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THE BEST ORDER FOR QUEUES IN SERIES*

WARD WHITT
AT & T Bell Laboratories, Holmdel, New Jersey 07733

An important design problem for queueing systems is to determine the best order for two or
more service stations in series. For given external arrival process and given service-time
distributions, the object is to determine the order of the stations (to be used by all customers)
that minimizes the expected equilibrium sojourn time per customer. Unfortunately, very little
is known about this problem because exact analysis is extremely difficult. This paper applies
approximation methods recently developed for networks of queues to obtain approximation
formulas and useful heuristic design principles.

(TANDEM QUEUES; APPROXIMATIONS; QUEUEING NETWORKS; QUEUEING
SYSTEM DESIGN)

1. Introduction and Summary

There are many important design problems for queueing systems about which very
little is known because the models tend to be intractable. However, important insights
and useful practical guidelines often can be obtained by using approximations. The
purpose of this paper is to show how approximation methods can be applied to one
important design problem: determining the best order for two or more single-server
stations in series. For given external arrival process and given service-time distribu-
tions, the object is to determine the order of the stations that minimizes the long-run
average sojourn time (time in the system) per customer.

This design problem can arise, for example, in setting up a production line. In some
cases the total job is divided into separate tasks that can be performed in any order.
The object then is to determine in advance a specific order for the tasks to be followed
by all jobs.

In our model, each station has a single server, an unlimited waiting room and the
FIFO (first-in first-out) discipline. Each customer (or job) is served once at each
station, with the order of the stations being the same for all customers. The stations are
mutually independent and independent of the arrival process; i.e., the sequences of
service times at the different stations and the sequence of interarrival times are
mutually independent. The service times at station i, denoted by S, k > 1, are i.i.d.
(independent and identically distributed) with finite mean 7, = ES;; and finite squared
coefficient of variation ¢ (variance divided by the square of the mean). The external
arrival process is a renewal process, perhaps as a result of approximation, so that the
interarrival times, denoted by 7, k > 1, are also i.i.d. The interarrival times have finite
mean A~!'= ET, and finite squared coefficient of variation cf. We assume that
p; = A1; < 1 for each i, so that the system is stable and equilibrium exists. Our object is
to arrange the stations to minimize the expected (equilibrium) sojourn time or,
equivalently, the expected sum of delays (waiting time excluding service time) at all the
stations. We use the squared coefficients of variation ¢’ and c¢2 to approximately
characterize the variability of the general interarrival-time and service-time distribu-
tions.

There is of course one familiar special case. If the arrival process is a Poisson
process and all the service time distributions are exponential, then the equilibrium
departure processes are Poisson processes, the sojourn times (waiting time plus service
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time) at the different stations are independent, and the order of the stations does not
affect the total sojourn-time distribution; see Burke (1956), Reich (1957), Kelly (1979),
and Bermaud (1981). In fact, Weber (1979) has established the remarkable result that
the final departure process is independent of the order of the stations for an arbitrary
arrival process, given exponential service-time distributions at all stations. As a
consequence, in this situation the distributions of the sojourn times in the entire
network are independent of the order of the stations. A similar, somewhat more
apparent, result had previously been established for stations with deterministic service
times by Friedman (1965). As Weber (1979) notes, this property is not maintained
when both exponential and deterministic servers are present.

When we drop the special exponential or deterministic assumptions, the order does
matter, but unfortunately the general case is very difficult to analyze exactly, primarily
because the departure processes are not renewal processes. Important theoretical
results for the nonexponential case have been obtained by Tembe and Wolff (1974),
and Pinedo (1982a, b), but again under very restrictive conditions, in particular, when
the service times at some stations are constant or when the service times at all the
stations are nonoverlapping, i.e., ordered with probability one: P(S;,; < S,) = 1.

Unfortunately, there seems to be nothing in the literature that suggests what to do in
more general cases. Moreover, none of the results in the literature are quantitative;
they do not indicate how much the order matters. In this paper we begin to address
this problem. We apply approximation methods for networks of queues in Whitt
(1982a, 1983a, 1984d) to obtain heuristic design principles. We provide a method,
albeit approximate, to determine what to do and how much it matters. Our procedure
also yields conjectures about possible theorems. Moreover, our procedure yields
candidate solutions that can be tested more carefully by simulation. If there are n
stations in series, then there are n! possible arrangements. For example, if » = 6, then
n!=720. We can easily calculate the approximate expected sojourn time for all 720
alternatives, but we certainly would not want to simulate all 720 alternatives.

Of course, since the results here are based on approximations, we should have some
solid evidence that the approximations are reasonably accurate. We do not make
comparisons with simulations here, but extensive comparisons have been made and are
reported in Whitt (1983b, 1984d). Based on those papers, we regard a difference in the
total expected waiting time for two orderings as significant (compared with typical
approximation errors) if it is greater than 10%. The examples in this paper indicate that
the order often is significant.

