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BIVARIATE DISTRIBUTIONS WITH GIVEN MARGINALS!

By WARD WHITT
Yale University

Bivariate distributions with minimum and maximum correlations for
given marginal distributions are characterized. Such extremal distributions
were first introduced by Hoeffding (1940) and Fréchet (1951). Several proofs
are outlined including ones based on rearrangement theorems. The effect
of convolution on correlation is also studied. Convolution makes arbitrary
correlations less extreme while convolution of identical measures on R?
makes extreme correlations more extreme. Extreme correlations have ap-
plicétions in data analysis and variance reduction in Monte Carlo studies,
especially in the technique of antithetic variates.

1. Introduction. Let IT = II(F, G) be the set of all cdf’s (cumulative distribu-
tion functions) H on R? having F and G as marginal cdf’s, where F and G have
finite positive variances. Within II there are cdf’s H* and H, discovered by
Hoeffding (1940) and Fréchet (1951) which have maximum and minimum cor-
relation. These extremal cdf’s and the associated extreme correlations are of
interest in data analysis to place the sample correlation in perspective and in
variance reduction to deliberately create positive or negative correlation. This
paper characterizes these extremal distributions. Section 2 briefly reviews a
proof due to Hoeffding and presents two other proofs based on two versions of
the rearrangement theorem of Hardy, Littlewood, and Polya (1952) which pre-
dates Hoeffding (1940) and Fréchet (1951). One advantage of the rearrangement
theorem in the case of bivariate data is that it clearly indicates a simple algorithm
for constructing extremal distributions; see Lemma 2.6. The situation with data
is also very instructive because sets of data obviously correspond to very simple
probability measures, namely, probability measures which attach masses of size
n~'to each of n points. As is the case here, proofs are often much easier in this
setting and so are of pedagogical value. Furthermore, such data distributions
are easily seen to be dense in the space of all probability measures in the usual
topology of weak convergence, so results for data distributions often extend to
arbitrary measures by continuity; see the first proof of Theorems 2.1 and 2.5.
Section 2 is concluded by showing the connection to work by Strassen (1965).
Section 3 contains examples of marginal distributions with extreme correlations
arbitrarily close to zero, while Section 4 investigates convolution and correla-
tion. Convolution makes arbitrary correlations less extreme while convolution
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of identical measures on R? makes extreme correlations more extreme. Finally,
Section 5 gives a few additional results for the set of all n-dimensional distribu-
tions with given marginals which should be useful for more complicated variance
reduction problems.

2. The extremal distributions. Let H* and H, be the cdf’s in II(F, G) with
maximum and minimum correlations. Existence of such cdf’s is contained in
Theorem 2.1. Let [x]* = max {0, x} and x A y = min {x, y}.

THEOREM 2.1 (Hoeffding). In II(F, G)
H¥(x,y) = F(x) A G(y)  and  H,(x,y) = [F(x) + G(y) — I]*
forall (x,y)eR*.

Proor. The theorem is an immediate consequence of Lemmas 2.2 and 2.3
below, each of which is easily proved.

Lemma 2.2 (Hoeffding). For any H e II(F, G) and all (x, y)e R*, H.(x,y) <
H(x, y) = H*(x, y).

ProoF. See page 31 of Mardia (1970).

LEMMA 2.3 (Hoeffding). Let the random vector (X, Y) have cdf H with marginals
Fand G. Then

EXY — EXEY = =\~ [H(x, y) — F(x)G(y)]dxdy .
PrROOF. See Lemma 2, page 1139 of Lehmann (1966).

The extremal distributions can also be characterized in another way, based
on the following familiar lemma. Let F~'(y) = inf {x: F(x) > y}.

LEMMA 2.4. Let X be real-valued random variable with cdf F and let U be a uni-
form random variable with cdf G. Then

(i) F-U) has cdf F;
and
(ii) if F is continuous, F(X) has cdf G.

THEOREM 2.5. For any F, G with finite positive variances,

[F~(U), G *(U)] hascdf H*
and
[F-Y(U), G™{(1 — U)] hascdf H,.

