �i j� yields the minimum in (28), then
either xi or xj can serve as the final estimate of f �t�.
We do this calculation for a low value of m, such as
m = 10, to ensure that small values are prohibitively
unlikely to occur by chance.
In many cases we will have additional information

about which estimates are likely to be more accu-
rate. For example, if we use a power algorithm with
increasing nodes sets, then we anticipate that the error
will decrease with i. In support, we should thus see
that the minimum is attained for the pair �m− 1m�
and that �xi−xm� decreases in i. We would then use xm
as our estimate of f �t� and �xm−1−xm� as our estimate
of the error. Since that should actually estimate the
error for xm−1, the estimate should be conservative. In
this well-ordered setting we would be suspicious of a
minimum obtained for an alternate pair �i i+ 1�.
We performed experiments for several transforms

with known inverses in order to verify that this
heuristic procedure is effective, and it is.

9. Extensions
9.1. Gamma Test Functions
With probability applications in mind, as in Abate and
Whitt (1995), it is natural to consider gamma proba-
bility density functions (pdfs), because arbitrary prob-
ability distributions on the positive halfline �0�� can
be approximated arbitrarily closely by finite mixtures
of gamma distributions. (Gamma distributions can be
made arbitrarily close to point masses on the positive

halfline, and so finite mixtures of gamma distribu-
tions can be made arbitrarily close to finite mixtures
of point masses on the positive halfline, which in turn
are dense in the family of all probability distributions
on the positive halfline, using standard metrics, such
as the Prohorov metric; e.g., see p. 77 of Whitt 2002.)
Gamma test functions are also of interest because

they are natural generalizations of the power test
functions we have considered, but for which the func-
tion argument t remains in the picture. Let g�t�/0�
be a gamma pdf with rate 0 and order /, and let
ĝ�s�/0� be its Laplace transform, i.e.,

g�t�/0�≡ 0e
−0t�0t�/−1

��/�
and

ĝ�s�/0�≡
(
0

s+0
)/
	

(29)

In the unified framework, exact inversion of a
gamma pdf at t means

g�t�/0�= 1
t

n∑
k=1
�kĝ

(
�k
t
�/0

)
 (30)

which, upon substitution and simplification, becomes

n∑
k=1

��/�

�0t+�k�/
�k = e−0t	 (31)

Note that the power relation (7) is obtained from
(31) in the special case 0= 0. Moreover, for the special
case /= 1, we get the partial fraction representation
of the exponential function. From (31), it is appar-
ent that we can develop a real-variable gamma inversion
algorithm just like the real-variable power inversion
algorithm that we have considered.

9.2. Complex Variables
An attractive feature of the power algorithms we have
considered is that they only involve real variables,
but we can consider extensions to complex variables.
The framework (3) also applies if f is a complex-
valued function of a nonnegative real variable. More-
over, whether f is real-valued or complex-valued, the
weights and nodes in (3) can be real or complex. For
example, both are complex in Talbot’s algorithm.
If f is complex-valued, then we approximate the

real part by

	�f �t�� ≈ 	�fn�t��≡
1
t

n∑
k=1

	

{
�kf̂

(
�k
t

)}

= 1
t

n∑
k=1

[
	��k�	

{
f̂

(
�k
t

)}

−���k��
{
f̂

(
�k
t

)}]
	 (32)
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For the general case of complex weights and nodes,
the power conditions are

	

{ n∑
k=1

��p+ 1�
�
p+1
k

�k

}
= 1 p ∈�	 (33)

In the case of complex nodes and weights, we can
again obtain the system of linear equations in (9). We
fix the nodes �k to complex numbers with positive
real parts. We can again solve the linear system by
Mathematica.
We can still formulate an LP that will produce

weights that minimize the violation of each equation.
For two complex numbers s1 and s2, s2 �= 0, we have

	

{
s1
s2

}
= 1

�s2�2
�	�s1�	�s2�+��s1���s2��	 (34)

Let �	
k and �

�
k be the decision variables for the real

and imaginary part of �k. The real LP that relaxes
the constraints and minimizes the violation of each
constraint in (8) here becomes the LP with variables
�	
k , �

�
k , and #j :

min
�	��#

m∑
j=1
cj#j

s.t. 1−#j≤
n∑
k=1

��pj+1�∣∣�pj+1k

∣∣2
(
	
{
�
pj+1
k

}
�	
k +�{�pj+1k

}
��
k

)

≤ 1+ #j 1≤ j ≤m (35)

#j ≥ 0 1≤ j ≤m
	��1�≥ $ 	��k�−	��k−1�≥ $ 2≤ k≤ n

where, as before, the positive numbers cj weigh the
violation of the jth row of system (35).

