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Abstract. This paper studies approximations to describe the performance of a rate-control throttle based on a
token bank, which is closely related to the standard G/G/1/C queue and the two-node cyclic network of -/G/l/ce
queues. Several different approximations for the throttle are considered, but most attention is given to a Brownian
or diffusion approximation. The Brownian approximation is supported by a heavy-traffic limit theorem (as the
traffic intensity approaches the upper limit for stability) for which an upper bound on the rate of convergence
is established. Means and squared coefficients of variation associated with renewal-process approximations for
the overflow processes are also obtained from the Brownian approximation. The accuracy of the Brownian approx-
imation is investigated by making numerical comparisons with exact values. The relatively simple Brownian approxi-
mation for the job overflow rate is not very accurate for small averflow rates, but it nevertheless provides impor-
tant insights into the way the throttle design parameters should depend on the arrival-process characteristics in
order to achieve a specified overflow rate. This simple approximation also provides estimates of the sensitivity
of the overflow rates to the model parameters.
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1. Introduction

In this paper we have two principal objectives and thus two potential audiences. Our first
-objective is to gain a better understanding of the performance of rate-control throttles, which
regulate the admission of jobs (or customers) to some (unspecified) system. It will be clear
that a rate-control throttle is a discrete-event dynamic system (DEDS). Our second objec- .
tive is to gain a better understanding of Brownian or diffusion approximations for queue-
ing models. Readers with interest in only one of these topics may thus want to skip some
material. _

~ We were motivated to conduct this study because we were studying the performance
of a multiclass rate-control throttle based on token banks, which was suggested by our col-

league R. Milito, and indeed the results here are applied to analyze the multiclass throttle

in Berger and Whitt [1990, 1992]. In the multiclass throttle, the admission of jobsis regulated
by token banks dedicated to each class and a single, shared overflow tokén bank.
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To make our motivation clear, we first describe the multiclass throttle in Berger and
Whitt {1990, 1992} in more detail. There are N classes indexed by i. The token bank dedicated
to class i is bank i, and the overflow token bank is bank 0. On the arrival of a job of class
i, if bank i contains a token, then the job is admitted and a token is removed from bank
i; if bank i is empty, then the job overflows to bank 0, where it gets a second chance to
be admitted. If bank 0 contains a token, then the job is admitted and a token is removed
from bank 0. If both banks i and 0 are empty, then the job is rejected by the throttle. (Herein,
we consider the job to be lost, though alternatively it could be queued, or marked and
admitted, and then treated as a lower-priority class.) Class i tokens arrive deterministic-
ally, evenly spaced, at a rate r;, to bank i of finite capacity C;. (In practice, token banks
are typically implemented as counters.) If bank i is full, then the token overflows to bank
0 of capacity C,. If both banks i and O are full, then the token is dropped and lost.

The decision maker chooses the parameters rq, ..., ryand Gy, Cy, ..., Cy. The rates
r; determine the maximum, sustained, admission rate that is guaranteed for each class.
The maximum sustained admission rate for all classes is | r;. The overflow bank allows -
the excess capacity for some classes to be used by other classes. If class-i jobs arrive deter-
ministically at rate A;, evenly spaced like tokens, then the admission rate for class- i jobs
without excess capacity is indeed min{r;, A;}. However, class-i jobs will typically arrive
randomly, so that the admission rate for class-i jobs will typically be somewhat less than
min{r;, \;} when there is no excess capacity. The capacities C; limit the instantaneous
burst of arrivals that may be admitted. A larger capacity C; makes the long-run average
admission rate for class-i jobs without excess capacity closer to min{r;, A;}, but allows
for larger bursts of arrivals in the short run. Assuming that the jobs arrive according to
stochastic processes, both the token rates and the bank capacities influence the stcady—
state-per-class blocking and throughput, as well as the transient response.