In addition to previously mentioned sources, discussion and references related
to extremal cdf’s appears on pages 355 and 359 of Hall (1969) and page 22 of
Johnson and Kotz (1972). Theorems 2.1 and 2.5 are equivalent; it is easy to
derive each from the other. We give two more proofs based on rearrangement
theorems. First consider the subset of probability measures on R? in which each
measure assigns masses of n~! to each of n points, (x;, y,), 1 <i<n,n>=1. We
call such probability measures data distributions because they naturally arise when
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considering a set of n data points. The possible bivariate data distributions with
given marginals obviously corresponds to the permutations of {y;} for a given
ordering of {x;}. In this setting the problem is to pair the x, with the y; in order
to maximize or minimize the sum of products };7_, x,y,. We can apply the clas-
sical rearrangement theorem for finite sets, Theorem 368 of Hardy, Littlewood
and Polya (1952).

LeMMA 2.6 (Hardy, Littlewood and Polya). The sum of products y»_, x,y, is
a maximum when {x;} and {y;} are both increasing and a minimum when one is in-
creasing and the other is decreasing.

Let A,(F, G) be the set of all data distributions of size n on R* with marginal
cdf’s Fand G. Obviously, F and G must then be cdf’s of one-dimensional data
distributions of size n. It is well known that A,(F, G) coincides with the set of
extreme points in II(F, G), cf. Hammersley and Mauldon (1956). If the x; and
y, are all distinct, then A,(F, G) corresponds exactly to the set of n X n per-
mutation matrices, while II(F, G) corresponds to the set of all n X n doubly
stochastic matrices. Consequently, Lemma 2.6 implies Theorems 2.1 and 2.5
when F and G are cdf’s of data distributions.

For the second proof below of Theorems 2.1 and 2.5, we will want

Lemma 2.7. For any cdf H on R™ and uniform random variable U, there exists
a measurable function X = (X,, - -+, X,): [0, 1] — R" such that X(U) has cdf H.

ProOF. One early source is Section 23 of Lévy (1937). It is also possible to
let ¢ be a Borel isomorphic map of R* onto R, page 7 of Parthasarathy (1967).
Let P, be the measure on R* associated with H. Let F be the cdf on R associ-
ated with the measure P, ¢~'. Then let X = ¢~*o F~!. By Lemma 2.4, F~'(U)
has cdf F. Consequently, ¢~'(F~'(U)) has cdf H. A still different approach is
via Theorem 3.1.1 of Skorohod (1956) cf. Theorem 3.2 of Billingsley (1971).

FIrsT PROOF OF THEOREMS 2.1 AND 2.5. The idea is to consider arbitrary dis-
tributious as limits of data distributions. For arbitrary F and G with finite second
moments 7,* and 7% it is easy to construct one-dimensional data distributions
F, and G, of size n with finite second moments 77 and y; such that 73 175,
12 176 |Ft) — F(| < n™, and |G,(1) — G(1)] < n!, —o0 <1< oo. For
these data distributions, by Lemma 2.6, o(H,,) < p(H,) < p(H,*) for all
H,e A, (F,, G,), where p is the correlation coefficient. Obviously H,, — H,
and H,* — H* as n — oo because F, — F and G, — G. An arbitrary sequence
{H,} with H, e A, (F,, G,) need not converge, but it is not difficult to show that
any H e II(F, G) is the uniform limit of some sequence {H,} with H, € A,(F,, G,),
where F, and G, are the one-dimensional data distributions converging to F and
G. More generally, data distributions are dense in the space of all probability
measures. The proof is completed by noting that o(H,) — po(H) if H, — H in
R* with H, e II(F,, G,) and H eII(F, G). (Additional details are contained in
an earlier version of this paper.)
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SECOND PROOF OF THEOREMS 2.1 AND 2.5. The idea is to apply the rearrange-
ment theorem for functions on [0, 1], Theorem 378 of Hardy, Littlewood and
Pélya (1952), instead of the rearrangement theorem for finite sets. Let f’ and
g’ denote increasing rearrangements and f” and g” decreasing rearrangements of
fand g on [0, 1] as defined on page 276 of Hardy, Littlewood and Pdlya (1952).
Then

$o f1(x)g"(x) dx < §5 f(x)g(x) dx < § f(x)g'(x) dx .
For arbitrary cdf Hell(F, G) there exists (X, Y):[0,1]— R* such that
[X(U), Y(U)] has cdf H. Thus, we can let f{x) = X(x) and g(x) = Y(x) so that
EXY = {§ f(x)g9(x). The increasing and decreasing rearrangements of f and g are
obviously just f'(x) = F~(x), f"(x) = F7%(1 — x), ¢'(x) = G~(x) and ¢"(x) =
G~Y(1 — x). This completes the proof.

