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This paper analyzes a mathematical model of a blocking system with
simultaneous resource possession. There are several multiserver service facil-
ities without extra waiting space at which several classes of customers arrive
in independent Poisson processes. Each customer requests service from one
server in each facility in a subset of the service facilities, with the subset
depending on the customer class. If service can be provided immediately upon
arrival at all required facilities, then service begins and all servers assigned to
the customer start and finish together. Otherwise, the attempt is blocked (lost
without generating retrials). The problem is to determine the blocking prob-
ability for each customer class. An exact expression is available, but it is
complicated. Hence, this paper investigates approximation schemes.

I. INTRODUCTION AND SUMMARY

The multifacility blocking problem considered here arises in many
contexts and has a long history in traffic engineering (see pages 77
and 95 of Ref. 1). We were motivated by performance analysis issues
in packet-switched communication networks. Specifically, we were
investigating methods for calculating the blocking probabilities (per-
centage of failed attempts) in setting up virtual circuits. The need for
methods to calculate these blocking probabilities arose in the devel-
opment of the Packet Network Performance Analysis module of the
Packet Network Design and Analysis (PANDA) software package in
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1t is difficult to analyze the blocking because a circuit typically requ.
the simultaneous possession of limited resources associated with s
eral different facilities (transmission links, memory buffers, et
Moreover, there is competition for the resources not only from ot
demands for circuits on the same path, but also from demands

different circuits that use only some of the same facilities. Hence, e
without alternate routing or waiting (which we do not consider),

blocking is complicated. Our purpose here is to develop bounds :
approximations. After we describe our model, we will discuss rela
work and other applications.

1.1 The mathematical model

There are n multiserver service facilities without extra waiting roc
and ¢ customer classes. Service facility i has s; servers. Customers fr«
class j arrive according to a Poisson process with rate A\; and imme
ately request service from one server at each facility in a subset A,
the n service facilities. If all servers are busy in any of the requi
facilities, the request is blocked (lost without generating retrial
Otherwise, service begins immediately in all the required facilities. .
servers working on a given customer from class j start and free
together. The service time for class j at all facilities has a gene:
distribution with finite mean g;'. We assume that the ¢ arrival prc
esses and all the service times are mutually independent.

This model already embodies the extension in which each cla
requires service from a random subset of the n facilities. Suppose th.
class j with arrival rate ); initially requires one server at each facilit
in subset Aj, with probability p;:, where Y, pix = 1. We can represe:
this more general model within our framework by increasing t.
number of classes. New class (j, k) has a Poisson arrival process wi
rate A\;p;. and requires one server in each facility in the subset A
This procedure is justified because of two familiar properties of Poiss:
processes: (1) independent random splitting of a Poisson proce
produces independent Poisson processes, and (2) the superposition
independent Poisson processes is a Poxsson process (see Theorems 4.

" and 5.3 of Ref. 4).

Returning to the previous settmg in which each class requires
fixed subset of facilities, we let b(A) be the probability that all serve
are busy in at least one facility in the subset A (at an arbitrary tin
in steady state). Thus b(i) = b({i}) is the probability all servers a
busy at facility i. Since Poisson arrivals see time averages,® b(4;)
also the blocking probability for class j [The blocking probability fc
class j would be ¥ pb(A;) if class j required a random number «
facilities, as descnbed above.]
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It is not difficult to give the exact formula for b(A) using theory
related to queueing networks,®® but the formula is complicated, espe-
cially when the numbers n and c are large (see Theorem 4 in Section
II). To appreciate the complexity, recall that the arrival rates A;,
service rates u;, and subsets of required facilities A; for class j can
differ from class to class. Hence, our interest centers on developing
bounds and approximations.

1.2 Related work

There is a substantial body of related literature. The problem treated
here is connected, at least in spirit, to the theory of gradings and link
systems in traffic engineering.’ The specific approximation problem is
discussed by Holtzman.? Also somewhat related is the work on sto-
chastic models of dynamic storage allocation.’®'? Previous work also
has been done on service systems, with waiting as well as blocking, in
which customers require more than one server.”> _

Our model is relatively elementary compared with many of these
other models. Our analysis benefits by having blocking instead of
waiting and by having each customer require exactly one server per
facility. On the other hand, we address an issue typically not consid-
ered in the papers in which customers require more than one server:
Here there are constraints on which servers can be used; there must
be one server from each facility. To make the comparison clear, it is
useful to modify our model by considering one large facility containing
all the servers in all the original facilities. If one of our customers
requiring service from one server in each of k facilities could use any
k servers in the single large facility, then we would have the model of
Arthurs and Stuck.'® Here, however, there are constraints.

The model considered here is in fact a special case of a more general
single-facility blocking model of Kaufman,’ in which there is a general
sharing rule. From Kaufman or Burman, Lehoczky and Lim,® we learn
that our model is a product-form model with the insensitivity prop-
erty.® This provides expressions for the exact blocking probabilities
(Theorem 4 in Section 2.1 here), but as noted above this exact
expression is quite intractable. The insensitivity property tells us that
the blocking probabilities depend on the service-time distributions
only through their means, so that there is no need to assume exponen-
tial service-time distributions; for convenience we can replace general
service-time distributions by exponential service-time distributions
without affecting the blocking probabilities. We discuss insensitivity
further in Sections 1.8 and IV. |, .

A special case of our. model has also been analyzed in a database
locking study by Mitra and Weinberger.2? In their model, the facili-

ties are items in the database and the custoniers are transactions that -
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“touch” a specific set of items. To maintain consistency, only one
transaction is allowed to touch each item at any time, so that in their
model transactions requiring items. already being touched are blocked.
Their model thus corresponds to the special case of our multifacility
blocking model in which each facility has a single server. (It may be
of interest to consider the extension of their model to multiserver
facilities to represent multiple copies of database items in:the data-
base.)

Mitra and Weinberger show that the analysis can be greatly simpli-
fied by focusing attention on special symmetric versions of the model.
They assume that the arrival rate and service rate for each customer
class that requires k facilities (items) is independent of the subset of
k facilities required. Moreover, they assume that there is a customer
class for each subset of size k. Most important, they consider only the
case of one server per facility. (It should be clear that the case of
multiserver facilities is much harder.) For these special symmetric
models, they obtain an efficient algorithm for calculating the partition
function of the product-form model, from which the desired blocking
probabilities are easily obtained. [For some database locking applica-
tions, it may not be reasonable to assume that the arrival rates for all
subsets of size k are identical. Then the approximation methods in
this paper may be helpful. See Remark 3 in Section 1.6.]

The symmetric case of the multifacility blocking model has also
been considered by Heyman in the investigation of a communication
system.? We shall also discuss symmetric models here, beginning in
Section 1.6. For symmetric models, the approximations are more
reliable and much easier to compute.

We have mentioned that this work was primarily motivated by
performance analysis issues in packet-switched communication net-
works, specifically in the PANDA software paclgage.z'3 The approxi-
mations here have also been applied to study the blocking in an AT&T
Bell Laboratories computer network? and an AT&T Communications
model for overseas voice traffic.?® Another example of the multifacility
blocking problem in telephony is contained in Akinpelu.?® The work
that bears most directly on this paper is in Refs. 2, 3, 7, 8, 9, 21, and
23 through 26. (Also see Section VIII.)

1.3 Summary and organization of this paper

We describe our main results in the rest of Section I and provide
the supporting technical details in the remaining sections. We discuss
three different approximation schemes: the summation bound, the
product bound, and the reduced-load approximation. The two bounds
are well-known approximations. The reduced-load approximation ev-
idently has a long history,® but is not as well known as it deserves to
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be. We propose for the reduced-load approximation a successive ap- - . “ - . -
proximation scheme that is very easy to implement and seems to ) ' ' ‘
perform well. In particular, the reduced-load approximation with the
successive approximation scheme is ideally suited for large models,
where the exact formula becomes intractable.

We obtain two major results about these approximation schemes:
(1) As suggested by the names, the first two approximation schemes
indeed yield upper bounds on the blocking probabilities, and (2) a
limit theorem establishes that the third approximation scheme, the
reduced-load approximation, is asymptotically correct for symmetric
models as the size of the model grows, in a sense which we will make
precise. It is significant that the limiting conditions do not correspond
to light traffic as in Refs. 21 and 23, so that in this limit the reduced-
load approximation can be very different from the bounds. Our two
main results have mathematical interest as well as applied interest,
because they are obtained by focusing on multidimensional stochastic
processes that are not Markov.

We also obtain two additional light-traffic results. First, we show <
that all three approximations are asymptotically equivalent as the
loads decrease (Corollary 2.3). Second, we show that all three approx-
imations are asymptotically correct as the loads decrease for symmetric
models (Corollary 3.2). The qualification “for symmetric models” in
the last sentence is important because it can happen for asymmetric
models that all three approximations are equally bad in light traffic
(see the remark at the end of Section 1.5). As we mentioned in Section
1.2, the approximations are more reliable and easier to use with
symmetric models, but we believe they are also very useful for asym-
metric models when applied with some caution.

We discuss the bounds in Section 1.4, the reduced-load approxima-
tion in Section 1.5, and the main limit theorem in Section 1.6. We
discuss numerical examples in Section 1.7; existence, uniqueness, and
insensitivity of equilibrium blocking probabilities in Section 1.8; and
an extension of the reduced-load approximation for non-Poisson ar-
rival processes in Section 1.9. Additional technical details will be
provided in subsequent sections. The main results and directions for
future research are summarized in Section VL.

Here are the principal conclusions from our analysis and limited
numerical experience: For light loads, for example, blocking in the
order of 0.01 or less, the elementary bounds are usually adequate
approximations for engineering purposes. Having established that
these approximations are bounds, we gain some peace of mind in
knowing that the approximations are conservative. For higher levels
of blocking, such as 0.05 and above, the reduced-load approximation
typically does much better than the elementary bounds. Moreover, the
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successive approximation scheme proposed for the reduced-load ap-
proximation is very easy to use (Theorem 2), so that the reduced-load
approximation seems very attractive when the loads need not be light.

1.4 Bounds

Let B(s, a) be the classical Erlang blocking formula associated with
the M/G/s/loss service system with s servers and offered load «,%"%
defined by

B(s, a) = (a’/s})/ é:o (a*/RD), (1)

where, as usual, the offered load « is the arrival rate multiplied by the
expected service time. Let C; be the set of all classes that request
service from facility ¢, that is,

Ci={j:i € Ajl. (2)

Let a; be the offered load at facility { (not counting blocking
elsewhere), defined by
C‘i'i = 2 aj, (3)
JECI
where a; = \;/y; is the offered load of class j to the system as a whole.
-In-Section II-we establish the following bounds. These bounds are
standard approximations that have long been regarded as conserva-
tive.! We show that intuition is correct in this case.

Theorem 1: (Product Bound) For each subset A,
b(A) <1 - ]I [1 — B(s;, &)}

€A
Corollary 1.1: (Facility Bound) For each i, b(i) < B(s;, a;).
Proof: Let A= {i}. O _ Y
Corollary 1.2: (Summation Bound) For each subset A,

b(A) = Y B(si, a).

€A
Proof: The summation bound in Corollary 1.2 is always greater than
or equal to the product bound in Theorem'l, as is easily verified by
induction on the number of facilities in A. Corollary 1.2 also follows

directly from Corollary 1.1 and the Bonferroni inequalities (see page
110 of Ref. 29). [

Remarks: For the special case of two facilities, Corollary 1.2 has been
proved by different methods by D. D. Sheng and D. R. Smith; see the
appendix in Ref. 3. The simple approximation provided by the sum-
mation bound in Corollary 1.2 was used in early versions of the
PANDA software package,? before being replaced by the product bound
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in Theorem 1.® The summation bound in Corollary 1.2 coincides with
the asymptotic approximation developed by Mitra and Weinberger,?
which is a light-traffic limit. (See Corollaries 2.3 and 3.2 below.)

We give a separate proof of the facility bound in Corollary 1.1,
which is of independent interest. We apply Theorem 5 of Smith and
Whitt*® to obtain a monotone-likelihood-ratio ordering for the number
of busy servers (Theorem 5), which does not follow from our proof of
Theorem 1.