In this paper we focus on the performance of a single token bank. This bank could be
either a dedicated bank (in a singie-class or multiclass throttle) or an overflow bank. In
particular, our model of a token bank in this paper has jobs and tokens arriving in two
separate streams. The token arrival process is typically deterministic, but we allow more
general token arrival processes, as would occur at an overflow bank. We assume that the
job and token arrival processes are stochastically independent (which for the case of an
overflow bank would be a simplifying assumption). The tokens are put in a bank of capac-
ity C, overflowing when the bank is full. Arriving jobs finding a token in the bank are
admitted, with each taking a token along. (Thus token admissions coincide with job ad-
missions.) ' When there are no tokens in the bank upon a job arrival, the job overflows.
We are interested in blocking probabilities, the admission processes and the overﬂow proc-
esses for jobs and tokens.

Since we are interested in the multiclass throttle, we are especially interested in the job
and token overflow streams from the dedicated banks. In particular, our primary goal is to
develop approximations for the job and token overflow processes. We determine approxima-
tions for the mean, the squared coefficient of variation (SCV, variance divided by the square
of the mean), and even the full distribution of the time between overflows associated with
renewal-process approximations for the overflow streams. These renewal-process approxima-
tions are used in Berger and Whitt [1990, 1992] to analyze the multiclass throttle using
a parametric-decomposition approximation.
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In this paper, we consider several different approximations for the token bank, but we
primarily investigate the Brownian or diffusion approximation, as contained in Chapter 5
of Harrison [1985] and Chapters 7 and 8 of Newell [1982]. Note that the Brownian approx-
imation for the token bank is a continuous approximation for a DEDS, which has appeal
because relatively classical methods can be applied. Other work on Brownian or diffusion
approximations for finite-capacity single-server queues is contained in Section 6.8 of Whitt
[1969], Sweet and Hardin [1970], Kennedy [1973], Gaver and Shedler [1973a,b], Gelenbe
[1975], Kimura, Ohno, and Mine [1979], Gelenbe and Mitrani [1980], Kimura [1985],
Yao and Buzacott [1985a,b], Coffmann, Puhalsky, and Reiman [1991], Fendick and
Rodrigues [1991], and Dai and Harrison [1991]. Via the connection to the two-node cyclic
(CQN), this Brownian approximation is also related to Chen and Mandelbaum {19912a,b].

‘We contribute to a better understanding of the Brownian approximation in several ways:
First, we derive the asymptotic variance constants for the Brownian barrier-regulator or
local-time processes, which provide SCVs for the interoverflow times in renewal-process
approximations for the overflow processes (Theorem 4.1). Second, we establish an upper
bound on the rate of convergence in the supporting heavy-traffic limit theorem (Theorem
4.4). Third, we investigate the accuracy of the approximations by making numerical com-
parisons (Section 8). Finally, we show how the relatively simple Brownian approximation
for the job overflow rate can provide important insights into the way systern design parameters

~ should depend on the arrival process characteristics in order to achieve specified overflow

rates (Section 9). It also permits us to do a rough sensitivity analysis, e.g., to see how
the accuracy of estimates of the overflow rates depends on the accuracy of estimates of
the arrival process variability. Readers primarily interested in rate-control throttles may
want to skip the limit theorems in Section 4.5.

In developing the multiclass throttle described above, we were primarily motivated by
the desire to manage call setup requests in telecommunication switching systems, where
different classes may be different types of calls such as line or trunk originations. Then
the job arrival processes might be well modeled by Poisson processes, and interest centers
on designs to achieve blocking probabilities of order 107> to 10™". For these applications,
single-bank rate-control throttles were previously investigated by Doshi and Heffes [1983],
Eisenberg [1983], and Berger [1991a,b].