It is worth noting that there is a more general rearrangement theorem from
which both Theorem 2.1 and Lemma 2.2 follow as corollaries. In the following
version due to Lorentz (1953) there are compactness and continuity conditions
which can be relaxed. Extensions, where these conditions are relaxed, and ap-
plications are discussed by Day (1972) and Tchen (1975). Superadditivity has
been studied extensively.by A. F. Veinott, Jr. and D. Topkis; see Topkis (1968)
and forthcoming papers.

THEOREM 2.8 (Lorentz). If F and G have compact support and ¢ : R* — R is con-
tinuous and superadditive, i.e.,

B(xX1, Y1) + D(Xa, ) = B(x1, ya) + D(Xg5 y1)
whenever x, < x, and y, < y,, then

§¢dH, = [ $pdH < § ¢ dH*
for all H e II(F, G).

Proor. The standard proof of Lemma 2.6 applies with each superadditive ¢.
For the general case, follow the first proof of Theorems 2.1 and 2.5.

Theorem 2.5 and Lemma 2.7 clearly indicate an alternate way to express the
extreme correlation result. Let L* = L0, 1] be the usual Hilbert space of square
integrable real-valued functions on [0, 1] with Lebesgue measure, page 111 of
Royden (1968). Let L*(F, G) be the subset of ordered pairs (X, Y) of functions
in L? such that X has cdf F and Y has cdf G. Note that (F~*, G) e LX(F, G). Let
A=1—-10Zr< 1.

COROLLARY 2.9. In the setting above,

inf {|[X — Y3 (X, Y) e LYF, G)} = [|[F~* — G
and
sup {||X — Y|l (X, Y) e LX(F, G)} = [|[F~' — G0 ]}, .
We can also consider one of the random variables in L? as fixed. Let L}(F)
be the subset of X'in L* such that X has cdf F. From Corollary 2.9 and Lemma
2.4(ii), we also have
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COROLLARY 2.10. Let X € L¥(F), where F is continuous. Then

inf {|[X — Y|,: Ye LYG)} = [|X — GH(F(X))||,
and
sup {||X — Y||,: Y e L¥G)} = [|[X — G™(A(F(X)))[, -

Corollary 2.9 closely parallels Section 6 of Strassen (1965), Section 2 of
Dudley (1968), and Schay (1974); there the distance is the usual distance as-
sociated with convergence in probability instead of the L* distance. For com-
parison, we state a special case here. Let I/ = V[0, 1] be the space of all real-
valued random variables on [0, 1] with Lebesgue measure x. Let d be the usual
metric on V associated with convergence in probability; defined by

d(X,Y) = inf{e > 0: p(|X — Y| > ¢) < ¢} .

Let m be the Prohorov metric on the space of all probability measures on R,
defined by

m(F, G) = inf{e > 0: F(A) < G(A°) + ¢, for all closed 4 < R},

where 4° = {xe R: [x — y| < ¢ for some ye A} and F, G are regarded as the
measures associated with the cdf’s, cf. page 1564 of Dudley (1968). Let V(F, G)
be the subset of ordered pairs of functions (X, Y) in ¥ such that X has cdf F
and Y has cdf G.

THEOREM 2.11 (Strassen). In the setting above,
sup{d(X, Y): (X, Y)e V(F, G)] = m(F, G) .

It is easy to see, in the spirit of Lemma 2.6, that there is a simple proof of
Theorem 2.11 for data distributions.

3. Examples. If X is a random variable with a distribution symmetric about
its mean g, then (X, X) and (X, 21 — X) have bivariate distributions with com-
mon marginals and correlations + 1. On the other hand, extreme correlations
arbitrarily close to 0 can be achieved. For example, let

P{X:k}:P{Y:k}:(n—l)n‘l, k= —1

:n‘l, k:(l‘l—l).
Then p* =1 and p, = —(n — 1)7!, where p* and p, are the maximum and
minimum correlation coefficients for bivariate distributions with these margin-
als. Another example shows that p* and p, can both be arbitrarily close to 0.
(The independent case shows that —1 < p, < 0 < p* < 1.) Let P(X = +1} =
PIX=—1} =27 P[Y=+1} =P[Y = —1} = (2n)™}, and P[Y =0} =1 —
n~'. Then p* = —p, = n~t.

4. Correlation and convolution.

THEOREM 4.1. If S; = X, + X,, where X, and X, are independent random vectors
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in R?, then
p(S,) = ap(X;) + bp(Xy,) ,

where 0<a,b<1 and a+ b<1. Moreover, if Var(X;) Var (X,) =
Var (X,) Var (X,,), thena + b = 1.