Our proof of Theorem 1 is based on a general technique for com-
paring a non-Markov process to a Markov process using the condi-
tional transition rates, which applies to many different definitions of
stochastic order (Theorem 6). We apply this technique to prove
Theorem 1 using the version of stochastic order for probability distri-
butions on R" based on comparing cumulative distribution functions
(Theorem 7). For n > 1, this stochastic ordering is weaker than the
standard form of stochastic order based on all increasing sets. Qur
general approach for comparing a non-Markov process to a Markov
process has much wider applicability, and is discussed further else-
where.?! Our approach exploits stochastic monotonicity of the Markov
process,®>* and is closely related to the stochastic comparisons for .
multidimensional Markov processes by Massey that have been applied
to establish comparisons for Markovian queueing network models.3*-3®

The bound in Theorem 1 corresponds-to independent blocking in
the different facilities with the bound Corollary 1.1 used in each
facility. It is natural to conjecture that Theorem 1 might be obtained
from the more easily established Corollary 1.1 and the inequality

b(A) =1—]] [1 - b)) 4)
JjEA
but (4) is not valid in general (see Example 6 in Section II).

For typical applications in which the bounds are relatively small
and customers require only a few facilities, the bounds usually are
excellent approximations (see Corollary 3.2), but the following exam-
ples demonstrate that the bounds are not always good approximations.
Example 1: Suppose that all n facilities have s servers. Let there be
only one customer class, which requests service from all n facilities.
Then a; = a; and b({1, - .-, n}) = b(1) = B(s, a1) = B(s, ay), so that
the bound in Corollary 1.1 is tight (an equality), but the bounds in
Theorem 1 and Corollary 1.2 can be poor approximations. [
Example 2: Suppose that there are two facilities and two customer
classes. Let s, = 10,5, =1, 4, = {1 A, =1{1,2}, ¢y = 1, and a, = 100.
Then B(sl, a1).= B(10, 101) = 1; but b(1) = 0, because at most one
class 2 customer can be in service at any time. Hence, in this case the -
bound in Corollary 1.1 is a very bad ‘approximation. 0O
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1.5 A reduced-load approximation

Since the approximations in Theorem 1 and its corollaries are upper
bounds, it is natural to look for reduced values that might be better
approximations. One way to do this is to reduce the offered load a; at
facility ¢ by taking into account the blocking elsewhere. It is natural
to develop such an approximation within a framework of facility
independence, that is, the assumption that the events of blocking at
the difficult facilities are independent. This seems to be a reasonable
approximating assumption for “typical” examples, which has been
applied before for multiple facilities."** As a consequence, we have the
facility-independence approximation

1-b(4) =[] 1 - bG)] (5)
icA
Next we introduce the following approximate total offered load at
facility ¢ using the facility independence assumed above:

a= 23 o [l 1 -5k (6)
j€G; h:gj

In (6) we have reduced the offered load «; of class j at facility i by the
blocking elsewhere. Of course, using (6) we make the offered loads
dependent on the blocking probabilities as well as vice versa. [However,
the facility-independence approximation in (5) greatly reduces the
complexity.] Hence, this leads to a system of equations characterizing
the blocking probabilities as our approximation. In particular, our
proposed reduced-load approximation for the blocking probability at
facility i is the solution to the following system of equations:

b*(i) = B{s,-, Yo Il - b*(k)]}, 1<i<n (7
jec; T kea; P
L.

From (1), we see that (7) yields n polynomial equations in the n
unknowns b*(1), --- , b*(n).

_ In general, solving a system of n nonlinear equations in n unknowns
can be quite unpleasant. Of course, in many situations there are
symmetries in the model, which allow qs‘i:o reduce the number of
equations (and variables). In fact, in the next section we discuss the
totally symmetric model, for which (7) reduces to one equation in one
variable, which is trivial to solve. (The database model in Ref. 21 also
simplifies in this way.) However, we also propose a relatively simple
computational scheme for solving the general system (7). In particular,

. we suggest using successive approximations, that is, iteratively apply-

ing the right side of (7) to successive candidate vectors of blocking
probabilities. The following theorem indiqates ;hat (7) always has a
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solution and that the successive approximation scheme either finds
" the unique solution or provides upper and lower bounds on all solutions
to (7).

Theorem 2: (Existence and Successive Approximation) If s; and &; are
strictly positive for each i, then the system of eqs. (7) has a solution b*
= [b*(1), -- -, b*(n)] with 0 < b*(i) < 1 for all i.- All solutions b* can
be bounded above and below, and sometimes found, by successive ap-
proximation, that is, by iteratively applying the operator T = T{[b(1),
-+, b(n))} mapping [0, 1]" into itself defined by the right side of (7),

starting with 1 = (1, 1, - - -, 1). In particular, successive applications of
T yield the following upper and lower bounds on [b*(1), --- , b*(n)] for
all k:
0,0, .--,0)=0=T(1) < T***'(1) < T**3(1)
< [b*(1), ---, b*(n)] < T***(1) < T**(1)
<T0(1)=IE(1’1""’1)- (8)

Proof: First, the operator T defined by the right side of (7) obviously
maps [0, 1}" into itself. Since T is continuous, T has a fixed point, by
the classical Brouwer fixed point theorem.?® Let b* represent such a
fixed point. Since the operator T is strictly decreasing, b(i) > b*(i) >.
T(b); for all {, where b = (b(1), - .., b(n)), whenever b(i) > T(b); for
all i and b(i) < b*(i) < T(b); for all i whenever b(i) < T(b); for all i.
Since T(1) =0and T(0) < 1,0<b*(i) <1lforalli. O

Since T is continuous and strictly decreasing, the iterated operator
T® is continuous and strictly increasing. Hence, the successive ap-
proximation scheme (8) converges in the sense that 72***(1) — L and
T?*(1) »> U, where L=(L,, --- , L,) and U= (U, -- -, U,) are lower
and upper bonds, respectively, on any solution to (7), that is, L(i) <
b*(i) < U(i), 1 =i < n. Often we will have L, = U, that is, L(i) = U(i)
= b*(i) for all i, but not always, because T‘? can have more than one
fixed point, as Example 3 below illustrates. Of course, from the
monotonicity just discussed, it is clear that the successive approxi-
mation scheme in (8) converges if and only if the two-step operator
T® has only one fixed point.

We have yet to thoroughly investigate when T has a unique fixed
point and when the successive approximation scheme (8) converges.
Sufficient conditions for T to be a contraction map on a complete

" metric space—so that T has a unique fixed point and the successive
approximation algorithm in (8) converges to it—are given in Section
V, but these conditions are very strong. We make the following
conjecture. (It has been proved; see Section VIIL.)

Conjecture 1: The reduced-load system of egs. (7) always has a unique -

" solution. - i )

It is easy to see that (7) has a unique solution in the case of two " -
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facilities each with a single server. Extensive numerical testing sup- -
ports Conjecture 1 when there are only two facilities.

It is, of course, natural to wonder whether the model itself might
have multiple equilibrium points, but the exact stochastic process
under consideration representing the number of customers from each
class in service (with exponential service-time distributions) is an
irreducible finite-state, continuous-time Markov chain, which neces-
sarily has a unique equilibrium distribution (Section 2.1 below). Thus,
if there are multiple solutions to (7), then they must be an artifact of
the approximation.

We now present an example to show that the successive approxi-

mation in (8) can fail to converge.
Example 3: (Nonconvergence) To see that the succesive approxima-
tion scheme in (8) need not converge to a solution of (7), consider the
symmetric model with three facilities, each with one server. Let there
be only one customer class, which requires service from all facilities.
Let the offered load be a. Then (7) consists of the three equations

b*(1) = B{1, o[1 = b*(2)][1 — b*(3)}}

b*(2) = B{1, o[1 — b*(1)][1 - b*()]}

b*(3) = B{1, o[1 — b*(1)][1 — b*(2)}}
in the -three unknowns b*(1), b*(2), and b*(3). However, when
we apply the operator T, we see that T maps the space of vectors
(by, be, b3) with b, = b, = bs into itself. Since we start with (1, 1, 1) in
(8), we only need consider the associated operator T on [0, 1], defined
by

a(l — b)?

1+ a(l = b)*

The equation T®(b) = b leads to the polynomial equation

T(b) = B1, «(1 — b)*] =

B -xt+ 207 - 207+ (a+ D) —a =0
for x = 1 — b, which factors as
X=—x+a )P +ax—a)=0.

The second cubic factor also arises as the sol‘ution to T'(b) = b. This
cubic polynomial is easily seen to be monotone, so that it has a unique
root, which falls in the interval (0, 1). This is the unique symmetric
fixed point to the symmetric model. The quadratic term has two roots

x= (1% v1-4a1/2,

which are real and distinct when a > 4. These two roots x; and x,
satisfy 0 < x; < 1 and x, + x, = 1. The quadratic factor does not have
real roots when a < 4. .
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In the case a« = 10, T' has unique fixed point & = 0.607, which
corresponds to the symmetric solution (0.607, 0.607, 0.607). However,
T has three fixed points: 0.113, 0.607, and 0.887. Hence, the siicces-
sive approximation scheme (8) fails to converge to the unique sym-
metric fixed point of T instead it eventually oscillates between L =
(0.113, 0.113, 0.113) and U = (0.887, 0.887, 0.887). The exact blocking
probability in this case is 0.909, obtained directly from the Erlang loss
formula (1). The reduced-load approximation for the customer block-
ing probability is 6*({1, 2, 3}) =1 — (1 — 0.607)* = 0.939. O
Remark: It is significant that with exactly two facilities, the successive
approximation scheme in (8) converges if and only if T has a unique
fixed point, that is, if and only if (7) has a unique solution. We have
already noted that convergence of (8) is equivalent to 7*? having only
one fixed point. Obviously, T*® inherits all fixed points of T, so that
if T has multiple fixed points, the (8) will not converge. On the other
hand, if (8) fails to converge, then the bounds (L, L;) and (U,, U,)
obtained from (8) are two distinct fixed points of T*®. In turn,
(L, Us) and (U, L) are two distinct fixed points of T.

This argument extends to certain multifacility models, which in-
clude many applications of interest.? Suppose that the set of facilities
can be partitioned into two subsets such that each customer requires
service from one facility in each subset. Let there be n, facilities in
the first subset, numbered 1 < i < n,, and n, facilities in the other
subset, numbered n, + 1 < i < n; + n,. If the successive approxima-
tion (8) fails to converge, then (Ly, -, Ln,, Ln1, -, Ln+n,) and
(Uy, +++y Upy Unpary -+ + 5 Unjan,) are distinct fixed points of 7@, It is
easy to see that (Ly, ---, La;, Uny1, -+, Unen,) and (Uy, ---, U,
Lny+1, -+, Ln +n,) are then distinct fixed points of T. O

To summarize the proposed reduced-load approximation, we find
approximate blocking probabilities at each facility i by solving (7). To
solve (7), we suggest using the successive approximation (8). Succes-
sive iterations yield upper and lower bounds on all solutions to (7). If
the upper and lower bounds are sufficiently close, then we can stop
and use the approximation with some confidence. If the successive
approximation bounds are not close, then the whole approach is
suspect and we suggest using any solution to (7) with caution. An
advantage of solving (7) by (8) is that if (8) converges, then we know
there is a unique solution to (7). Moreover, if (8) fails to converge,
then we get a warning about the whole approach. Also, (8) is extremely
easy to implement. Of course, if (8) fails to converge, then we can look
for solutions to (7) by other methods. Alternatively, we might choose
to use the final upper bound obtained from (8).

After obtaining the approximate blocking probabilities at each fa-
cility, [which usually is a solution to (7), but might not be}], we obtain
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the approximate total offered loads at each facility via (6) and the
approximate blocking probabilities for each class via (5).
Remark 1: To implement the successive approximation in (8) or
otherwise solve (7), we need to be able to conveniently calculate the
Erlang blocking probability eq. (1) and, for some methods such as
Newton’s method, its derivatives. For this purpose, we can apply
techniques of Jagerman.?*® [0 _
Remark 2: The successive approximation in (8) and associated bounds
closely parallels a proposed successive approximation algorithm to
approximately solve closed networks of queues with' a decoupling
infinite-server node in Section VI of Ref. 40. The analog in Ref. 40 of
the operator T' above necessarily has a unique fixed point and the
successive approximation scheme also yields bounds on it. However,
the successive approximation scheme in Ref. 40 also can fail to
converge to the fixed point. Further discussion of the successive
approximation in Ref. 40 will appear in a subsequent paper. [
Theorem 2 provides a way to relate the reduced-load approximation
(7) to the bound in Corollary 1.1. In particular, we can bound the
reduced-load approximation (7) much as we already bounded the exact
blocking probability at facility i.
Corollary 2.1: The reduced-load blocking approximation at facility i, that
is, any b*(i) obtained from (7), satisfies

B {si, Y o I {1 - Bss, &k)]} < b*(t) < B(si, @)

JEC; kEAj
ki

Proof- The upper bound is 7%(1) and the lower bound is 73(1) in the
successive approximation (8). O

Let b*(A) be the reduced-load approximate blocking probability for
the subset A obtained by combining (5) and (7). From (5) and Corollary
2.1, we immediately obtain the following bounds for *(A).
Corollary 2.2: For each subset A, the reduced-load blocking approxima-
tion b*(A) satisfies

1- le‘[A (1 - B {s,-, EZC a; kl‘[ [1 = B(s, &,5_)]})
i kE#Al_j .