Rate-control throttles also have potential for high-speed communication networks, such
as broadband integrated services digital networks (B-ISDNs), where the throttle regulates

. the admission of asynchronous transfer mode (ATM) cells. Then the job arrival process

may differ substantially from Poisson processes and interest may center on job- (cell-) block-
ing probabilities of order 1075 to 10~°. Turner [1986] suggested a throttle based on the
leaky bucket to monitor the admission of ATM cells. Motivated by the interest in BISDNs,
many researchers have subsequently examined (single-class) rate-control throttles based
on token banks or leaky buckets; e.g., see Eckberg, Luan, and Lucantoni [1989], Sidi
et al. [1989], Sohraby and Sidi [1990], Rathgeb [1990], Kroner, Theimer, and Briem [1990],
Budka and Yao [1990], Budka [1990], and Elwalid and Mitra {1991]. The multiclass rate-
control throttle investigated in Berger and Whitt [1990, 1991] is also applicable to
BISDN/ATM, with the different classes representing different virtual channels that share
a common virtual path.
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Our analysis here indicates that the Brownian approximation, or any other approxima-
tion based on a single-parameter characterization of variability, is unlikely to be able to
accurately predict such small blocking probabilities as 107° to 107° when heavy-traffic
conditions do not prevail. Indeed, our results (exact numerical results, not approximations
or simulations) clearly demonstrate this. We show that small blocking probabilities can be
dramatically different if a renewal job arrival process is replaced by another with the same
first two interarrival-time moments; e.g., in the last row of Table 6 one exact blocking
probability is 0.11 x 10™*, while the other exact blocking probability is 0.72 X 1071,

Nevertheless we contend that the relatively simple Brownian approximation for the
overflow rate (in (25)) can provide important insights into system design and performance.
In particular, from this simple formula we can see, at least roughly, how the design
parameters should depend on the arrival-process characteristics to achieve specified blocking
probabilities. We can also perform sensitivity analyses; see Section 9.

A single dedicated token bank is very closely related to other models, including the
leaky-bucket rate-control mechanism. In Section 7 we define the leaky bucket precisely
and show that it is equivalent to a modified dedicated bank in which the deterministic token
arrival stream is turned off whenever the bank becomes full of tokens, and turned on again
upon the next job arrival. We also compare the leaky bucket to the token bank in Section
7. (Related work appears in Budka {1990].) The difference between the token-bank and
leaky-bucket throttles can be significant when the token bank has very small capacity (e.g.,
1), but for larger capacities the performance of the two systems tends to be essentially the
same. Thus, we regard our performance analysis as being applicable to either rate-control
scheme. o

The single bank is also closely related to the G/G/1/C queue and the two-node cyclic
network of +/G/l/oo queues with C customers. The idea is to think of the G/G/1/C as repre-
senting the token bank, so that the arrival process in the queueing model is the token ar-
rival process, and the service process in the queueing model is constructed from the job
arrival process. However, note that the server works in the G/G/I/C model only when
customers are present, whereas the job arrival process runs continuously in the token bank
model. The token bank would be equivalent to a G/G/1/C queue with deterministic arrival
process if we identified a job arrival in the token bank with a potential service completion
in the G/G/1/C queue, or if we turned off the job arrival process in the token bank model
whenever the bank becomes empty and turned it on again upon a token arrival. (The token
bank thus directly corresponds to a quene with autonomous service as discussed in Chapter
8§ of Borovkov [1976].)

Similarly, the token bank would be equivalent to a two-node cyclic network of */G/l/co
queues, one of which is +/D/l/eo, if in the token bank model we turned off the token arrtval
process when the bank is full as well as the job arrival process when the bank is empty.
(Here and above “turn off” means suspending time for the given arrival process.) In the
M/M case (two independent Poisson streams), the token bank, the leaky bucket, the G/G/I/C
queue, and the two-node cyclic CQN are all stochastically equivalent because of the lack
of memory property associated with the exponential distribution.. The Brownian approxima-
tion obtained via a heavy-traffic limit theorem is the same for all four models, too. (Thus,
differences in the values of corresponding performance measures for these models indicate
limitations in the numerical accuracy of the Brownian approximations.)
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In this paper, we consider four different approximations for the token-bank rate-control
throttle, with each successive approximation involving more detail. In Section 2 we intro-
duce a simple “first-order” fluid approximation; it is a deterministic approximation based
only on the job and token arrival rates. We find that it is remarkably accurate for describ-
ing the throughputs and overflow rates when the job and token arrival rates are not nearly
equal. In Section 3 we introduce a “second-order” Poisson approximation; it is the M/M/1/C
model, representing the stochastic nature of the arrival processes as well as the rates. We
derive the SCV of the overflow process for an M/M/1/C queue (Theorem 3.1) and use it
to determine the asymptotic variance constants of the Brownian boundary regulator proc-
esses, which in turn provide the SCVs partially characterizing renewal-process approxima-
tions for the overflow processes.