It is important to understand how our approximation procedure works and when it
tends to work well, because it does not work well in all circumstances. It is based on

approximating the arrival process to each queue by a renewal process partially
characterized by the first two moments of the renewal interval. Then the queues are
analyzed separately as GI/G/1 queues partially characterized by the first two mo-
ments of the interarrival-time and service-time distributions. Even for actual GI/G/1
queues, the approximations are not good for all parameter values and all distributions.
In particular, the reliability of the approximations deteriorates in the presence of
unusually high variability, especially in the arrival process. Moreover, even for fairly
reasonable parameter values, the approximations can perform poorly with unusual
distributions, such as two-point distributions; see Whitt (1984a). On the other hand,
the approximations usually perform reasonably well for typical distributions; see
Klincewicz and Whitt (1984) and Whitt (1983b, 1984a, b).

We aim to treat the more standard probability distributions such as E, (Erlang), M
(exponential) and H, (hyperexponential, a mixture of two exponentials), and for H, we
avoid the extremes, e.g., we have balanced or nearly balanced means (Whitt 1982a,
§3). To illustrate, here is the kind of example we want to treat.



BEST ORDER FOR QUEUES IN SERIES 477

ExaMPLE 1. Consider two stations in series with a Poisson arrival process having
rate A= 1. Let station one have an E, service-time distribution with 7, = 0.9 and
cZ = 0.5 and let station two have an H, distribution with 7, =0.8 and c2 = 8.0 (and
balanced means). The literature seems to provide no guidance in this case, but our
approximate analysis immediately indicates that it is much better to have station one
first. The approximate expected total waiting times with orderings (1,2) and (2, 1) are
18.4 and 38.6, respectively. The difference is clearly significant, allowing for approxi-
mation error.

Since each arrival process is the departure process from the previous queue, we
exploit renewal-process approximations for departure processes; see Whitt (1984d) and
references there. As in Whitt (1983a), we use the stationary-interval method exclu-
sively, which attempts to capture the stationary distribution of one interdeparture
interval without taking into account the dependence among successive intervals. This
approximation usually performs well, but it can perform poorly under certain heavy
traffic conditions, when the asymptotic method becomes appropriate, but this situation
apparently does not often arise in practice. The approximation also tends to perform
poorly when several consecutive stations have deterministic or nearly deterministic
service-time distributions. Then our approximate decoupling of the stations tends to be
unjustified. This phenomenon is well illustrated by considering several consecutive
stations with identical deterministic service times; our approximation fails to capture
the pipelining effect. It is easy to see that the actual arrival process to all deterministic
stations after the first is just a translated version of the departure process from the first
station, whereas our approximation has the variability parameters of the successive
arrival processes converge to 0 geometrically fast. In fact, in this special case the actual
convergence is in one step and the limit is typically not evenly spaced deterministic
arrivals. To capture the pipelining effect, we propose a modified approximation
procedure; see §4. We first reduce the system by regarding two or more consecutive
stations with deterministic service times as a single station for the purpose of calculat-
ing expected waiting times (excluding service times). The same procedure is usually
appropriate for nonoverlapping service-time distributions too.

The rest of this paper is organized as follows. §2 presents the approximation
formulas that enable us to calculate easily the approximate expected sojourn time for n
stations in series. §3 discusses the case of two stations in series. §4 describes the
refinements for several consecutive queues with deterministic service-time distribu-
tions. §5 presents some general heuristic design principles. §6 discusses related theoreti-
cal results. §7 considers various special cases for more than two stations in series,
including the case of equal service rates and cases of bottleneck stations. Finally, §8
discusses a simple algorithm based on pairwise comparisons of adjacent stations.

2. The Basic Approximation Formulas

In this section we describe a simple procedure for calculating the approximate
expected total delay for n stations in series. We begin by approximating the departure
processes by renewal processes partially characterized by the first two moments of the
renewal interval; see Whitt (1982a, 1983a, 1984d). We recursively apply an approxima-
tion for the departure process for a GI/G/1 queue (with a renewal arrival process).

The mean of the renewal interval in the approximating renewal process is just the
mean of the interarrival time, so that the departure rate equals the arrival rate. The
squared coefficient of variation of the renewal interval in the approximating renewal
process is cJ, defined by

cg=pcl+ (1= p?)cs, (1

where subscripts indexing the station have been omitted.
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Iteratively applying (1), we obtain the following recursive formula for c2,, the
variability parameter of the departure process from n queues in series:

Cjn = p,?CSZn + (1 - pl%)ct%,n—l . (2)

The closed-form version of (1) and (2) is

n
2 _ 2 2.2
Can = Zn.lca + 2 zn,k+ 1Pk Cske where (3)
k=1

j=n
zn,k = Hk(l —_ 9/2), 1 < k < n, al‘ld Zn‘n+| = l. (4)
j=

As a consequence of (1), ¢2 is a convex combination of ¢? and c_é, 1 < j< n The
weight on cfj is increasing in p; and decreasing in p, for k 7 j.
Next we approximate the expected equilibrium waiting time (delay excluding service

time) in a GI/G/1 queue by
EW = rp(ci + ¢)/2(1 - p). %)