= b*(A) =1- H [1 - B(S,', &,')].

€A
Note that we have not yet given any lower bounds for the exact
blocking probabilities. Obviously, b(A) = max{b(i):i€EA}, but it seems
hard to obtain an improvement. One might conjecture that the exact -
blocking probability b(i) at facility i is bounded below by the lower
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bound in Corollary 2 1, but the following example shows that this is
not the case.

Example 4:To see that the lower bound in Corollary 2.1 is not a lower
" bound on the exact blocking probability, suppose that there are three
facilities and two customer classes. Let s, =s; =1, 853 = 3, A, = {1, 3},
Az = {2, 8}, and a; = as = . Then b(3) = 0 because at most two of the
three servers can be busy at the third facility because of the constraints
elsewhere. However, it is easy to see that the lower bound in Corollary
2.1 is strictly positive. 0O

As a further consequence of Theorem 2, we can show that the
bounds in Theorem 1 and its corollaries and the reduced-load approx-
imation in (7) are all asymptotically equivalent as the offered loads
per facility become negligible, that is, as a; — 0 for all .

Corollary 2.3: If a; — O for each i, then
(1) B(su al)/( As‘/sl') — 1,
(ii) b*(i)/B(si;, ;) —> 1,

(iii) {1 - II 1 - B(s;, &i)]} / Y B(si, &) > 1
i€A i€A

(iv) b*(A) Y b)) —>1

€A

(v) b*(A)/{l - II [1 - B(s, &.-)]}‘ -1
i€A
for all subsets A, where b*(i) and b*(A) are the reduced-load approxi-
mations based on (5) and (7). )

Proof: Part (i) follows immediately from the form of the Erlang
blocking formula in (1). Part (ii) follows from Corollary 2.1 after
dividing each term by B (s;, &;) and letting a; — O for all i. To establish
the limit for the lower bound, let & = max{a., l=i=<=njands=
min{s;, 1 < i < n}. Then

I1 [1 = Blss, a)] = [1 - B(, &)™
k‘i‘?’
for all i and j, and [1 — B(5, @)} — 1 as a; — O for all i. Hence,
/
B {si’ 2 Qa; H [1 - B(Sk, &k)]} = B{si’ &1[1 - B(§’ &)]n_l}

.JEC; kEAl o
ki + ."’".;-._?

and

Bls;, al[l B(s' a)"/B(si, a;) — 1
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-as a; — 0 because B(s;, a;x)/B(si, &;) — x% as &; — 0 uniformly in x

in any compact subinterval of (0, «). Given (i) and (ii), (iii) through
(v) are elementary. [

Corollary 2.3 demonstrates that using the more elementary approx-

imations in Theorem 1 and its corollaries instead of the reduced-load
approximation (7) is justified if the loads are sufficiently light. Theo-
rem 1 and Corollary 2.3 also suggest that the reduced-load approxi-
mation b*(A) itself might be an upper bound, but the following
example shows that the reduced-load approximation b*(i) obtained
from (7) is not an upper bound in general.
Example 5: To see that the reduced-load approximation is not an
upper bound, let there be two facilities, each with one server. Let there
be two classes with A, = {1, 2} and A, = {1}, so that &; = a; + a; and
a2 = ay. The reduced-load approximation is determined by the two
equations

b*(1) = B{1, au[1 — b*(2)] + a2}
b*(2) = B{l1, au[l = b*(1)]},

from which we easily deduce that 0 < b*(i) < 1 for each i, so that
b*(4,) =b*(1) < B(1, oy + a2) = b(1). O
Remark: One might conjecture that all the approximations for the

- exact blocking probability b(:) are asymptotically correct as the loads

decrease, but Example 2 shows that this is not nearly the case. If a, =
100a; there, then b(1)/ai® — 101, while B(s,, d1)/ai® — (101)'° as
a; — 0. However, a positive result for large symmetric models appears
in Corollary 3.2 below. L[]

1.6 Symmetric solutions to symmetric models

In this section we consider the special case of symmetric models in
which all facilities have s servers and offered load &, and all classes
require service from m facilities. To have full model symmetry, we
also assume that there is a class requiring service from each subset of

_m facilities, and that the offered loads are the same for each class. We

also assume that the arrival rates and service rates are the same for
all classes. B

. If we restrict attention to symmetric solutions to symmetric models,
then the reduced-load system of egs. (7) simplifies to the single
polynomial equation in one variable

b* = B(s, a(1 — b*)™™), (9)

where b*(i) = b* for all i. Since the right side of (9) is continuous and

- decreasing as a function of b*, (9) has a unique solution, which is easy
" tofind. ° :
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Note that we have restricted attention to symmetric solutions of (7)
in order to obtain the single eq. (9). We have not yet ruled out
asymmetric solutions to symmetric models. However, we conjecture
that none exist. (See Section VIII.)

Conjecture 2 (Corollary to Conjecture 1): The symmetric solution {that
is, the solution to (9)] to the reduced-load approximation egs. (7) is the
only solution for a symmetric model.

To investigate the accuracy of the approximation (5) through (9),
we investigate the asymptotic behavior of symmetric models as
n — oo with the offered load per facility, o, and the number of facilities
required per class, m, held fixed. In Section III we prove that the
approximation (5) through (9) is asymptotically correct as n —
under these conditions. Note that since we fix the offered load per
facility, e, this limit does not correspond to light traffic.

To state the main result, let Y,; be the number of busy servers at
facility i and let Z,. be the proportion of the facilities w1th k busy
servers (both in steady state) when there are n facilities. Let £, denote
convergence in probability.

Theorem 3: If n — o with a and m held ﬁxed for the symmetric model,
then ‘

(@) Znx 2> Br as n — « for each k, where B, satisfies the M/G/s/loss
formula

By = (£*/kY) / ,io /1) (10)
with
£=a(l - B)" Y (11)

that is, B, is the unique symmetric solution to (9).

(b) For any finite subset H, the random variables Y,;, i € H, are
asymptotically mutually independent as n — o,

We establish Theorem 3 in Section III by first focusing on the
stochastic process representing the proportion of facilities with k& busy
servers at time ¢, 1 < k < s and ¢ = 0. The key result is a functional
law of large numbers for this sequence of stochastic processes as
n— o (Theorem 8). The analysis is challenging because this stochastic
process is not Markov.

From Theorem 3, we easily obtain our desired corollary.

Corollary 3.1: For symmetric models, the symmetric reduced-load ap-
proximation in (5) through (9) is asymptotically correct as n — o with
- and m held fixed.
We can combine Corollaries 2/3 and 3.1 to conclude that the bounds
in Theorem 1'and its corollaries are aIso asymptotxcally correct with
light loads. !
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Corollary 3.2: For symmetric models, the bounds in Theorem 1 and its
corollaries are asymptotically correct as n — © and a.— 0;-that is, for
each integer k and each positive ¢, there is a critical offered load oo and
an integer-valued function n(«) such that

b(A)

kB(s, &) 1

< ¢,

for all @ < ap and n = n(&), where A is a subset with k facilities.
Example 5 shows that the reduced-load approximation is not an
upper bound on the actual blocking probability in general. Example 1
shows that the symmetric reduced-load approximation b*(i) for the
blocking probability at each facility in a symmetric model need not be
an upper bound either. However, we make the following conjecture.
Conjecture 3: The reduced-load approximation for the blocking proba-
bility of each customer in a symmetric model in which the number of
facilities per customer is fixed, obtained by combining (5) and (9), is
always an upper bound.
Remark 1: In our symmetric model each customer requires service
from m facilities. Instead, as in Ref. 21, we could have different types
of customers, with customers of type m requiring service from m
facilities. The facilities remain symmetric with this change, so that if
we still restrict attention to symmetric solutions to the symmetric
model, then we again obtain a single polynomial equation in one
variable. In particular, suppose that we have M types, numbered from
1 to M. If we let &, be the total offered load of type m at each facility,
then we obtain (9) with the second argument of B replaced by
M an(1— b*)™ 1, Consequently, it is easy to approximately solve the
models in Ref. 21 and generalizations in which each facility has s
servers. With this extended symmetric model we abandon Conjecture
3. It is easy to get a counterexample by modifying Example 1 to
introduce additional customers that require service from only one
facility and have negligible offered load. O

Remark 2: The reduced-load approximation has the potential of being

" a powerful and flexible approximation tool if we judiciously control

the amount of symmetry. For example, we can obtain a richer class of
database locking models by requiring only partial symmetry. Some
regions of the database may be requested much more than others.
There may also be a tendency for the items requested in a given
transaction to cluster together. These general features can be repre-
sented by partitioning the database into mutually exclusive subsets
and assuming symmetry only within each subset. In addition, we can
introduce various types of transactions, as in Remark 1 above. The
partial ‘'symmetry causes the reduced-load approximation to be a
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system of k equations in k unknowns, where k is the number of subsets

in the partition. The number of transaction types does not increase
the number of equations. Again, the successive approximation (8) can
be applied. 0O

Remark 3: Mitra and Weinberger established Corollary 3.2 for multi-
ple-customer types in the special case of one server per facility via
their asymptotic analysis.”’ Heyman also has a different proof of
Corollary 3.2 in the special case of one server per facility, assuming
that the total offered load in the network is fixed as n — .2 [0

1.7 A few numerical examples

Table I compares the approximations in Theorem 1 and its corol-
laries with the reduced-load approximation in (5) through (9) for
several symmetric models. The various approximations were calcu-
lated “by hand” at the terminal using the Erlang blocking formula
algorithms of Jagerman®® (coded by Moshe Segal). The approximations
are all independent of the number of facilities, so n is not specified.
Based on Theorem 3, the reduced-load approximation in (9) is asymp-
totically correct for large n. The offered load per facility « in (3) is
chosen so that the nominal blocking per facility (the bound in Corol-
lary 1.1) has a specified value: 0.10 in the first six cases, 0.02 in the
next three cases, and 0.01 in the last three cases.

From Table I (and intuition), it is apparent that the quality of the
bounds as approximations is a decreasing function of the number s of
servers per facility, the offered load per facility &, and the number m
of facilities per class. In the case of nominal blocking per facility of

Table 1—The approximate blocking probability for each customer
class in symmetric models: a comparison of the approximation

procedures
Summation Reduced-
Servers per Offered Load Facilities per Bound in Product Load Ap-
Facility per Facility Class Corollary Bound in  proximation
s a m 1.2 Theorem 1 9)
1 0.11111 2 0.200 0.190 0.175
10 751 2 0.200 0.190 0.146
50 49.6 2 0.200 0.190 0.126
1 0.11111 3 0.300 0.271 0.234
10 751 3 0.300 0.271 0.178
50 49.6 3 0.300 0.271 0.157
1 0.0204 5 0.100 0.096 0.089
10 5.087 5 0.100 0.096 0.072
50 40.27 5 0.100 0.096 0.057
1 0.010101 g - 0.0200 0.0199 0.0197
10 ) 4.464 2 0.0200 0.0199 0.0192
50 37.90 2

~0.0200 '0:0199 0.0180
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" _Table ll—Examples of the successive approximations
in (8) for the reduced-load approximation with the
symmetric model in the first three cases of Table |

Servers per facility s ’ 1 10 50
Offered load per facility a 0.11111 7.51 496
Facilities per class m 2 2 2
Bound in Corollary 1.2 0.200 0.200 0.200
Bound in Theorem 1 : 0.190 0.190 0.190
Bound in Corollary 1.1 0.100 0.100 0.100
Iteration one 0.089 0.069 0.051
Iteration two 0.0919 0.078 0.074
Iteration three 0.0916 0.076 0.063
Iteration four 0.0917 0.077 0.068
Reduced-load approx. (9) 0.0917 0.076 0.065
Approximate blocking for each  0.175 0.146 0.126

class by (5) and (9)

0.01 and only two facilities required per class (the last three cases),
the simple summation bound in Corollary 1.2 seems to be adequate.
However, the case of s = 50 and m = 5 produces perhaps a surprisingly
large discrepancy between (9) and the bounds.