Proor. Using the independence, we obtain the desired relation with ¢ =
[Var (Xy) Var (X,,) + Var (X,;) Var (X,,) + Var (X,)) Var (X;) 4+ Var (X,,) Var (X,,)],
a = (Var (X)) Var (X,,)/c)t and b = (Var (X,,) Var (X,;)/c)t. Obviously 0 < q,
b < 1. We obtain a 4 b < 1 because (x,x,)} < (x; + x,)/2 for all x;, x, > 0,
with equality holding if and only if x, = x,. The extra condition on the vari-
ances provides equality.

COROLLARY 4.2. Let S, =X, + --- + X, where X, ---, X,, are mutually in-
dependent random vectors in R*.

(i) If Var (X,;) = Var (X,)) = - -- = Var (X,,) and Var (X)) = -+ - = Var (X)),
then

o(S,) = n7t Y1, p(Xy) -
@ii) If Xy, - - -, X, have a common distribution, then

p(S,) = p(X)) -

THEOREM 4.3. Let S, = X, + .-+ + X, where X, ---, X, are i.i.d. random
vectors in R?, then p*(S,) = p*(X)) and p,(S,) < p.(X1)-

ProoF. Let X, have the same marginals as X, but an extreme distribution so

that o(X,) = p*(X,). Then
P*(S) = p*(S) Z p(S4) = p(XY) = p*(X))
by Corollary 4.2 (ii). Similarly for p,.

Theorem 4.3 shows for example that the minimum correlation for random
vectors with identical gamma marginals of parameter « is nonincreasing as «
runs through values of /2%, n > 1, where the gamma density of parameter «a is
Su(x) = x*~'e=*/T'(a), x = 0. Is the minimum correlation strictly decreasing from
0 to —1 as a goes from 0 to infinity?

5. Variance reduction. Since Var (X, + X,) = Var (X,) + Var (X,) + 2 Cov (X,
X,), Var (X, + X,) can be minimized without changing the marginal distributions
of X, and X, and thus without changing E(X, + X,) by making Cov (X,, X,) as
small as possible while leaving the marginal distributions unchanged. More
generally, Var [ f(X, + --- + X,)] can usually be reduced without changing the
marginal distributions of Xj, - - -, X, by introducing negative or positive cor-
relations between X, and X, 1 < i, j < n, while leaving the marginal distribu-
tions unchanged. This technique of variance reductioii has been very useful in
Monte Carlo studies, cf. Fishman (1972), Hammersley and Handscomb (1964),
Hammersley and Mauldon (1956), Handscomb (1958), and Page (1965). The
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optimal variance reduction scheme for the sum of two variables 1s of course
contained in Section 2, with Theorem 2.5 being especially important because
it provides a natural way to actually generate random variables with the desired
joint distribution. However, general optimal variance reduction schemes for
the sum of more than two variables or for more complicated functions than the
sum have not syet been discovered. There is a general principle developed by
Hammersley and Mauldon (1956) and Handscomb (1958), page 61 of Hammersley
and Handscomb (1964), which says that in order to minimize Var (X, 4+ ... +
X,), it suffices to generate all the random variables from a single uniform random
variable in a rather special way. This principle deserves some comment. First,
Lemma 2.7 shows that the distinction between stochastic dependencies and
functional dependencies made there is unnecessary; all stochastic dependencies
among the marginal distributions can be represented as functional dependencies.
Second, representations in terms of a single uniform random variable are not
limited to the particular optimization for the variance of the sum considered
there. In addition to Lemma 2.7, we have

THEOREM 5.1. Let F,, - -, F, be n real cdf’s and let U be a random variable
uniformly distributed on [0, 1]. If HeIl(F,, ---, F,), then there exist measurable
measure-preserving functions ¢,, ---, ¢, mapping [0, 1] into itself such that
[Fi=(¢,(U)), - -+, F,7 (9,(U))] has cdf H. If F, is discrete, then ¢, can be a Borel
isomorphism of [0, 1]. If H is a data distribution of size n, then each ¢; can have
derivative 1 everywhere except at the (n 4 1) points kn™*, 0 < k < n.

The key is the following result, which is Theorem 1 of Sklar (1973) and
Theorem 2 of Schweizer and Sklar (1973). Let U also denote the cdf of the
uniform distribution on [0, 1].

THEOREM 5.2. For any Hell(F,, ..., F,), there is a CcIl(U,, ---, U,) such
that C(Fy(x), - - -, F,(x)) = H(x,, - - -, x,) for all (x,, ---, x,) € R".