This is the MFR (monotone failure rate) approximation discussed and evaluated in
Whitt (1982b) and references there, which is a slight simplification of the approxima-
tion for EW used in Whitt (1983a). In Whitt (1983a) a refinement of (5) due to
Kraemer and Langenbach-Belz (1976) is used when ¢ < 1, which always reduces (5).
In Whitt (1983a), formula (5) is multiplied by g(p,cZ,c2) when ¢? < 1, where

2
g(p 0202)=exp —2(l—p) (l_caz)
o ¥ (a+a) |

(6)

The factor g tends to be significantly less than 1 when p, ¢? and ¢? are relatively small.
For example, it is easy to check that (6) yields a significant reduction and is accurate
for the D/M/1 queue. However, for simplicity we often use (5). Improved approxima-
tions can be expected from (6).

The standard heuristic algorithm, then, is to calculate the approximate value of
EW,+ --- + EW, for each of the n! permutations and choose the smallest value.
This can be done with formulas (1)-(6) or via the QNA program described in Whitt
(1983a). However, using (5), we can also describe the solution in several special cases
in order to obtain simple heuristic design principles.

3. Two Stations in Series

In this section we consider the special case of two stations. Let T = W, + W, be the
total waiting time and let 7(1,2) and T(2,1) represent the total waiting time as a
function of the two possible orderings. From §2, using (5) without (6), we have the
approximations

7101(‘—'3 + cszl) + "'292(912‘—’31 +(1- pf)cf + Cszz)
AT=py) TTErs)
202 2 202 2
’TszPl(Csl - Ca) 1'119|Pz(cs2 - ca)
ET(1,2)— ET(2,1) = - . 8
(1) = ETQ 1) = == e ®)

As a consequence, for two stations in series we obtain the following simple heuristic

ET(1,2)= and ©)
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for ordering the stations. For each station i, calculate the quantity §; defined by

=(I—p)(ci—cl) ©9)

and order the stations so that §; < §,.

For the case n = 2, we can see how much the order matters via the approximation
formula (8). For the special case in which 7, =71,=17, so that p, =p,=p, the
approximate difference is

p(el — cd)

Moreover, when ¢ < c¢2 in this special case,
ET(2,1)— ET(1,2) _ p( 5 — ) < p? (i
ET(1,2) (1 +p%)ch + (2= 0%l + ) ’

so that the maximum impact of the order is 100p2%. Formula (11) shows that the order
should matter less as ¢? increases and p decreases. On the other hand, the relative
difference in (11) actually approaches p? as c2— 0 and ¢ — 0, so that the order can be
significant.

Consistent with the theoretical results in Friedman (1965) and Weber (1979),
unequal ¢ evidently matters more than unequal 7;. When p, < p, and ¢ = ¢}, = ¢}, it
is convenient to look at the normalized difference dividing by the waiting time in a

single station having the larger traffic intensity. Then

IN(1 = py)(ET(1,2) = ET(2,1)) p(c? = c2)(p2— p1) <

= 2 12
(et ) @rayi-a

The normalized difference in (12) is small if either p, is small or p, is near p,.

4. Pipelining: Deterministic Service Times

As indicated in §1, when several consecutive stations have deterministic service-time
distributions, our approximation in §2 does not adequately represent what is happen-
ing. To capture the pipelining effect, we suggest a modification of the algorithm. We
change the system before calculating the total expected delay. Any time several
consecutive stations with deterministic (or nearly deterministic) service-time distribu-
tions appear in series, we replace them by the single station among them having the
largest service time. It is also natural to apply this method with nonoverlapping
service-time distributions; then the single station would be the one with the largest
service times plus its own variability parameter. We use the reduced network to
calculate the approximate total expected delay, but we use the original expected
service times to calculate the expected total sojourn time.

ExaMprLE 2. Consider six stations in series with a Poisson arrival process having
rate A = 1. Let there be two M stations and four D (deterministic) stations. Let the
mean service times be identical: 7, =1,= .. = 1,=0.8. Consider four possible
orderings: (D,D,D,D,M,M), (M,D,D,D,D,M), (M,M,D,D,D,D) and (D, M, D,
M, D, D). The first three have maximal pipelining, but the fourth does not. These
reduce to (V,M,M), (M,D,M), (M,M,D) and (D,M,D, M, D), respectively. The
total expected service time at all stations is 6 X 0.8 = 4.8. The approximate expected
total delays (excluding service times) before and after the reduction are displayed in
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TABLE 1

The Approximate Expected Total Delay (Excluding Service Times) in Equilibrium for the Six
Queues in Series in Example 2: Illustrating the Pipelining Refinement

Six-Node Six-Node Reduced Reduced
The Model Model Model Model
Arrangement by (5) by (6) using Whitt (1983a) by (5) by (6) using Whitt (1983a)
I. DDDDMM 7.93 745 6.89 6.81
(Reduction DMM)
2. MDDDDM 8.38 7.92 7.18 7.11
(Reduction MDM )
3.MMDDDD 9.65 9.34 8.00 8.00
(Reduction MMD)
4. DMDMDD 9.49 9.23 8.83 8.65