Table II displays the outcomes of the successive approximations in
(8) applied to the first three cases in Table I. The successive iterations
describe the blocking per facility, as in (7) and (9). Then (5) is applied
to obtain the blocking per class. From Table II it is apparent that

. about five iterations. yields adequate accuracy, that is, getting close

enough to the fixed point (9). In these examples the successive ap-
proximation scheme in (8) converges to the unique symmetric fixed
point of (9).

Table III compares the approximations with exact blocking proba-
bilities for different numbers of facilities in the special case of a
symmetric model with s = 1 (one server per facility) and (m = 2) (two
facilities required per class). When s = 1, the exact blocking probability
is relatively easy to compute because, with exponential service times
having mean one (which we can assume without loss of generality by
Theorem 4 and Corollary 4.2), the number of customers in service
(which is the number of busy servers divided by m) is a birth-and-
death process with death rate u(k) = k and birth rate

-k - — 1. (n — -
) e e

The data in Table III for this special case were obtained from D. P.
Heyman (personal communication). This case is consistent with Theo-
rem 3, which establishes that (9) is asymptotically correct as n — .
Table III leads us to conjecture that the exact blocking probability for

" each class is increasing in n in this case. More generally, we make the

following conJecture
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Table lll—Comparison of approximations with exact blocking -
probabilities for symmetric models when s.= 1 {one server per
facility) and 'm = 2 (two facilities required per class)

- Reduced- Summation
Number of Offered Load Exact Load Ap- Product Bound in
Facilities - per Facility Blocking  proximation  Bound in Corollary -
n @ Probability o) Theorem 1 1.2
2 0.010101 0.0100 0.0197 0.0199 0.0200
4 0.0165 0.0197 0.0199 0.0200
8 0.0183 0.0197 0.0199 0.0200
40 0.0195 0.0197 0.0199 0.0200
100 0.0196 0.0197 0.0199 0.0200
2 0.111111 0.100 0.175 0.190 0.200
4 0.154 0.175 0.190 0.200
8 0.168 0.175 0.190 0.200
40 0.1735 0.175 0.190 0.200
160 0.1744 0.175 0.190 0.200
2 1.0000 0.500 0.618 0.750 1.000
4 0.600 0.618 0.750 1.000
8 0.611 0.618 0.750 1.000
40 0.6168 0.618 0.750 1.000
100 0.6176 0.618 0.750 1.000

Conjecture 4: The exact blocking probability for each customer class in
a symmetric model is a nondecreasing function of the number n of *
facilities when the offered load per facility a and the number m of
facilities per customer are held fixed.

Remark: Conjecture 3 is a corollary to Conjecture 4 and Theorem
3. O

For typical blocking probabilities (0.001 through 0.2), the quality of
the approximations appears to be a decreasing function of the offered
load per facility (or nominal blocking probability), but this is evidently
not true over the full range. The middle four cases in Table III provide
greater relative differences than the last four cases, comparing (9)
with the exact values.

As our final example in this subsection, we consider a communica-
tion network with traffic from several different sources to a common
destination, as depicted in Fig. 1. Traffic from each source needs two
lines: one line in a facility associated with that source plus one line in
a final facility shared by all sources. When there are n sources, there
are n customer classes and n + 1 facilities. For each i, 1 =i < n, class
i requires one server from facility i and one server from facility n + 1.
Note that this example has the special structure mentioned in the
remark following Example 3, so that for the reduced-load approxima-
tion the successive approximation scheme in (8) converges if and only
if the operator T has a unique fixed point.

Tables IV and V give numerical results obtained by J. T. Wittbold®
for several cases in which n equals 2 and 3, respectively. We display
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FACILITY
2@ -® DESTINATION

3

Fig. 1—A communication network with four facilities and three customer classes.

the exact blocking probability and the reduced-load approximation for
each facility and for each customer class. The successive approxima-
tion converged quickly in every case. For the customer classes, we also
display the product bounds and the approximation obtained by taking
the product of the exact facility nonblocking probabilities (the last
column). This last column helps assess how much of the error is due
to assuming facility independence.

For the cases with high blocking probabilities, for example, Case 1
in Tables IV and V, the reduced-load approximation is much better
than the product bound, as expected. Overall, the reduced-load ap-
proximation ‘appears-adequate for engineering purposes. For lighter
loads, for example, Cases 4 through 6 in Table IV and V, the product
bound seems adequate for most engineering purposes. It should be
effective for properly sizing facilities given forecasting data.

1.8 Existence, uniqueness, and insensitivity

It is significant that we have assumed nothing about the service-
time distributions except that they have finite means. For applications,
experience indicates that call attempts can often’ be modeled reason-
ably by a Poisson process, but that virtual circuit holding-time distri-
butions are often not nearly exponential.*** In Section IV we rigor-
ously establish that a steady-state blocking probability exists, is
unique, and depends on the service-time distributions only through
their means. For this, we apply the theory of Generalized Semi-Markov
Processes (GSMPs) and the associated theory of insensitivity.* ¢

It turns out that the model we consider also can be regarded as a
special case of a model analyzed by Kaufman’ of blocking in a single
facility in which customers request several servers and there is a
general resource-sharing policy. The connection to Kaufman’s single-
facility model is made by simply combining our n facilities and
implementing our sharing scheme as one of his general sharing policies.
The insensitivity property and the exact formula for the blocking are
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thus available from Ref. 7. (Reference 7 also mentions other related
work.) We contribute to Ref. 7 by verifying the conjecture on p. 1477
there that the insensitivity property holds for arbitrary service-time
distributions, not just service-time distributions with rational Laplace-
Stieltjes transforms. (The insensitivity analysis for our model extends
to the setting of Ref. 7, but the bounds and approximations do not.)

Insensitivity properties in queueing have a long history, going all
the way back to Erlang.*’ Insensitivity theory for queueing networks
is largely due to Baskett, Chandy, Muntz and Palacios*® and Kelly.*
It is now understood® that this theory can be viewed as a consequence
of the earlier work by Matthes®' on “bedienungsprozesse” or GSMPs.

As Kaufman observes,’ his model is equivalent to a closed multiclass
BCMP network*® with the addition of extra population constraints.
Without the population constraints, we could simply apply the insen-
sitivity theory developed by Baskett et al.*® and Kelly,*® which was
extended to arbitrary service-time distributions by Barbour;*? for
example, we could apply Section 3.3 of Ref. 6). As observed by Lam,
it is possible to extend the insensitivity theory to closed networks with
population constraints, but it is perhaps more appropriate to recognize
that the closed network, with or without population constraints, is a
GSMP, and the insensitivity theory for GSMPs can be applied directly.
The direct approach via GSMPs is contained in Burman et al.® The
analysis in both Kaufman’ and Burman et al.® requires the addition
of Ref. 46 to treat arbitrary service-time distributions. The technical
details here for establishing existence, uniqueness, and insensitivity
appear in Section IV.

1.9 Non-Poisson arrival processes

We now indicate how the reduced-load approximation (5) through
(7) can be combined with previous approximations for the blocking in
a single facility with non-Poisson arrival processes to generate ap-
proximations for blocking probabilities in the multifacility model here
when we relax the assumption that the arrival process of each class is
a Poisson process.

We assume that the arrival process of each class is a general
stationary point process™ partially characterized by its arrival rate A;
and peakedness z;. (The facilities are thus G/GI/s/loss systems instead
of M/GI/s/loss systems. See Refs. 55 through 57 and references in
these sources for background on peakedness.) As before, we assume
that the arrival processes of the different classes and all the service
times are mutually independent. -

We regard the arrival process at fac111ty i as the superposmon of the
arrival processes of those classes requiring service from facility i.
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Hence, paralleling (3), we define the peake(iness of the arrival process

- at facility { as

%= Y apla, (13)
JjEeC;

where a; is the offered load and z; is the peakedness for class j. Formula
(13) is the standard peakedness approximation for a superposition
process, but it is based on the assumption that the service rates are
the same for all classes, which is not necessarily the case here. Since
we do not account for this difficulty, (13) should perform better if the
service rates p; do not vary much. References 55 through 57 describe
ways to determine the peakedness z; for each class; one relatively
simple way is the heavy-traffic approximation in (4) of Ref. 57, but
other more involved methods are usually more accurate.

For our new reduced-load approximation, we again use (5) and (6).
We propose Hayward’s approximation to extend (7).%-%7 However,
with the non-Poisson arrival processes we must first carefully distin-
guish different notions of blocking. Let b.(A), bci(A), and br(A) be the
probability that all servers are busy in at least one facility in the set
A at the instant of an arbitrary arrival, an arrival to facility i, and at
an arbitrary time, respectively (the overall call congestion, the facility-
i call congestion and the time congestion). Let b; and b{(i) be the
blocking probability for ‘class j overall and at facility i, respectively.
We are primarily interested in b;, bei(f), and br(A).

We apply Hayward’s approximation to approximate bc;(i) as if
facility i were in isolation. We use the peakedness Z; in (13) to modify
(7) in the usual way:

bci(i) = B(si/z;, ai/%), (14)

where B(s, a) is the Erlang blocking formula in (1) extended to
noninteger s, as described in Refs. 27 and 28, and'instead of (6) &; is

&= Y o [ [1 = br(k) (15)
jeC; kkf:j .

In {15) we use br(k) to approximately represent the blocking proba-
bility at facility k seen by an arbitrary arrival to-facility i. This involves
an aspect of the basic facility independence “approximation in (5).

We obtain the approximate time congestion for facility ¢ by using
the approximation

br(i) = bei(i)/z: : (16)

(see page 695 of Ref. 57). [A significant improvement should be’
possible by using (16) of Ref. 56 with the equivalent random method

- instead of (16) above.] Hence, instead of (7), we obtain the following
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system of n equations in the n unknowns bc;(i) by combining (14)
through (16): C

bci(i) = B (si/-;-i, (1/2) ¥ o Il 1 - [bCk(k)/-’:k”>- (17)

j€C; T kea;
ket

Since 2; are fixed positive scalars in (17), the successive approximation

in (8) applies here as well; that is, Theorem 2 and Corollaries 2.1 and

2.2 extend easily.

Given that we have obtained b¢;(i) and b(i) via (16) and (17), we
combine (5) and (16) to obtain the time congestion for an arbitrary
subset A, that is,

br(A)=1~-J1 1 —br(@]=1- ]I {1 - [b:(i)/2]}. (18)
i€A icA

Next we obtain the blocking for class j at facility { by combining our
approximations with Fredericks' approximation for parcel blocking,
(23) in Ref. 56. We obtain

(z —
(2 —
Finally, we obtain the overall blocking for class j by combining (5)
and (19), that is,

bi) = brti) + =] [bai) — b (19)

bi=1~- I [1 - ()] (20)
iEAj
The approximations for b¢i(i), br(A), and b; in (17), (18), and (20)
have yet to be tested, but experience with the individual approximation
steps suggest that the combined procedure is promising.

il. THE BOUNDS _
2.1 The exact blocking formula

As a basis for proving Theorem 1, we first calculate the exact
blocking probabilities b(A). For this purpose, let N; represent the
steady-state number of class j customers in service. The distribution
of the vector (Ny, ---, N.) is conveniently described in terms of the
random vector (N7, ---, N7), where N} represents the steady-state
number of class j customers in service when all n facilities have
infinitely many servers, but otherwise the model is the same. Of course,
in the infinite-server model the steady-state distribution is easy to
describe because there is no blocking, so that there is no interaction
among the classes; that is, the random variables N7, ---, N7 are
independent. From basic results for the M/G/o congestion model®
the steady-state distribution is. )
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- c c kj
P(Nt=k,1<j=<c)=]] PINt=k) =[] ("‘—') (21)
j=1 j=1 \R}!