In Section 4 we introduce the “third-order” Brownian or diffusion approximation; it
exploits the degree of variability (the SCVs) of each arrival stream, as well as the stochastic
nature. In Section 5 we discuss a “fourth-order” Markov chain approximation; it is an
exact Markov chain analysis of the GI/M*/1/C model, having a renewal token arrival pro-
cess and a batch-Poisson job arrival process, or the GI/PH/1/C model, having a phase-type
service time distribution. For models which are not one of these models, we fit the token
arrival stream to a convenient renewal (GI) stream and the job arrival stream to a batch
Poisson (M*) stream or phase-type (PH) renewal stream by matching moments. For a
dedicated bank, the token arrival stream would be deterministic (D). Otherwise, we sug—
gest fitting a simple phase-type renewal arrival process.

In Section 6 we further discuss approximations for the SCVs of the job and token overflow
streams. We do an asymptotic analysis for non-heavy-traffic regimes that provides addi-
tional support for the Brownian approximation for the overflow SCVs. We also investigate
the properties of the accepted job stream. In Section 7 we compare the token bank to the
leaky bucket. In Section 8 we evaluate the performance of the approximations by making
numerical comparisons. In Section 8.5 we introduce a new refinement to the Brownian
approximation, which is especially effective for the M/M/I/C model. In particular, motivated
by continuous-distribution approximations for discrete distributions, we consider the Brow-
nian model with barriers at ~ 1/2 and C + 1/2 instead of at 0 and C. In Section 9 we
discuss insights that can be gained from the relatively simple Brownian approximation for
the job overflow rate. For example, we do sensitivity analysis. Finally, in Section 10 we
state our conclusions.

2. The Fluid Approximation

The first approximation scheme is a simple deterministic fluid model: We act as if both
jobs and tokens arrive at the dedicated bank deterministically and continuously like a fluid
at constant rates, i.e., we assume that the jobs and tokens arrive at rates A and r, respec-
tively, and let the overflow rates be

AM=N-min{\ r} ad ' =r—min{\ r}. (D

This fluid approximation yields no useful second parameters for the overflow streams.
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The fluid approximation in (1) is much more elementary than some other finite-buffer
fluid models, e.g., in Anick, Mitra, and Sondhi [1982] and Elwalid and Mitra [1991].
In these other fluid models, the arrival rates are governed by stochastic processes; i.e.,
they involve fluid flow in a random environment. Here we consider these fluid approxima-
tions for the relatively trivial special case in which the environment is fixed. The numerical
results for this simple case provide some additional insight into the performance of the
more elaborate fluid approximations.

There is a useful conservation law for the token bank, which we will exploit later. Since
admitted jobs must be matched with admitted tokens, the long-run job admission rate must
equal the long-run token admission rate; i.e., in any token bank we must have

AN—N=r—r" S @)

Note that (1) satisfies (2).