(Reduction DMDMD)

Table 1. These are computed both by the simple formula (5) and the refinement (6). It
is evident that the reduction has a significant impact. Before the reduction, the
orderings (M,M,D,D,D,D) and (D,M,D,M,D,D) seem to perform about equally
well, but after the reduction, we clearly see the advantage of the pipelining effect. Note
that the reduced formula for the (M,M,D,D,D,D) system is exact because the
stationary departure process from an M/M/1 queue is Poisson. By each method,
(D,D,D,D,M,M) is the preferred order; this is consistent with heuristic design
principle P1 in the next section. We regard the advantage over (M, D,D,D,D, M) as
marginal, however. Finally, the refinement in (6) does not seem critical for determining
which order is best and how much it matters.

5. Heuristic Design Principles

The method we propose is based on a simple formula for the approximate expected
total delay for any alternative, so that we have an algorithm for evaluating each
alternative. However, if possible, we also want to extract heuristic design principles
from the formula. For example, the results of Tembe and Wolff (1974) suggest three
plausible heuristic design principles: (i) the stations should be ordered according to the
variability of the service-time distributions, with the least variable distributions appear-
ing first, e.g., so that ¢Z < ¢4 < --- < c2 (Theorem 2); (ii) the station should be
ordered according to the mean service times, with the largest appearing first (Theorems
1 and 3); and (iii) as a combined principle, if the stations can be ordered so that
A <ci<---<ctandr >7,> -+ > 7, both hold, then this order is desirable.

Our analysis indicates that these candidate heuristic design principles are inade-
quate; we introduce what we believe are better ones. (For the record, these first
candidates were not put forth by Tembe and Wolff 1974.) We give evidence in support
of heuristic design principle (i) in the case of equal mean service time. There is a
simple intuitive explanation. Greater variability in the service times not only tends to
increase the waiting time at that station, but it also tends to increase the variability of
the departure process, which in turn tends to increase the waiting times at subsequent
stations. Hence, it is desirable to have the less variable service times first. (There are
limitations to this reasoning, however, because Theorem 1 of Pinedo (1982a) provides
a counterexample. The counterexample only applies under very restricted conditions
though.)

We argue that heuristic design principle (ii) above is inadequate even if the
variability parameters c2 or the entire service-time distributions are the same at each
station. For the case of two stations, we propose the simple heuristic (9) for ordering
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the stations. Note that (9) implies that the order should not matter whenever ¢2 =
c2 = c3, i.e., when the variability of all the service times and the external interarrival
times are identical, as occurs in the one case we can solve analytically (Poisson arrival
process and exponential service times), but (9) does not capture the full implications of
Weber’s (1979) result. However, when ¢?2 is near ¢ = ¢, our approximation suggests
that the order will not matter much. From (9) we conclude that the order should be
good if ¢4 < ¢ < ¢2. This case was illustrated in Example 1.

If )= 12, then p, =p, and §, < §, is achieved via (9) by having ¢ < ¢, which
supports the first heuristic design principle above, under the condition of equal mean
service times. When 7, = 7,, it is natural to conjecture that the ordering (1,2) with
¢} < ¢ is in fact optimal if in addition the service times satisfy a stronger convex
stochastic ordering; see Stoyan (1983), Whitt (1984c) and references there. Pinedo
(1982a) indicates that we also need to control the variability of the arrival process. In
particular, for n stations in series we make the following conjecture.

Conjecture 1. If Ef(T,)) < Ef(M) and Ef(S,,) < Ef(S,)) < - -+ < Ef(S,,) for all
convex real-valued functions f, where M is an exponential random variable with mean
A~ then the optimal order is (1,2, .. ., n).

We remark that the condition in the conjecture implies that 7, =7,= .. =17,
3 <cy< -+ <ckandc?< 1. Forn> 2, this ordering is optimal by our heuristic;
see §7.

If ¢2 =ck=c?and 2> c2, then §, < 8, via (9) by having 7, > 7,; however, if
¢2 > c2, then we need 7, < 7,. Th1s second case shows that, if (9) is reasonable, then
candidate heuristic design principle (ii) is inadequate. For two stations, it is necessary
to know the sign of (c2 — ¢2). Moreover, the given order may not be good if ¢ , <c}
and p, > p,, which shows that the combined heuristic design principle (iii) is also
inadequate.

Our analysis in §7 produces several refined heuristic design principles for » stations
in series:

(P1) If 7-, = 7-2 S then having ¢4 < ¢4 < - - - < c2, is desirable.

(P2) If c s, c22 cee = cs,,, then 7, > T2 2T, is desirable.

(P3) If 2 > ci=ch=---=c} thent <7,< -+ <1, is desirable.

Our analys1s also suggests the refinement:

PHIf 2<ci<ch<---<ciandr >1,> - >, then the order is desir-
able.