Proor oF THEOREM 5.2. Let C be defined on Ran (F,) X --- X Ran(F,) by
C(sys «+ v 8,) = H(F,7'(sy), - -+, F,7%(s,)), where Ran (F) is the range of F. Let
C be defined on the closure by continuity. Since x, < F,7%(s,) if and only if
Fy(x) < s, for s, in Ran (F;) = sup (F;~'), the support of F;™!, C(Fy(x,), - - -,
F,(x,)) = H(x;, -+ -, x,) for all (x,, ---, x,)e R®. The proof is completed by
extending C to [0, 1]* so that C has uniform marginals. Consider the bivariate
case. For any (a, b) [0, 1], let a, and a, (b, and b,) be the greatest and least

elements of Ran F, (Ran F,) satisfying a, < a < a, (b, £ b < b,). Set

4= (a— a)/(a,— a), a < a
=1, a, = a,
and
= (b — b)/(b; — b)), b, < b,
=1, b, = b,.
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The extension is obtained by letting
C(a, b) = (1 — 2)(1 — p)C(ay, b)) + (1 — A, C(ay, by)
+ 4(1 — p)C(ay, by) + 2,24,C(ay, by)

For additional details, see Schweizer and Sklar (1973).
The conclusion for discrete cdf’s is based on

LeEMMA 5.3. Let X and Y be two countably-valued random variables defined on
[0, 1] with Lebesgue measure. If X has the same distribution as Y, then there exists
a measurable isomorphism ¢ of [0, 1] such that Y(t) = X(¢(1)), 0 < r < 1.

ProOF oF LEMMA 5.3. Let N be an arbitrary uncountable measurable subset
of [0, 1] of Lebesgue measure 0. Let {a,} be the sequence of values assumed by
Xand Y with positive measure. Let 4, = {te[0, 1] — N: X(f{) = a,} and B, =
{te[0, 1] — N: Y(f) = a,}. Let ¢ be defined on [0, 1] so that §(B,) = A,,n = 1,
and ¢([0, 1] — Uy, B,) = [0, 1] — Uy, 4,. Each of these sets is an uncount-
able measurable subset of [0, 1]. Hence, a one-to-one map ¢ of [0, 1] onto itself
can be defined so that the appropriate subsets are related and both ¢ and its
inverse are measurable, cf. page 7 of Parthasarathy (1967).

ProoF oF THEOREM 5.1. For any HeII(F,, ---, F,), let C be the cdf deter-
mined by Theorem 5.2. Suppose (X, - - -, X,) is a random vector with cdf C.
Then P(X, < Fy(x,), -+, X, < F,(x,)) = H(x,, - -, x,) for all (x,, ---, x,) e R"
by Lemma 5.2, but also P(X, < Fy(x,), -+ -, X,, < F(x,)) = P(F,7Y(X) < xp - - -
F,7Y(X,) < x,) for all (x;, ---, x,) € R* by the usual argument used to prove
Lemma 2.4(i). In particular, when (x,, ---, x,) is in the support of H, u, <
Fy(x;) for all i if and only if F,”*(u,) < x, for all i, which implies equality for
(%3, - -+, x,) in the support of H and thus everywhere. Now note that C is the
cdf of a nonatomic measure on [0, 1]*. Hence, there is a measurable measure-
preserving map X = (X, ---, X,) of [0, 1] into [0, 1]* such that X(U) has cdf
C, cf. page 327 of Royden (1968). Let the desired ¢, be X,;, 1 <j<n. If F;
is discrete, Lemma 5.3 can be used because F,~}(U) has the same distribution -
as F;7%(X,(U)). This means there is a Borel isomorphism ¢, of [0, 1] such that
F;74($,(1)) = F;7(X;(7)), 0 < t < 1, so we can replace X; with ¢,. Multivariate
data distributiohs are easy because the ¢, can correspond to permutations of
the subintervals [kn~?, (k + 1)n~?) in [0, 1).

REMARKS. Lemma 5.3 does not extend to arbitrary random variables as can
be seen by considering the following simple example (courtesy of S. Kakutani).
Let X(f) =1, 0<r< 1, and

Y(r) = 2¢, 0=«
=2r—1, ;<1
Acknowledgments. My interest in this topic stems from discussions with G.

Fishman. I am grateful to A. A. Balkema, W. J. Hall, L. Rafsky, A. Sklar,
A. Tchen and the referee for providing references.
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