10. Conclusions
10.1. Summary
In Section 2 we developed new real-variable power
inversion algorithms within the unified framework (3)
proposed by Abate and Whitt (2006). The algorithm
for constructing power inversion algorithms is sum-
marized in Figure 1. The algorithm is created by solv-
ing the linear system (9), involving the generalized
Vandermonde matrix A in (10) to obtain the weights.
For given nodes and weights, the algorithm itself is
simply the sum (3), typically involving only n = 30
terms, but high computer precision is required, e.g.,
1	5n.
In Section 3 we showed how the powers can be

advantageously chosen starting from a series expan-
sion of the transform, as in (14). In Sections 3 and 4
we developed an effective default power set �∗, dis-
played in (16), and an effective default node set � ∗ ≡
�12 	 	 	 n�. The default power algorithm behaves

about the same as the Gaver-Stehfest algorithm, pro-
viding significant improvement for small t, but per-
forming slightly worse for large t.
In Section 4 we showed that the power algorithm

is robust to changes in the positive real node set, pro-
vided that the linear system is re-solved to get new
weights. In Section 5 we discussed accuracy and pre-
cision requirements of the power algorithms.
In Section 6 we discussed the original Zakian (�)

algorithm, which served as motivation for the unified
framework. We observed that � can be regarded as
a special power algorithm, using only integer powers
and complex nodes and weights. The nonlinear sys-
tem of 2n equations in 2n unknowns (the n nodes and
n weights) can be efficiently solved by Padé approx-
imation, which is easily carried out via Mathematica.
We showed that � has inconsistent performance, per-
forming spectacularly well for smooth functions, but
poorly for nonsmooth functions.
In Section 7 we showed that the power test func-

tions can be used to evaluate the performance of other
algorithms within the unified framework (3). Con-
sistent with experience, this scoring shows the rank-
ing: Talbot (� � > Euler ��� >Gaver-Stehfest ��). That
is confirmed by detailed inversions of several trans-
forms by all the algorithms in the Online Supplement.
In Section 8 we discussed how to estimate the error
in numerical inversion calculations. In Section 9 we
mentioned two possible extensions: (i) gamma test
functions and (ii) complex-variable power algorithms,
where the function f , the node vector � or the weight
vector � can be complex-valued.

10.2. Directions for Future Research
There are many promising directions for future re-
search, which we hope to pursue. First, we still seek
theoretical explanation for many of the experimen-
tal results reported here: How can we explain the
linear structure in Equation (27) with the algorithm-
dependent coefficients, as illustrated in Figure 10?
How can we better explain the poor performance
of the Zakian algorithm for nonsmooth functions, as
illustrated in Figures 6 and 7? Can we better under-
stand the performance of the power algorithm as a
function of t, gaining insight into when there is degra-
dation in performance for large t, extending the initial
work of Abate and Valko (2004)? And what special
methods can we develop to treat the difficult func-
tions for large t?
It would also be desirable to make the power algo-

rithms more effective. Toward that end, we need
to develop a systematic algorithm to determine the
series expansions in (14) and (15). The proposed
method in the fourth paragraph from the end of Sec-
tion 3 is being explored. It would also be of interest to
apply the new methods by Demmel and Koev (2005)
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for solving linear systems with generalized Vander-
monde matrices without subtractive cancellation, to
solve the linear systems in the power algorithms more
efficiently. It would be of interest to consider fur-
ther the application of mathematical programming
to create power algorithms, e.g., via (8). For fixed
nodes, that means linear programming, but with high
precision. For variable nodes with weights of alternat-
ing signs, that means signomial programming.
Here we have restricted attention to real-valued

power algorithms. We have begun to consider analo-
gous complex-valued power algorithms, starting with
complex nodes, such as the nodes in � , �, and �.
The general approach is outlined in Section 9. Prelimi-
nary experimental results show, first, that it is possible
to improve the power algorithms by using complex
nodes instead of real nodes and, second, it is possible
to improve the other algorithms for some transforms
by using their complex-valued nodes but new weights
obtained from a power algorithm. In particular, it is
possible to improve the performance of Zakian’s algo-
rithm dramatically for nonsmooth functions by using
the Zakian nodes but replacing the Zakian weights
by those obtained from the default power algorithm,
based on the Zakian nodes and the default power
set �∗.
Finally, it would also be of interest to consider other

families of test functions, such as the gamma test
functions mentioned in Section 9, and to apply similar
methods to other transforms.
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