Experimental evidence indicates that (P1) operates with much greater force than
(P2) or (P3). The order tends to matter much more when the variability parameters
differ with common means than when the means differ with constant variability
parameters. This is to be expected from Weber (1979).

An important addition to the previous heuristic design principles is the consideration
of the variability of the arrival process. It is easy to see that all these refined heuristics
are optimal given approximation formula (9) for » = 2. For all n, we establish that P1,
P2 and P3 are optimal given our approximation formulas and we conjecture that P4 is
optimal as well (§7). These heuristic design principles suggest conjectures similar to
Conjecture 1. For example, P4 suggests the modification of Conjecture 1 obtained by
adding Ef(T,) < Ef(S,,) and requiring that f be nonincreasing and convex. A conjec-
ture related to P2 might have the services times S, destributed as (¢, /¢,;)S,; for each
k > 1, a typical case being the exponential distribution. The idea, of course, for
theorems is to have more control over the distribution than is provided by the
parameters ¢? and c2 when making comparisons.

Our analysis suggests that for more than two stations simple heuristics, e.g.,
involving only pairwise comparisons, will not work consistently (§7.4). It seems
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necessary to calculate the expected total delay for every permutation and compare the
results. The approximation formulas provide a simple way to do this.

6. Related Literature

It is of course important to relate our heuristics to the theoretical results which have
been established. It is significant that the conclusions sometimes disagree. With such a
conflict, theorems usually fare better than heuristics, but we believe that the theoretical
results do not rule out the heuristics here because the theorems apply to very special
situations. The deterministic and nonoverlapping service-time distributions in Pinedo
(1982a) and Tembe and Wolff (1974) tend to keep the entire system tightly coupled.
For our approximations, we usually need more randomness to have appropriate
mixing or smoothing.

For example, Theorem 2 of Tembe and Wolff (1974) implies that the optimal order
is (1,2) if ¢4 = 0. This is inconsistent with (9) if ¢ < c2(p; — p,)/(1 — p,). To have
inconsistency, we thus must have p, > p,. If p, and p, are close, ¢ will be near 0. On
the other hand, if p, is small, then the order does not matter much.

The theoretical results certainly indicate limitations of our heuristics (in anticipated
directions). On the other hand, our heuristics suggest that different heuristics suggested
by the theorems may not be appropriate in our setting. For example, our analysis
suggests that general rules of thumb involving bowl-shaped distributions of means and
variances proposed by Pinedo (p. 323 of 1982a and p. 160 of 1982b) are not
appropriate in our setting. (Again for the record, Pinedo did not suggest using his
heuristics with an external arrival process.) To be specific, we consider another
example.

ExampLE 3. Consider five stations in series with a Poisson arrival process having
arrival rate A = 1. Let there be two H, stations, two M stations and one D station. In
particular, let 7, =7,=--- =7,=0.8 and let ¢3 = c5=8.0, ¢3=c% =10 and X
= 0.0. Our heuristic design principle P1 suggests the order (5,4, 3,2, 1), whereas Pinedo
(1982a, b) suggests (1,3,5,4,2) if we apply the bowl heuristic to our model with an
external arrival process. The approximate expected total equilibrium delay for (5,4,3,
2,1) and (1,3,5,4,2) computed by Whitt (1983a) are 42.6 and 46.7, respectively. The
difference of 9.6 percent is perhaps not conclusive, but certainly (1, 3, 5,4, 2) should not
be strongly preferred. Similarly, if the mean service times are changed to 7, = 7, = 0.5,
73 = 74, = 0.8 and 75 = 0.9, our heuristic design principle P4 suggests again (5,4,3,2, 1),
whereas Pinedo’s bowl heuristic suggests again (1, 3, 5,4, 2). (P4 does not apply exactly
because c2 = 1 > 0 = cX.) The respective approximate total expected delays computed
by Whitt (1983a) are 13.8 and 19.3. It is likely that the 39.9 percent difference in favor
of P4 is significant. Finally, suppose that again 7, =7,=0.5, 7,=17,=0.8 and
75=10.9, but ¢2=2 for all i. Then our heuristic design principle P2 suggests again
(5,4,3,2,1), whereas Pinedo’s bowl heuristic suggests again (1,3,5,4,2). In this case
the respective expected equilibrium delays are 23.8 and 23.0. Here the results favor
Pinedo’s bowl heuristic, but the difference of 3.5 percent cannot be regarded as
significant. This last case is consistent with Weber (1979), which suggests that the order
should not matter much when the variability parameters are all identical.

Some of the relevant theoretical results are for the related scheduling model in which
all customers are initially in the first queue (Pinedo 1982a). It is clear that an external
arrival process makes a difference (Example 3 is a demonstration), so that we cannot
immediately transfer conclusions from the scheduling model where there is no external
arrival process, but the scheduling results do apply in two ways. First, the scheduling
model with m customers initially in the system can be regarded as a stationary batch
arrival process with low intensity. Moreover, it is possible to regard this arrival process
as a renewal process. For example, the interarrival-time would be a two-point distribu-
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tion, attaching some probability p to 0 and probability 1 — p to some constant K. The
number of customers in each batch is then geometrically distributed, but this presents
no problem because the scheduling results extend to random numbers of customers
initially in the system. However, the arrival rate must be low, so that each finds an
empty batch system. It should be clear that this arrival process is quite unusual, so that
‘'we would not expect our approximation to perform well for it. For example, the
interarrival-time distribution is one of the extremal distributions considered in Whitt
(1984a).