As in closed Jackson networks of queues, the steady-state distribu-
tion of (N,, ---, N,) is obtained from (21) by simply conditioning.
(See Section 1.6 of Ref. 6.) We defer the proof until Section IV.
Theorem 4: The steady-state distribution of (Ny, ---, N.) exists, is
unique, depends on the service-time distributions only through their
means, and has the form

P(Nj=k,1=<j<c)

P(N;"=k,-,lsj5c

h) N‘-".<_s,-,lsi5n>

JjEC;

P(NF=Fk,1<j=<c)
P( h) N,°-°Ss,-,15i5n)

JEC;

Of course, Theorem 4 can be used to give an exact expression for
the blocking probability b(A). Let Y; represent the number of busy
servers at facility i in our model, that is, Y; = };ec, N;

. .Corollary-4.1: For each subset A, b(A) =1 - P(Y:<s;, [ € A).

However, we apply Theorem 4 only via the following elementary
consequence.
Corollary 4.2: The distribution of (NY, ---, NZ) and thus also the
distributions of (N, --- , N.) and (Y,, ---, Y,) depend on the vectors
of arrival rates (\y, - - - , \;) and service rates (u,, - - - , u.) only through
the vector of offered loads (a,, - - - , a.), where a; = \j/u;.
Remark: 1t is significant in Corollary 4.2 that there is not just one
degree of freedom, corresponding to the choice of our measuring unit,
but ¢ degrees of freedom. For example, we can arbitrarily select the
service rate p; for each class j, as long as the offered load o; is as
originally specified. In fact, for us it will be convenient to make all
service rates identical. (See the proofs of Theorems 5 and 7.)

2.2 Proof of Corollary 1.1 o ‘

To give a direct proof of Corollary 1. 1, we establish a stronger
stochastic comparison. Let N(s, a) represent the steady-state number
of busy servers in an M/G/s/loss system with s servers and offered
load a. We use the notion of Monotone-Likelihood-Ratio (MLR)
ordermg An integer-valued random variable X, is said to be less

“than or equal to another integer- -valued random variable X2 in the

MLR ordering, denoted by X, = Xz, if -
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| PX,=k+1) _PX,=k+1)
PX,=k) = PX.=k)

(22)

for all k. (We also require that the supports be ordered intervals; that

is, P(X; = k) > 0 for integers k € [a;, b;], where — < a; < b; < +x,
a; < ap,and b, < b,.) The MLR ordering is useful largely because it
implies ordinary stochastic order, namely, ‘

Ef (X)) = Ef(X,) (23)

for all nondecreasing functions f for which the expectations are well
defined.?**

Theorem 5: For each facility i, Y; <, N(s;, a;).

Proof: First, make all service-time distributions exponential with
mean one, without altering any of the offered loads. By Theorem 4
and Corollary 4.2, this does not alter the steady-state distribution of
(Ny, ---, N.). Next apply Theorem 5 of Ref. 30. The service rate in
both systems is k& when there are k busy servers. The arrival rate at
facility i in the actual system is always less than or equal to &;. It is
less when there is blocking elsewhere. Of course, the support of both
random variables is the set {0, 1, ---,s;}. O :

Proof of Corollary 1.1: Apply Theorem 5 and (23), noting that
b(@) = P(Y;= s;) < P[N(s;, &) = s;} = B(si, &;). O (24)

Having proved Corollary 1.1, we immediately obtain Corollary 1.2
by virtue of the Bonferroni inequalities (see page 110 of Ref. 29).

2.3 Plausible stochastic comparisons

It is natural to conjecture that Corollary 1.2 could be improved to
Theorem 1 by exploiting the exact relationship in Corollary 4.2 and
establishing the inequality (4) or, equivalently, that

P(Y,‘<S,‘, iEA) = H P(Y,‘<S,'). (25)
i€A

Formula (25) would follow from the random variables Y;, i € A, being
associated or just positively quadrant dependent (see pages 29 and 142
of Ref. 58). Unfortunately, however, (25) is not true in general, as we
show in Example 6 below.

~ One might also try to establish Theorem 1 via certain multivariate
stochastic comparisons. In particular, it is natural to consider the
multivariate versions of the MLR ordering =<, and the stochastic
ordering =,, defined in (22) and (23) (see Refs. 59 and 60). The

extension of <, is defined again.by (23). It is natural to conjecture

that A
(Y1, -+, Yo) e [Na(sy, &), -+, Nulsa, &a)l, (26)
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where the variables Ni(s;, &) are mutually independent. It is also
natural to conjecture the weaker relationships

P(Yi= ki, 1<i=n)=<]l P[NG:, &) = k] @7

i=1

and

P(Yi< k,1=<i=<n)=z=]] P[N(si;, &) < ki - (28)
=1

for all n-tuples (k,, ---, k,). However, in Example 6 below we show
that (27) is not valid, which implies that (26) and the stronger ordering
with =<, instead of <, in (26) are not valid either. However, it turns
out that (28) is valid, and that is the key to establishing Theorem 1.
Example 6: To see that (25) and (27) need not hold, consider the
symmetric model with n = ¢ =3,s; =s: =s3 =1, 4; = {1,2}, 4, =
{1, 3}, A3 = {2,3}, H1 = M2 = U3 = 1, and A= Az = Aa = a. Then b(AJ)
= 3a/(1 + 3a) for all classes j and b(i) = 2a/(1 + 3a) for all facilities
i. Hence, for a > 1

1 by = —— < (22} s by - b, 29)
! 1+ 3a 1+ 3a ?

" . .so that (25) fails. On the other hand,

1 1\ .
1-b(A) = 1+ 30 > (1 " 2a) = [1 ~ B(s;, &) (30)

so that the conclusion of Theorem 1 still holds in this case.
To see that (27) can fail too, let (k;, ks, k3) = (1, 1, 0). Then

P(Y;=k, 1<i=3)=a/(l+3a), (31)

while .

3

II P(N(si, &) = ki) = [2a/(1 + 2a)] (32)

i=1
Hence, for a® < 1/8, (27) fails. On the other hand, it is easy to see that
(28) does still hold in this example. By symmetry, it suffices to consider
only the two triples (1, 1, 0) and (1,0, 0). O _

In summary, Example 6 shows that none of the plausible relations
(4), (25), (26), and (27) is valid, but the validity of Theorem 1 and
(28), which would imply Theorem 1, remains open. We now proceed
to establish (28).

2.4 Proof of Theoreni 1

To prove Theorem 1 we establish (28).:To establish (28), we deyelop
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a certain multivariate variation of Theorem 5 in Ref. 30. In particular,
we develop a general stochastic comparison result for continuous-time
non-Markov jump processes in which the intensities of moving into
certain sets are always greater for one process than the other. The
results here are a special case of the general theory developed in Ref.
31. They also can be obtained from the related work of Massey.3¢-38

For our comparison result, we consider an arbitrary finite state
space S. (It will be clear that similar results hold for infinite state
spaces, but it suffices for us to consider a finite state space.) Let the
space 2 = (8S) of all probability measures P on S be endowed with
an order relation < defined by P, < P, if P;(4) < P,(A) for all subsets
A of S in some class &. (The order relation < is obviously reflexive
and transitive, but it is not necessarily a partial order because it need
not be antisymmetric: P, = P, and P, < P, together do not necessarily
imply that P, = P;; the relation will be a partial order if & is a
determining class.®!) Since S is finite, the order relation is closed, that
is, it is preserved under limits: If P,, < P,, in (£, <) for all n, P;,({s})
— P;({s}) as n — o for each i and s € S, then P, = P,. [In our
application S will be a finite subset of R", but < will not correspond
to ordinary stochastic order on 22(S) as defined in (23).]

The first process Y;(t) will be a Continuous-Time Markov Chain
(CTMC) with infinitesimal transition rates (generator) q,(s; A), de-
fined as usual for s € S and A C S in terms of its transition function
by

P(Y.(t + h) € A| Y1(t) = s) = hqi(s; A) + o(h), (33)

for s € A, where o(h) represents a quantity that converges to zero
after dividing by h.

The second process Y(t) will also be a continuous-time jump
process with the jumps governed by infinitesimal transition rates, but
as in Ref. 30 these rates may depend on additional information other
than the current state, such as the history of the process. Let the
additional information at time ¢ be I'(¢), and let « represent a possible
value. [In our application the process Y.(t) represents the number of
busy servers at each facility, and the additional information I'(¢) is
the number of customers of each class in service.] We assume that the
process [Y.(t), I'(t)] is a CTMC on the product state space S X S’,
where S’ as well as S is finite. Let g2 (s, v; A) be the transition function
for [Y2(t), I'(t)], defined by

P(Y:(t), T(1)] € Al Ya(t) = s, T(t) = v) = hqgo(s, v; A) + o(h) (34)

for(s,y) ¢ AandACSxS8’". We shall also use the transition function
for Y2(t), defined by ga(s, v; A X S") for A C S and s.¢ S.
Just as in Ref. 30, the idea here is to compare the processes Y;(t)
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and Y.(t) by comparing the transition intensities in the space S,
requiring that the comparisons hold uniformly in the extra information
I'(t), which must be added to Yz () to make Y.(¢) Markov. Of course,
a major complication here is the multidimensional state space S.
Following Kester®* and Massey,**® we exploit nonstandard stochastic
orderings on S [consistent with (28)] and stochastic monotonicity.of
the Markov process in this ordering in order to cope with the dimen-
sion of the state space. In particular, in our theorem, we shall assume
that the transition function of the CTMC Y,(t) is stochastically
monotone.??38

Definition 1: A CTMC Y,(t) has a stochastically monotone transition
function (kernel) K, = K,(s, A) = P(Y,(t) € A|Y:1(0) =s) if P,K, <
P,K, in (2, <) whenever P, < P, in (2, <), where (P;K,)(A) =
Yees Pi(s)Ki(s, A).

Remark 1: It is significant in Definition 1 that both the condition and
the conclusion involve the same (unspecified) order relation < on
2. O

Remark 2: As in Section 2 of Keilson and Kester,* stochastic mono-
tonicity of a CTMC Y;(¢) can be characterized by the transition rate
function g, (s; A) and, after uniformization, by the transition function
I + ¢q, of an associated discrete-time Markov chain with the same

- stationary distribution, where I is the identity map and e is sufficiently

small so that I + ¢g; is nonnegative. In particular, (i) (Py¢;)(4) <
(P2q,)(A) for all A € & whenever P, < P, and (ii) Pi(I + 1) =<
Py(I + ¢q;) whenever P, < P, are each necessary and sufficient for
Y:(¢t) to have a stochastically monotone transition function. [0

ForAC S, let A°= S — A. Let 7 be the marginal distribution of =
on S, that iS, %2(A) = 1(2(A X S’)
Theorem 6: Suppose that the CTMCs Y,(t) and (Y2(t), T\(t)) defined
above have unique stationary distributions wy on S and moon S X S'. If
(i) Yi(t) has a stochastically monotone transition function in (2, <)
and (ii) for all A € & and v € §’, gu(s, v; A X §’) = q:(s; A) for all
s € A° and qo(s, v; A° X 8’) = qi(s; A°) for all s € A, then 72 < 7 in
(2, <).
Proof: Since = is the unique stationary distribution of [ Y>(t), T'(¢)],

0 = (m2q2)(4) = ¥ ma(s, v)q2(s, v; A) '

8y .
for all A C S x S’. By condition (ii),
0 = (m202)(A X 8') < ¥ mals, Y)qu(s, A) = (72q1)(4)  (35)

8y

for all A ¢ &. Since the transition function associated with g, is
stochastically monotone, (35) implies that 7 ‘=< #;. To see this, let Py,
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be the stochastically monotone transition function I + eg; of the
associated discrete-time Markov chain constructed by uniformization.
Then 0 < (72¢1)(A) for all A € & is equivalent to 7, < w2 P4 . Since
P, is stochastically monotone, 7, < Py < moP% < --- <= mPh.
Since 7, P} — m as n — o and < is a closed order, m, < 7, P} <
mT. D

Remark 1: If Y,(t) is a Markov processes, so that we do not need I'(t),
then Theorem 6 follows from Section 4.2 of Stoyan.®® In fact, as
explained in Ref. 31, Theorem 6 can also be viewed as a consequence
of both Stoyan® and Massey.®®* [

Remark 2: For both Markov and non-Markov processes, the conditions
of Theorem 6 also imply stochastic comparisons for the marginal
distributions at time ¢ for all £3* 0O
Remark 3: To relate Theorem 6 here to Theorem 5 of Ref. 30, note
that it suffices to let one of the processes there, say Y,(t), have
transition rates that do not depend on the extra information; that is,
let A\ (k, I,) = a;(R) and u,(k, I,) = B,(k). (The more general case
follows by just making two comparisons.) Then Y;(t) becomes a birth-
and-death process on the integers, which is known to be stochastically
monotone with the usual stochastic order for probability measures on
the real line. Theorem 6 here thus yields stochastic order (which is
weaker than the MLR ordering in Ref. 30) under the conditions of the
corollary to Theorem 5 in Ref. 30. Since the stationary distribution of
Y:(t) depends on «a; (k) and 8,(k + 1) only through the rations a,(k)/
Bi(k + 1), we can generalize the conditions here to the conditions of
Theorem 5 in Ref. 30. In conclusion, then, Theorem 6 here yields a
weaker conclusion (stochastic order instead of MLR order) under the
same conditions as Theorem 5 of Ref. 30, but Theorem 6 here extends
conveniently to the multivariate setting.