We can also apply the scheduling results by regarding the external arrival process as
the departure process from an additional station inserted before the others. The
service-time distribution at this station is the original interarrival-time distribution.
Since the arrival process is renewal, these service times are also independent and
identically distributed. However, when we consider possible permutations of the
stations, this extra first station is not free to move.

For the scheduling model, another important result has been obtained indepen-
dently by Dattatreya (1978) and Muth (1979). They showed that the distributions of
the sojourn times in the system are unchanged if the order of all the stations is
reversed. However, it does not appear that this property can be usefully applied in our
setting. It suggests that we could look for appropriate symmetry after the external
arrival process has been incorporated by adding a new first station and the interdepar-
ture times in the final departure process are represented by service times in an
additional station at the end. The reversal property could be exploited in our situation
whenever the departure process from the network happens to be distributed approxi-
mately the same as the arrival process for any orderings of stations in between.
However, this condition implies that the order of the stations does not matter for our
criterion of expected sojourn time.

7. Special Cases for More Than Two Stations

In this section we consider n stations in series, basing all our conclusions on ap-
proximation formulas (1)-(9).

7.1.  Equal Mean Service Times: Heuristic Design Principle P1
Suppose that 7, =71,= -+ =1, =1,s50 that p, =p,= - -+ =p, =p. Then

ET=§EW,=ﬁ{ 2”j(l—p)+§] 1+p? _ﬁj_ (1—p2)”. (13)

From (13) we see that the desired order is independent of ¢? in this case. Moreover,
since the coefficients of c2 are decreasing in i, by the rearrangement theorem p 261 of
Hardy, Littlewood, and Polya (1967), (13) is minimized by having ¢ < ¢ < - - -
< ¢2,. It is also significant that the reverse order is the worst arrangement, by the same
argument.

Note that the weights attached to c2 in (13) vary from 2 to 1 + p. Hence, it is easy
to obtain a rough estimate of how much the order matters. A lower bound on the final
sum in (13) is (1 — p2)(c2ax — C2min) Where ¢, and c2;, are, respectively, the
maximum and minimum c2 This bound is obtained by considering a simple switch
between the first and last stations. A crude upper bound is the lower bound multiplied

by n/2.

7.2. Heuristic Design Principles P2 and P3

Next suppose that ¢ = c5 = -+ =2 = ¢? and consider any two successive sta-

tions, say j and j + 1, with cfj the variability parameter of the arrival process to station
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Jj- Note that

o= (=)= o)+ (= [( - =) ()

so that ¢ ,+1 1s independent of the order of stations j and j + 1. Hence, we can obtain
the claimed optimal order according to heuristic design principles P2 and P3 by
considering a sequence of pairwise switches using (9), disregarding all other stations.
For this reduction, we also use the fact that ¢; < ¢/ for all j if and only if ¢} < ¢Z.

7.3. A More General Pairwise Switch

Now suppose that we are considering the order of the first two stations of n stations
in series in which ¢2 < ¢} < ¢35 < ¢% and 1, > 7, > 7, for k >2. We show that the
order (1,2) is better than the order (2, 1). Switching to (2, 1) increases the total expected
waiting time by an amount described by (8), which is bounded below by

Ping(cszz - s21)
- P e |

ET(2,1) — ET(1,2) YT (15)
On the other hand, it is easy to see that switching from (1,2) to (2, 1) lowers c2, by
p2p3(c — c2). Here there is a tradeoff in going from (1,2) to (2, 1): increase the total
expected waiting time at the first two stations and decrease the total expected waiting
time at all subsequent stations. However, since 7, < 7, and c2 > c3 for all k, the
decrease caused in the total expected waiting times at all subsequent stations by a
decrease in c2, of y is

no e[ T2I(1 - 07) ] y
Yk§=:3 2)\(1 —‘pk) < 2}\(] ._pz) 2 pk[ H (1 )] < 2—}\(1_—’)2) . (16)

Here y = p?p3(c3 — c2), so that the decrease in total expected waiting time at all
stations after the second is bounded above by the bound in (15). Hence, (1,2) is better
than (2,1) for any arrangement of any number of additional stations having 7, < 7,
and c¢2 > c2 for k >2. A similar analysis applies if ¢ > ¢ > ¢4 > ¢2 and 7, < 7,
< 7, for all £ > 2. This comparison is a possible tool for prov1ng P4 by con51dering
only pairwise switches, but note that we need c2 appropriately related to c2 and c3 for
the two stations under consideration. The more general principle P4 remains a con-
jecture.

7.4. A Bottleneck Station

Next suppose that one station is a bottleneck in that it has a much higher traffic
intensity than any other station. If this traffic intensity is sufficiently high, then the
total expected delay is dominated by the expected delay at this station and the object
is to minimize the 2 of the arrival process to the bottleneck station. By (5), all stations
with ¢2 < ¢? should appear before the bottleneck station and all stations with cs, > c
should appear afterwards. If there are k stations before the bottleneck with ¢2 < ¢2,
then to determine their order the object is to minimize

k k /—k
ca=c[I(1=-0})+ Zoles T (1-0)) (17)

j=1 i=1 Jj=i+1
From (17) we see that the value of ¢ does not affect the order. To find the desired
order of the k stations before the bottleneck, we can solve (17) for each of the k!
permutations and choose the smallest one. When the mean service times of these k
stations are identical, we can apply the rearrangment theorem again to conclude that

we should have ¢4 > ¢4 > - - - > ¢%, which is the reverse of PI.
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TABLE 2
The Service-Time Parameters for Seven Queues in Series Discussed in Example 4
Node 1 2 3 4 5 6 7
U, 0.5 0.5 0.5 0.5 0.5 0.5 0.9
cl 2 3 5 6 7 4

ExaMPLE 4. We illustrate two special cases by considering seven stations in series
with arrival-process parameters A = 1 and ¢? = 4 and service-time parameters in Table
2. By the discussion about the bottleneck station above, the suggested order of ‘the
seven stations is (3,2, 1,7,4, 5, 6). By the same reasoning, the worst order should not be
the reverse of the best order, i.e., (6,5,4,7,1,2,3), but instead (4,5,6,7,3,2,1). The
approximate sum of the expected waiting times by (1)-(6) is 39.1 for (3,2,1,7,4,5,6),
48.4 for (6,5,4,7,1,2,3) and 49.6 for (4,5,6,7,3,2,1). The difference is primarily due
to station 7; the expected waiting time at station 7 is 27.3 for (3,2,1,7,4,5,6), 36.6 for
6,5,4,7,1,2,3) and 37.5 for (4,5,6,7,2,1). However, if station 7 is removed, then all
service rates are equal and the suggested order by principle P1 is (1,2,3,4,5,6). The
sum of the expected waiting times by (1)-(6) is 11.2 for (1,2,3,4,5,6) and 12.7 for
(6,5,4,3,2,1). This example indicates that myopic comparisons will not suffice. The
relative position of stations 1 and 2 depends on the absence or presence of station 7.

7.5. Two Bottleneck Stations

To examine additional complexity, now consider the case in which there are two
bottleneck stations with equal high traffic intensities. By the discussion above, these
two should be ordered so that the one with less variable service time appears first, i.e.,
so that ¢} < c3 for these two. Since the bottleneck stations have very high traffic
intensity, the departure process variability parameter is nearly equal to the service time
variability parameter for these stations. Hence, all those other stations with c2
> max{c?,c%} belong after the second bottleneck station. If ¢2 > ¢2, then all stations
with ¢2 > ¢2 > ¢ belong before the first bottleneck station. On the other hand, if
¢2 < c}, then all stations with ¢ < c} < c} belong between the two bottleneck
stations. It remains to determine where the stations with ¢ < min{c2,c2} belong
before the second bottleneck station.

ExampLE 5. To illustrate the two-bottleneck case, consider four stations in series
with A= 1, ¢ =4 and the service-time parameters in Table 3. From the discussion
above, station 3 should come before station 4 and stations 1 and 2 should appear
before station 4. If stations 1 and 2 appear together, then station 2 should appear first.
Hence, we have four permutations to consider: (1,3,2,4), (2,3,1,4), (2,1,3,4) and
(3,2,1,4). These are evaluated in Table 4 together with the permutation (4,3,2,1),
which we anticipate will be relatively poor. It turns out that (3,2, 1, 4) is slightly better
than the other main candidates, but the differences do not seem significant in view of
typical approximation errors. However, all four main candidates are significantly
better than the fifth permutation (4, 3,2, 1).

TABLE 3

The Service-Time Parameters for Four Queues
in Series Discussed in Example 5

Node 1 2 3 4

o 0.5 0.5 0.9 0.9

c 1 3 7 12
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TABLE 4
The Congestion Measures for 5 of the 24 Possible Permutations in Example 5
Candidate Permutation
(1,3,2,49) (2,3,1,4) 2,1,3,4) (3,2,1,4 4,3,2,1)
c2 325 3.75 3.75 6.43 10.48
c2, 6.29 6.38 3.06 5.57 7.66
¢ 5.47 5.04 6.25 4.42 6.49
Ew, 1.25 1.75 1.19 1.64 1.88
EWwW, 2.32 1.85 1.75 2.36 2.67
EW, 41.51 43.54 40.74 44.55 70.79
EwW, 70.75 69.01 73.91 66.50 64.80
ET 115.83 116.15 117.59 115.05 140.14

Note. The mean waiting times EW; are indexed as originally specified, but the variability parameters cjj
are indexed according to the order of the station in that permutation.