We now apply Theorem 6 to our problem. Theorem 1 follows
immediately from (28), which we now establish.
Theorem 7: For each n-tuple k = (ky, --- , k), P(Yi< k;, 1 =i=<n)
= [1%; P[N(si, a;) < kil.
Proof: We apply Theorem 6. The left and right sides of the inequality
will be the stationary distributions of the processes Y,(t) and Y,(t),
respectively, representing the number of busy servers at each facility
for 1 = i < n. In both cases, we assume that the service-time distri-
butions are exponential, which we can do without loss of generality by
Theorem 4. The process Y.(t) represents the process of interest to us
and the process Y;(t) is a CTMC in which the coordinate stochastic
processes are indfependent. In other words, Y;(t):is the process corre-
sponding to n independent M/M/s/loss facilities. The information
T'(t) associated with the process Y2(t) in Theorem 6 here is the number

BLOCKING 1837




of class j customers in service for each j at time ¢. It is easy to see that
the process I'(t) and the bivariate process [Y2(t), I'(£)] are CTMCs.

To fill in the rest of the details, let the state space S be the product
of n integer intervals and let the state space S’ for I'(t) be the product
of c integer intervals, that is,

S=X10,1,---,s)} and 8 =X 1{0,1,---,5, (36
i=1 i=1
where § = max{s;, 1 =i =< n}. Let S be endowed with the usual partial
order in R"; that is, k, < ko for k; = (R, - - - , Rin) if kyj < ky; for all j.
We shall be interested in lower subsets of S defined by

L(kk) = {k’ € Sk’ =< k}. (37)

Let .7 be the set of complements of lower sets L(k) for k € S; that is,
& = {L(k) = § — L(k):k € S}. The set & induces a partial-order
relation < on the space & = 2(S) of all probability measures on S
through the definition

P, =P, if Pi(A) < P;(A) forall A€ . (38)

Here < is a proper partial-order relation because % is a determining
class.

It remains to show that conditions (i) and (ii) in Theorem 6 hold
with respect to the ordering =< in 2(S). To see that condition (i) holds,
that is, that g, is stochastically monotone with respect to <, construct
the associated discrete-time transition function Py = I + €q; (see
Remark 2 before Theorem 6) and note that

(wPa)[L(k)] = ¥ pfnlL(k + e)] + (1 - ZP?) =[L(k)], (39)

where e; is an n-tuple of all 0’s except a 1 in one place and p} is a
probability. (The permissible values of +e; obviously depend on k, but
it is not necessary to specify them or the probabilities p; in detail.)
From (39), it is immediate that (m, Pa)[L (k)] = (72Pa)[L(k)] for all
k € S if m[L(k)] = m2[L(k)] forallk € S.

To establish condition (ii), involving the comparison of the inten-
sities, first apply Corollary 4.2 to make all the individual service rates
identical without changing the stationary distributions being com-
pared, as in the proof of Theorem 5. Next consider transitions upwards
due to arrivals. Observe that for k € L(k’)

q1[k; L(k')] = gz[k, v; L(k')] =0 (40)
unless k; = k! for some i and : ‘ _
[k, v; L(k')] =< qulk; L(k')°] - (41)
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--otherwise. Make -the comparison (41) by matching the intensities
associated with each class j separately. For g, this corresponds to a
simultaneous jump up of one in all coordinates of A; with intensity );,
while for g; this corresponds to a jump up of one in one of the
coordinates of A;, each with intensity A;. Strict inequality occurs in
(41) if the simultaneous transitions are blocked by the upper boundary,
while the corresponding individual transition is not. Inequality also
occurs if k; = k! for two or more indices i. Assuming that k; = ki for
some I and there is no blocking at the upper boundary, the intensity
of transition out of L(k’) is \; for ¢g. but m); for g, where m is the
number of indices for which k; = k/.

Next consider transitions downwards due to departures, where now
all individual service rates are identical, say x. (Invoke Corollary 4.2.)
The transition function g, differs from g, by having multiple depar-
tures at intensity p (that depend on the classes present) instead of
individual departures each at intensity p. The overall intensity of a
transition downward, therefore, can be much greater in q;, but with ¢,
it is possible to enter the sets L(k’) from outside, that is, from k €
L(k’)" only by a departure in at most one of the coordinates. In other : *
words, we have

qz(k, v; L(k')] = qi[k; L(k’)] (42)
for all k € L(k’)". Strict inequality can occur in (42) if k; = k! + 1 for

two or more i in A; and k; < k{ otherwise when a class j customer is in
service at time ¢. Then

@[k, v; L(k')] = p > 0 = qi[k; L(k)]. (43)

for k € L(k’)". Properties (40) through (43) establish condition (ii) of
Theorem 6 in our case. [

HIl. LARGE SYMMETRIC MODELS

To support the reduced-load approximation in Sections 1.5 and 1.6,
we investigate large symmetric models. The limit theorems here are
similar in spirit to previous ones for closed networks of queues with
unlimited waiting space in Sections V and VIII in Ref. 40.

Here we assume that all facilities have s servers, all service-time
distributions are exponential, all service rates are 1, all customer class
arrival rates are A, and all customers require service from m facilities. s 3
We associate one class with each possible subset of size m. We let the '
number of facilities n become large with the total offered load per
facility o« held fixed. We achieve this by letting the arrival rate per
class when there are n facilities be

: N A — )
*n%&”/ (Z) e o
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It seems useful to focus on the stochastic procéss @,;(t) representing
the number of facilities with j busy servers at time ¢ in the model with
n facilities. Obviously, @.o(t) = n — [@u(¢) + --- + Q.(¢)] so that it
suffices to focus on j with 1 < j < s. The process [@.1(¢), - -+, Qns(t)]
is convenient because its dimension does not change as n — ¢, It also
appears that this process contains the essential information to char-
acterize the asymptotic behavior of the blocking probability. However,
this process presents a serious difficulty because, except in the rela-
tively elementary special case in which s = 1, this process is not
Markov. The future evolution of the process given any present value
depends on additional information, namely, the specific classes pres-
ent. However, we show that in a sense this information is asymptoti-
cally irrelevant.

3.1 A conjectured diffusion process limit

- Let V,;(t) be the normalized stochastic process defined by

Vi (£) = (Qu(6) — nB)/¥n, =0, (45)
and let V, = V,(t) be the vector-valued process defined by
Vo(t) = [Vul2), ---, Vas(®)), t2=0. (46)

In the spirit of many limit theorems for closely related Markov
processes,® % we conjecture that V. converges in distribution to a
multivariate diffusion process. It should be possible to establish
weak convergence (convergence in distribution) in the function space
D[0, =) of right-continuous functions with left limits,**% but we
support the diffusion approximation only by establishing convergence
of the infinitesimal means. For the following conjecture, let V,(t) be
the stationary version (starting in equilibrium at ¢ = 0) for each n,
which exists and is unique by Theorem 4. The conjectured limit process
is an s-dimensional multivariate Ornstein-Uhlenbeck diffusion proc-
ess, which is characterized by its infinitesimal means and covari-
ances.%?%%% The infinitesimal means and covariances have the rela-
tively simple form of Mv and Z, where v is the s-dimensional state
vector and M and = are s X s matrices that do not depend on the
state.

Conjecture 5: The sequence of stationary stochastw process {V,, n =1}
defined in (45) and (46) converges weakly (in distribution) in the
function space D([0, »), R*®) to a stationary multivariate Ornstein-
Uhlenbeck diffusion process if the normahzatwn constants f3; in (45) are
defined by (10) and (11).

Heuristic Argument: In support of Conjecture 5, we prove that the
infinitesimal means of {V,} converge as n — o to those of an s-
dimensional Ornstein-Uhlenbeck diffusion process Even though the
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process V,(t) is not Markov for each n, the infinitesimal means depend

on the past {V.(s), s < t] only through the present state V.(t) = v for

each n. For 1 <j =< s — 1, the infinitesimal means are

mnj(vl) Tty U,)
= lim E [V"j(t +s) — Vi Vi, ust, V,t)=ve=(, ---, v,)]
0 S

n

~ 12 {(nﬂj_l + Vv1)(ma) (" nb. - ‘/;”‘) )

+ m( + 1) (B + Ynup) — (nB; + vnu;)(ma)
-(——————" s &"‘)m_ ~ mj(ng; + Jﬁvj)}

n
= n"2{Bi.yma(l — B,)"' + m(j + 1)Bjn
- Bima(l = B,)""' — mjg;} + {vj1ma(l — g4)""

+ ijm(j + 1) - Ujma(l - Bs)m_l - Ufmj}) (47)
where 8o =1 — (B, + --- + B;). For j = s, the infinitesimal mean is
m,,s(Ul, Py US)

12 { (nBios + + Vnv,;)(ma) (n—_nﬂ:-l:ﬂ)"'_

— ms(nB, + ﬁv,)}

~ nl/ztﬂa-—lma(l - Ba)m-l - msﬂ,l + ‘Ua-lma(l - BS)m-l - Uams’- (48)

In order for m,;(v,, ---, U;) to converge as n — o, it is necessary
and sufficient to have the coefficients of n'/? vanish in the first terms
of (47) and (48); that is, we need

Bi-1ia(l = B)™ + (j + 1)Bjnr = Bia(l = B)™ ' + jB;, j<s— 1,
ﬂs—la(l - ﬂ.s)m—l = sﬁs- (49)

By induction, it follows that (10) and (11) provide the unique solution
to (49). The remaining terms in (47) and (48) provide the infinitesimal
means of the limiting diffusion process.

A next step to establish Conjecture 5 would be to establish conver-
gence of the infinitesimal covariances, but the infinitesimal covari-
_ances do depend on more than the current state v for each n, and

seem difficult to calculateFinally, this would not actually complete
the proof because the process V,(¢) is not Markov. It almost would
if V,.(t) were Markov by page 268 of Stroock and Varadhan 63]
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Conjecture 6 (Corollary to Conjecture 5): The stationary random vector
of V.(t) is asymptotically normally distributed with zero mean vector
as n— o,

3.2 A law of large numbers

To establish Theorem 3 in Section 1.4, we prove a weaker resuit
than Conjecture 5, namely, a functional law of large numbers for the

process {{Qn(2), - - -, Qus(t)], t = 0} as n — . For this purpose, let
X,i(t) = n71Q(t), 1=<j=s, (50)
and
Xa(8) = [Xu (@), ---, Xa(t)] (1)

for t = 0. Note that the components of X,,(t) are always nonnegative
and their sum is at most one, so we can let the state space for X, (¢)
be the s-dimensional simplex, say A, which is a compact subset of R*.