8. Simple Heuristics

The bottleneck examples in §7 indicate that very simple heuristics cannot be
expected to perform well in all cases. In general, it seems desirable to calculate the
expected total delay for each of the n! permutations as described in §2.

A simple heuristic that might work reasonably well if there are no bottlenecks is to
calculate §; in (9) for each station i and then order the stations so that §, < §, < - - -
< §8,. This can be done easily without computer assistance. Although this ordering is
optimal by our heuristics for n = 2, it is of course not for n > 2 because c(fj # ¢2 for
J > 2. Nevertheless, this ordering can be a reasonable candidate. Refinements could be
made afterwards by computing ¢ for each station in this permutation and looking for
pairwise switches of adjacent stations to obtain improvement. When considering the
stations k and k + 1 for possible switching, use (9) again but replace ¢? with cj,k_,.
The idea is to make one or more pairwise switch, then recompute c2 for each station in
the new permutation, and look for pairwise switches again. The bottleneck examples
suggest, however, that looking for successive local improvements by considering only
two stations in isolation is not always effective. This simple heuristic seems promising
if the traffic intensities are not relatively high and do not vary too much from station
to station.'

'T am grateful to my colleague Anne Seery for writing and running the QNA program (Whitt 1983a). T am
also grateful to Michael Pinedo and Ronald Wolff for bringing references Pinedo (1982a) and Weber (1979)
to my attention.

References

BREMAUD, P., Point Processes and Queues, Springer-Verlag, New York, 1981.

BURKE, P. J., “The Output of a Queueing System,” Oper. Res., 4 (1956), 699-704.

DATTATREYA, E., “Tandem Queueing System with Blocking,” Ph.D Dissertation, Dept. of Industrial Eng.
and Oper. Res., University of California, Berkeley, 1978.

FriepMAN, H. D., “Reduction Methods for Tandem Queueing Systems,” Oper. Res., 13 (1965), 121-131.

Harpy, G. H, J. E. LitTLEwooD AND G. PoLYA, Inequalities, 2nd Ed., University Press, Cambridge,
England, 1967.

KELLY, F. P., Reversibility and Stochastic Networks, John Wiley and Sons, New York, 1979.

KrLiNcEwICZ, J. G. AND W. WHITT, “On Approximations for Queues. II. Shape Constraints,” AT& T Bell
Lab. Tech. J., 63 (1984), 139-161.

KRAEMER, W. AND M. LANGENBACH-BELZ, “Approximate Formulae for the Delay in the Queueing System
GI/G/1,” Eighth Internat. Teletraffic Cong., Melbourne, 235-1-8, 1976.

MurtH, E., “The Reversibility Property of Production Lines,” Management Sci., 25 (1979), 152-159.



BEST ORDER FOR QUEUES IN SERIES 487

PINEDO, M., “On the Optimal Order of Stations in Tandem Queues,” in Applied Probability—Computer

Science: The Interface, Vol. II, R. L. Disney and T. J. Ott (Eds.), Birkhauser, Boston, 1982a, 307-325.

, “Minimizing the Expected Makespan in Stochastic Flow Shops,” Oper. Res., 30 (1982b), 148-162.

REICH, E., “Waiting Times When Queues Are in Tandem,” Ann. Math. Statist., 28 (1957), 768-773.

STOYAN, D., Comparison Methods for Queues and Other Stochastic Models, John Wiley and Sons, New York,
1983. (English translation and revision edited by D. J. Daley of Qualitative Eigenshaften und
Abschatzungen Stochasticher Modelle, 1977.)

TeMBE, S. V. AND R. W. WoLFF, “The Optimal Order of Service in Tandem Queues,” Oper. Res., 24 (1974),
824-832.

WEBER, R. R., “The Interchangeability of Tandem -/M/1 Queues in Series,” J. Appl. Probab., 16 (1979),
690-695.

WartT, W., “Approximating a Point Process by a Renewal Process. I. Two Basic Methods,” Oper. Res., 30
(1982a), 125-147.

———, “The Marshall and Stoyan Bounds for IMRL/G/1 Queues Are Tight,” Oper. Res. Letters, |
(1982b), 209-213.

———, “The Queueing Network Analyzer,” Bell System Tech. J., 62 (1983a), 2779-2815.

——, “Performance of the Queueing Network Analyzer,” Bell System Tech. J., 62 (1983b), 2817-2843.

———, “On Approximations for Queues. I. Extremal Distributions,” AT & T Bell Lab. Tech. J., 63 (1984a),
115-138.

———, “On Approximations for Queues. III. Mixtures of Exponential Distributions,” AT&T Bell Lab.
Tech. J., 63 (1984b), 163-175.

———, “Minimizing Delays in the GI/G/1 Queue,” Oper. Res., 32 (1984c), 41-51.

———, “Approximations for Departure Processes and Queues in Series,” Naval Res. Logist. Quart., 31
(1984d), 499-521.