The limiting stochastic process X(t) for X, (t) will be a continuous
deterministic motion, that is, a Markov diffusion process with zero
diffusion or variance coefficient. The process {X(t), ¢ = 0} has a
transition function

P[X(t) = T(t, x) | X(0) = x] = 1,

where x € A and T(¢, -) 1s a deterministic function mapping A into
itself. Let Tj(t, x) be the jth component of T(¢, x), that is, T'(¢, x) =
[T:(t, x), ---, Ts(t, X)]. The function T'(¢, -) is characterized by its
derivative with respect to ¢, say T'(x) = [T'1(x), ---, T.(x)], where
T; (x) = d/(dt)T;(t, x), which is independent of ¢ and is essentially
the infinitesimal generator. Let = denote weak convergence (conver-
gence in distribution) of random elements in any space, for example,
the state space A or the space of all sample paths D([0, «), A).51646
Theorem 8: Assume exponentially distributed service times with mean
one. If X,,(0) = X(0) in A, then X, = X in D([0, =), A), where X(t) is
a continuous deterministic motion with transition function T(t, x)
having derivatives with respect to t

T (x) = ml&(l = £)™ (@ — %) + G + D — jxlj=s -1,
T!(x) = m[a(l — x,)" ' x,-; — s%,], (52)

where X = (1, -+-,x)and xp=1—(x; + -- - + x,).

Proof: There are two steps, which we establish in Lemmas 1 and 2
below. First, we show that {X,} is uniformly tight in D ([0; ), A), so
that every subsequence has a weakly convergent subsequence (see page -
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35 of Ref. 61). In the process, we show that each limit process has
continuous sample paths. Then we show that the transition functions
P[X,(t + t;) € A| X,.(t,) = Xx] converge to the transition function of
the specified continuous deterministic motion as n — oo, Moreover,
we show that the transition probability is asymptotically Markov, that
is, asymptotically independent of the history of the process before ¢;.
By Lemma 1, there is a weakly convergent subsequence, and any
weakly convergent subsequence, say {X,,}, has some limit process X'.
As a consequence of the weak convergence in the function space and
the continuous mapping theorem (Theorem 5.1 of Billingsley®'), the
bivariate joint distributions converge weakly in A? too; that is,

P{X,,,(t1), X, (t2)] € -} = P{[X'(tx), X'(t2)] € -}
for all ¢, t, = 0. Since X, (0) = X(0), X’(0) must be distributed the
same as X(0). Moreover, since the transition functions converge,
the limit X'(¢) must be distributed as T[t, X(0)]. Since the sample
paths of X’ are continuous, this determines the distribution of X’ in
D([0, «), A). Since the distribution of the limit of every weakly
convergent subsequence of {X,} in D([0, »), A) is determined, the
entire sequence thus converges weakly to the determined limit, by
Theorem 2.3 of Billingsley.®* [
Lemma 1: The sequence {X.} is uniformly tight in D([0, =), A) and the
limit of any convergent subsequence has continuous paths.
Proof: To establish uniform tightness in D([0, =), A), we establish the
stronger C-tightness, conditions for which are given in Theorem 8.3
of Billingsley.®! This implies that {X,} is also D-tight and that the
limit of any convergent subsequence has continuous sample paths. T'o
establish C-tightness, it suffices to focus on a single coordinate of {X,}
in D([0, =), R), say {X,,;} (see Section 2 of Ref. 65 and Exercise 6, page
41, of Ref. 61). Moreover, it suffices to restrict the time interval to a
compact subinterval.54¢67 Since the state space A of X, is a compact
subset of R, the set of all probability measures on A with the topology
of weak convergence is metrizable as a compact metric space (see page
45 of Ref. 68). By Prohorov’s theorem, page 37 of Ref. 61, {X,;(0)] is
uniformly tight in R and condition (i) of Theorem 8.3 in Billingsley®!
holds.

We establish the remaining condition (iz) by bounding the change
in X,,;(t) in a fixed interval of length é by the normalized sum of all
arrivals and all departures during that arrival. The arrivals, in turn,
are bounded by the total number of arrivals that would occur if all
servers remained empty throughout the interval, that is, by a Poisson
random variable with rate nmé&s. Similarly, the number of departures
is bounded above by the number of departures that would occur if all
facilities remained full throughout the interval, that is, by a Poisson

1
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random variable with rate nmsé. These two bounds can be expressed
via stochastic order relations, as in (23), by actually generating the
arrivals and departures by appropriately thinning two independent
Poisson processes with the indicated rates.®

To establish condition (if), it remains to show that for all positive
¢, ¢, and 5 there exists 4 such that

P[N(cné) > ne] < oy (53)

for all n sufficiently large, where N(A) is a Poisson random variable

with mean A. Of course, we choose 6 so that ¢ < ¢ to have the mean

of N(cné) less than ne. Then, using Chebyschev’s inequality, we obtain
Var N(cné)

[EN(cns) ~ nef?

PIN(cns) > ne <

< cné _ co
(cné — ne)®>  n(cd — ¢)*’

which shows that (53) indeed holds for all n > n,, where ny, =

c/[n(cd —¢)). O
Let A¢ be the open e-ball in A about the set A, that is,

A‘={x € A:d(x,y) <e forsome y € A}, (54)

where d is a metric on R* here taken to be the maximum metric
d(x,y) =max{lx;—y|,1=iss}
Lemma 2: For all positive ¢, states x € A and histories {X,(u), u < t;},

lim P(X,(t; + t2) € [T(ts, X)) | Xnlu), u < &, Xo(t1) = x) = 1,

where T is the continuous deterministic motion in Theorem 8.

Proof: Let I be the identity map on A. Since T'(¢, -) has the semigroup
property of a Markov process and the derivativer T’ is bounded and
continuous, (I + ¢T”)< > T(t, -) as ¢ — 0. Consequently, it suffices
to prove that there is a constant K such that for all sufficiently small
positive ¢

lim P(X.(t + ¢) € (x + T | X w), ust, Xat) =x)=1. (55)

To establish (55), we use stochastic dominance arguments as in the
proof of Lemma 1. In particular, we first observe that, for any n, t and
¢, the total number of arrivals in the interval [¢, ¢ + €] is stochastically
dominated by a Poisson variable with mean nmae. Similarly, for any
n, t, and ¢, the total number of departures in the interval [¢, ¢t + €] is
stochastically dominated by a Poisson variable with mean nmse. These
stochastic bounds give us initial bounds on how much X (z) can differ
from X,(t) in the interval [t, ¢t + ¢] for all possible histories. Since
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X.;(t) is a proportion, we can apply a law of large numbers for Poisson
variables as the rate increases. In particular, there is a constant K,
which is independent of € as ¢ — 0, such that

lim P_( sup | Xni(u) — X (t)| > Ke| Xa(u),
n—eo0 tsust+te

u=<t, X.@t)= x) =0. (56)

We now use the initial bound in (56) to produce better bounds on
X, (t + ¢) — X, (2), that is, to establish (55). Given that X,,(¢) = x and

sup | Xn(u) — Xn(t)| < Ke

t=u=stte

for 1 = j < s, the actual flow rate into state j (the rate of increase of
X,i(w)) in the interval [¢, t + €] is bounded above by

I*(j) = @ min{l, (1 — x, + Ke)™ ' }(x;-; + Ke)
+ G + Dl + Ko
< a min{l, (1 — x; + Ke)" 'x;-1 + aKe + (j + Dxjnn
+ (j + 1)Ke
=a(l —x)" ' + (G + Dxjer + (am + (j + 1))Ke  (57)
and bounded below by
I'(j) = & max{0, (1 — x, — Ke)™ }(xj-1 — Ke)
+ (J + D(xjs1 — Ke)
= a(l = x)" 'xy + (J+ Dy — [am + (j + 1))Ke.  (58)

In other words, with n facilities the flow into state j for the unnor-
malized process Q,;(t) is stochastically bounded above by a Poisson
process with rate nl“(j) and stochastically bounded below by a Pois-
son process with rate nI'(j).%° Similarly, the flow rate out of state j
[the rate of decrease of X,;(u)] in the interval [¢t, t + €] is bounded
above by ’

0“(j) = a min{l, (1 — x, + K&)"'}(x; + Ke) + j(x; + Ke)

< &(1 — x)™'x; + jx; + (Gm + j)Ke (59)
and bounded below by
0'(j) = & max{0, (1 — %, = K" — Ke) + j(x; — Ke)
= 4(1 - 2)™5; + iy — (Gm + j)Ke. (60}

We invoke a well-known functional law of large numbers for the
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Poisson process (which is a consequence of the functional central limit
theorem, Section 17 of Billingsley®') to deduce that as n — o the
change in X, (u), that is, the change in the proportions, is bounded
above and below by the deterministic motions with rates I“(j) — 0'(j)
and I'(j) — 0“(j), respectively. Hence, for any history {X,(u), u < t}
and any state X, (t) = x, '

lim P{elI'(j) — 0“(j)] = Xni(t + &) — Xui(t)

< {I“(j) — O'(NIXn(u), u s t, X,(t) = x} =1, (61)
but
I“(j) — 0'(j)] = T/ (x) + €K’
and
dI'(j) ~ 0“(j)] = T} (x) — €K’
for K’ = (2am + 2j + 1)K, so that (61) is equivalent to the desired
result. [

We now describe the limiting continuous deterministic motion X(t)
specified in Theorem 8. In particular, we verify that X(¢) has a unique
stationary distribution and converges to jt as ¢ — o for any initial
distribution. It is relatively elementary that T'(¢, -) has a unique fixed
point in A. We want to establish the stronger result that T'(¢, -} has a
unique fixed point in the space 7(A) of all probability measures on A.
To appreciate the difference, note that clockwise circular motion at
constant angular velocity in the plane has a unique fixed point in the
plane, namely, the origin, but the uniform distribution over any circle
centered about the origin is a stationary distribution for this clockwise
circular motion. We show that our continuous deterministic motion
actually converges to its unique fixed point in A for every initial
distribution.

Theorem 9: For any initial vector y, X(t) — B as t — o, where 8 =
By, -- -, Bs) is determined by (10) and (11).

Corollary 9.1: The limiting continuous deterministic motion X(t) has a
unique stationary distribution, which is a unit mass on the vector B
determined by (10) and (11). o

Proof: We write T,(A;) — A, as t — o for subsets A; and A; of A to
represent that T'(¢, y) — A; as t — o for all y € A,, that is, d(T'(¢t, ¥),
Az) — 0 as t — o, where d(x, A) = inf{d(x, y): y € A} with d the
metric on R*L. Equivalently, T'(¢, y) — A, as ¢t — o if the limits of all
convergent subsequences {T'(ts, y), k=1, 2, --.} of {T(¢, y), t = 0}
with £, — o are contained in A,. (Since A is a compact metric space,
every sequence has a convergent subsequence. Moreover, the limit sets
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A, considered below will be closed, so that they will cor_xt_éin the limits.)
Our goal is to show that T,(A) — {8}. To.do so, we construct compact
subsets L,, - -- , L, such that

L=18CL_,C--- CL CA, (62)
T(A) > Lyand To(Ly) > Lysr, 1 <k <s—1,ast— o, Since T, has
the semigroup property T'(t, + &2, X) = T[t;, T(t;, x)] for all x, t; and
t2, and is continuous, this implies that T,(A) — L, for-all k, so that
T.(A) — {8}.
We consider real-valued functionals of T'(¢, -). First we consider the
net flow into the set {1, - - -, s}, defined by

Fu(x) = 3, T %
with derivative
Fi(0 = &1 - 20" - 3 jx, )
which is continuous and strictly decreasing in x. Moreover, for
all x sufficiently large, F/(x) < 0; and for all x sufficiently small, .

F!(x) > 0. Consequently, F,(x) — 0, FI[T(t, x)] — 0 and T.(A) —
L, as t — «, where

L ={x € A: F;(x) =0}. (64)
Next consider the net flow into the states {1, ---, s — 1}, defined
by

s—1
Fi1)(x) = 21 T;(t, x)
=

with derivative
s—1

FIi(x) =& — %)™ 'Q — x, — X,0y) — 3 Jjx;

=1
= [&(1 e ) jxj] + [sx, = x4l — x,)™7Y
=1

= F/(x) + [sx;, — x,-;a(1 — x,)™']. (65)

Forx € L,, F;(x) =0, and F/_,(X) = [sx, — x,-1a(1 — x,)™"'], which
is continuous and strictly decreasing in (x,-;, — x,). For all x € L,
with x,; sufficiently large (small) and x, sufficiently small (large),
F._,(x}-< 0 (>0). Hence, F,_13(x) — 0 and F,[T(t, x)] — 0 for
X € L,, and T(L;) — Ly as t — o, where

L=lx€LeFia@=0. . (66)
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Slmllarly, we consnder the net flow F(,_o(xX) into the s states 11, -

s — 2} with derivative

Flo(x) = FI(X) + Fi(x) + (s — Dy — x2d(1 — )™, (67)

which is continuous and strictly decreasing in (x,_o, x,_;, —x,). More-
over, for all x € L, with x,_, sufficiently large (small) and x,-, and x,
sufficiently small (large), F,_»(x) <0 (>0). Hence, T:(L,) — L3, where

= {x € Ly:Fl5(x) = 0}. (68)

The proof is completed by induction. The s equations F;(x) = 0,
1 < k < s, uniquely determine the fixed point 8 of T'(¢, -) in A defined
by (10) and (11). These are the partial balance equations for a single
M/M/s/loss facility.® Hence, L, = {8} and T,(A) — {8} as t —» . O

3.3 Proof of Theorem 3(a)

Proof: We now apply Theorems 8 and 9 to prove Theorem 3(a). Let
Z.=(Zn, -+, Zns) have the unique stationary distribution of {X, (¢),
t = 0} for each n. (Existence and uniqueness follow from Theorem 4.)
Since the state space for {Z,} is the compact simplex A in R’ the
sequence {Z,} is uniformly tight and has a weakly convergent subse-
quence, say {Z,, }; apply the argument in the proof of Theorem 8. Since
Z, = Z in A as n, — « for some Z, the stationary versions of the
stochastic processes X, (t) converge weakly (in distribution) in
D([0, =), A) and n, —  to the continuous deterministic motion X(t)
with X(0) distributed as Z (applying Theorem 8). However, since
X, () is stationary for each ny, so is X(¢). By Corollary 9.1, the only
stationary distribution for X(¢) is the limiting vector 8. Hence, we
must have P(Z = 8) = 1. Since every convergent subsequence of {Z,}
has the same limit Z, we must have convergence of the entire sequence,
that is, Z, = Z in A (see Theorem 2.3 of Ref. 61). Since P(Z=8)=1
for the deterministic vector 8, we have convergence in probability (see
page 25 of Ref. 61). O

Remark: Theorems 3, 8, and 9 together imply that the stationary
versions of the stochastic processes X,,(¢) also satisfy a functional law
of large numbers in D ([0, «), A).

3.4 Proof of Theorem 3(b)

. The key to Theorem 3(b), of course, is Theorem 3(a) and the
symmetry: Every subset of size m is equally likely to be the set of m
required facilities for each arrival. In addition to Theorem 3(b) we
establish a stronger form of asymptotic independence, for the stochas-
tic processes instead of only the stationary distributions. Let Y,;(f) be -
the number of busy servers at facility i at time ¢. Let Y,(¢) = [Y,,(¢),
Y,.n(t)] be the stationary version for each n. -
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Theorem 10: For any finite subset H and any t,, the stationary stochastic
processes {Yni(t), 0 < t < ty}, | € H, are asymptotically independent as
n-— o,
Proof: By symmetry, the joint distribution of { Y,;(¢), [ ¢ H} is invariant
under a permutation of the indices. By Theorem 3a, the proportion of
facilities with j busy servers converges in probability to 8; as n — .
" Hence, by symmetry, lim,_,. P[Yn(0) = ji, 1 =i < H]} = [l B;, so
that the initial stationary values Y,:;(0), { € I, are asymptotically
mutually independent. Next, let A,;(¢) be the arrival process to facility
I excluding losses due to blocking elsewhere. By Theorem 3a, A,;(t)
converges to a Poisson process with rate &(1 — 8,)™ " as n — =,
Moreover, again by symmetry and Theorem 3a, the arrival processes
{An:(t), 0 =t < o}, i € H, are asymptotically mutually independent as
n — o, Since probability that the facilities in H share any customers
at any time in the interval [0, {] is asymptotically negligible as n —
o, the departure processes for i € H and thus also the processes
{Yni(t), 0 =t <to}, i €E H, are asymptotically mutually independent. O

1v. EXISTENCE, UNIQUENESS, AND INSENSITIVITY

We now prove Theorem 4.

- Proof: In the case of exponentially distributed service times, the vector-
valued stochastic process, say [N,(t), ---, N.(t)], representing the
number of class j customers in service at time ¢ for all j,1 = j =< ¢, is
an irreducible ¢-dimensional continuous-time Markov chain with a
finite state space. Hence, there exists a unique stationary distribution.
It is easy to see that the claimed distribution in Theorem 4 is the
steady-state distribution by making the standard partial balance anal-
ysis.5® The same steady-state distribution holds for general service-
time distributions by the insensitivity results, which we discuss further
below.

To prove the rest of Theorem 4, we need to establish that the steady-
state distribution of (N,, ---, N.) is actually well defined. For this
purpose, we construct a continuous-time vector-valued Markov proc-
ess {Z(t), t = 0}, depicting the number of class j customers in service
for each j and the remaining service time of each at time ¢. [Z(t) is
the continuous-time Markov process associated with the GSMP in
Ref. 46.] The steady-state distribution in Theorem 4 is understood to
be the marginal distribution corresponding to (N;, ---, N.) of the
stationary distribution of Z(¢). We shall show that Z(¢) indeed has a
stationary distribution (withoyt establishing uniqueness) and that the
marginal distribution' corresponding to (NV;, ---, N. ) is always as
claimed in Theorem 4 and so is unique.

For our given general service-time dlstnbutxons, we; construct se- -
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quences of approximating service-time distributions from finite mix-
tures of finite convolutions of exponential distributions, as in Section
3.3 of Ref. 6 and in the proof of Theorem 2 in Ref. 46. We construct
this so that the means are unchanged and there is weak convergence
to the given distributions. For our special model, it is easy to see that
each continuous-time Markov process Z(t) so created with these
approximating service-time distributions has a unique invariant prob-
ability measure. Existence follows from the theory of continuous-time
Markov chains with finite-state space. Uniqueness follows from the
irreducibility that is evident from our special structure. Moreover, the
partial balance property satisfied by the steady-state distribution in
the exponential case implies that the unique stationary distribution
of Z(t) in each approximating case has marginal distribution for
(N, - - -, N.) as specified in Theorem 4.8444 Finally, we treat the case
of the original general service-time distributions by continuity, invok-
ing Theorem 3 of Ref. 46. (Note that uniqueness with the approxi-
mating service-time distributions is crucial for that theorem.) This
continuity theorem implies that the process Z(t) indeed has a station-
ary distribution and that the marginal distribution corresponding to
(N,, - -+, N.) is as claimed for every stationary distribution of Z(t). O
Remark: An alternate proof of existence and uniqueness can be con-
structed using the fact that arrival epochs when the system is empty
constitute regeneration points. The GSMP theory is also useful for
describing steady state in more general models for which this is not
the case; for example, if the service-time distributions are nonexpo-
nential and the arrival processes for the different classes are inde-
pendent non-Poisson renewal processes. However, the insensitivity is
typically lost with this extension.

V. CONVERGENCE OF THE SUCCESSIVE APPROXIMATION
ALGORITHM

Example 3 in Section 1.5 showed that the successive approximation
scheme (8) need not converge. In this section we show that if the
offered loads are sufficiently small, then the operator T defined by the
right side of (7) is a contraction operator, so that it has a unique fixed
point to which successive iterates of T converge geometrically fast.
However, the conditions for this property are quite strong, so that the
theorem does not nearly cover all practical cases.

To state our results, let ||| be the supremum norm on R" defined
by lIx[| = max{|x;|:1 =i < n} for x = (%, ---, x,). Let ai(b) be the
reduced offered load as a function of b = (b,, ---, b,) as defined in
(6). Let y(b) be defined by '

‘)’(b) = Eiﬁ {(;,(—b) -1+ b) b;n(‘-ﬁi} . (69)
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Let U = (U, ---; U,) be an upper bound on any solution b* of (7)
such as (B(sy, &1), -+, B(s., &.)) = T%1) or T*(1) for any k = 1.
Theorem 11: If v(U) < 1 for v in (69) and the upper bound U to any
solution of (7), then
@) IT®Y) — T®?) | < v(U)||b* — b?| for all b' and b* in R" with 0
< b}, b? < U; for all i, so that
(&f) T has a unique fixed point b* in [0, U] = {b: 0 < b; < U}, and
@) | T*(b°) — b*|| < v(U)*||b° — b*|| for all k when the initial vector
T°b) =b°isin [0, U].
Proof: Parts (ii) and (iii) follow from (i) by the Banach-Picard fixed-
point theorem for a contraction map on a complete metric space.  For
(i) it suffices to have

aTi(b)
dbx

< v(U)
T n

for all i and k (for example, see Theorem 2, page 111 of Ref. 70). By
Theorem 15 of Jagerman,”

0B(s, @) _ [ﬁ — 1+ B(s, a)] B(s, a).
da a
Hence,
aT:(b) < < ﬂ
I aby [a.(b) H b] =T

forb € [0, U].
Remark 1: For the symmetric model, (69) simplifies to
nsU
(1 — U)m—l

so that a simple sufficient condition for the condition of theorem 11
is

v(U) = — (1 = U)Una, (70)

nsU
a-uyrt

Remark 2: If U; = B(s;, &;) for all { or if U = T%(1) for some k
. using (8), then U is an increasing function of the offered loads
(a1, +++, &n) or (au, ---, a) because T is an increasing function of b
and B(s, a) is an increasing function of «. Hence, if the offered loads
are sufficiently small, then the vector U will be sufficiently small, so
that.the condition of Theorem ;},.1 will eventually hold.

<1l (71)

VI. CONCLUSIONS
We have mvest1gated a model to describe the blockmg probabllmes
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when service is required from several multiserver facilities simulta- .
neously. We have shown in Theorem 1 that some standard approxi-
mations produce upper bounds. In the process, we have established
several other useful stochastic comparison results (Theorems 5
through 7 and Ref. 31). We also have proposed an improved reduced-
load approximation and developed an efficient algorithm (Theorem 2)
to treat both the Poisson arrival case (Section 1.5) and the non-
Poisson arrival case (Section 1.9). In Theorem 8 we have established
a functional law of large numbers that implies that the symmetric
reduced-load approximation is asymptotically correct for symmetric
models as the number of facilities increases with the offered load per
facility and the number of facilities per class held fixed (Theorems 3
and 10). We have displayed the exact formula in Theorem 4 and
justified the insensitivity with respect to the service-time distributions
(Sections 1.8 and IV).

Among the important directions for future research are (i) testing
the approximations further, especially for non-Poisson arrival proc-
esses; (ii) establishing better conditions for the reduced-load equations
(7) to have a unique solution (Conjectures 1 and 2); (iii) establishing
better conditions for the successive approximation scheme (8) to
converge; (iv) establishing lower bounds on the exact blocking proba-
bilities paralleling the upper bounds in Theorem 1; (v) determining if
the reduced-load approximation is an upper bound on the exact
blocking probability for symmetric models (Conjecture 3); (vi) deter-
mining if the exact blocking probabilities for symmetric models are
increasing in n when the offered load per facility is fixed (Conjecture
4); (vii) establishing (if possible) the diffusion limit in Section III
(Conjectures 5 and 6); (viii) seriously analyzing smaller models in
which the basic facility-independence approximation in (5) underlying
all the approximations here is not appropriate.’ In particular, in the
spirit of Kaufman’ and Mitra and Weinberger,?' it would be nice to
develop an efficient algorithm for the exact blocking probabilities in
Theorem 4 and Corollary 4.1.

It would also be of interest to consider other related models, for
example, models in which more than one server per facility may be
required, and related delay systems. There are two kinds of waiting to
be considered for delay systems: waiting for each customer class
outside the system, and waiting for service at each facility within the
system. The second form of waiting may still require simultaneous
service or some other form.'*
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VIII. EPILOGUE

This section has been added in proof to report important new work.
Kelly™ has proved that the reduced-load system of eq. (7) has a unique
solution, thus confirming Conjectures 1 and 2. Kelly also has proved
that the reduced-load approximation is asymptotically correct in heavy
trafﬁc that is, in a network with fixed topology in which a; — « and
s; — o, as in Ref. 57. In fact, Kelly's heavy-traffic limit theorem is a
multifacility generalization of the local limit theorem in the Appendix
of Ref. 57.

Ziedens and Kelly” also have proved limit theorems similar to
Theorem 3 for symmetric networks in which the number of nodes
increases. For the special tree networks in Fig. 1, Mitra™ has deter-
mined an efficient algorithm for the exact solution based on asymptotic
expansions, in the spirit of Ref. 21. Other related work appears in
Refs. 74 through 76.
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