3. The Poisson Approximation

The second scheme is a Poisson approximation: We act as if both the token and job arrival
streams are Poisson processes with the given rates. Then the token bank is stochastically
equivalent to the classical M/M/1/C queue with 1 server and C — 1 extra waiting spaces.
To relate the job arrival process in the token bank model to the service process in the
M/M/I/C queue, we regard the job arrivals as potential service completions in the M/M/1/C
queue. If a customer (token) is present in the M/M/1/C queue, then the job arrival causes
a real service completion and a departure in the M/M/1/C model. However, if there is no
customer present upon this job arrival, then this job arrival has no effect. Since the job
arrival process is a Poisson process, the distribution of the time until the first service.com-
pletion after the next customer (token) arrival is still exponential as it should be.

Let p(n) be the probability that the number of tokens in the bank is » at an arbitrary
time in equilibrium, and let p = #/A. Then, from standard M/M/1/C formulas,

1 ifp =1,
" C+1 "
pn) = n

- ¥ ifp = 1

l—.pCH

for 0 = n < C. The associated mean is

c .g ifp=1,
5 .
2, npn) = Cri @)
P _(C+ D ifp # 1.
C+1

n=1

1 —0p 1—-p
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Since Poisson arrivals see time averages (PASTA), see Wolff [1982], the job-blocking
probability coincides with the probability of emptiness in an M/M/1/C model with traffic
intensity p = r/A. Likewise, the probability that a token is blocked equals the probability
an M/M/V/C system with traffic intensity p is full or, equivalently, the probability that an
M/M/V/C system with traffic intensity o ~ ! is empty. Hence, we have the following ex-
plicit expressions for the overflow probabilities

cl 1 ifo =1,
X +
A 11_(‘;’“ ifo # 1,
- P
and (5)
! ifp =1,
] c+l
1 —-pt .
-

From (5), it is easy to check that the conservation law (2) is satisfied.

Since the overflow processes are renewal processes under the Poisson assumption, it
is natural to use the SCV of an inter-renewal interval as a second parameter to partially
characterize the overflow streams. Let ¢ and ¢Z be the SCVs of the job and token overflow
processes, respectively. We obtain closed-form expressions for these SCVs, which seem
to be new. It is remarkable that ¢/ = ¢#. Unfortunately, we do not yet have a good in-
tuitive explanation.

TaeOREM 3.1. For the M/M/1/C model,

2C* +4C + 3 e
ifp=1,
s 3C + 3 ©
Cr = ¢y =
T A + o)1 — p2C%%) — 4(C + 1)(1 — p)pSH! :
ifp # 1.

(1 — p)(1 — p&*hy?

Proof. By direct calculation, we derive (6) for ¢?. Then c# is also given by (6) but with
p~! substituted for p. However, (6) remains unchanged when p is replaced by p . To
derive (6) and higher moments, let J be the time between successive job overflows and
let B be the length of a busy period for tokens (the interval beginning when a token arrives
at an empty token bank until the bank is next empty again). Then

JEX+(@q -DB+DN, Q)
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where £ denotes equality in distribution, the four random variables on the right are
independent, X is exponential with mean /(A+ r), and P(/ = 1) =1 — P(I =0) =
N(A + r). We obtain (7) by considering what happens after a job overflow. Because of
the continuous-time Markov chain structure, the time until the next event is the exponen-
tial random variable X. Then I = 1 if the next event is a job arrival, in which case J =
X. If I = 0, then the next event is a token arrival. Then the remaining time until the next
job overflow is the sum of a token busy period B plus the time until the next job overflow
after the system becomes empty (which is distributed the same as J). The Markov property
implies that B and J are independent on the right in (7). (It is easy to see that J = B
when C = oo, because then B satisfies the same relation (7), with the two B variables

on the right being independent.) '

From (7), we obtain

ME[J] = 1 + rE[B] (8)
and

NE[J?] = rAE[B?] + 2r*(EIB))* + 4rE{B] + 2. - 9)

To find E[B] and E[B?], we uniformize the continuous-time Markov chain, see Keilson
[1979], and apply discrete-time Markov chain (MC) formulas from Kemeny and Snell
[1959]. In particular, we use representation

i 2 -
=Z] 10

where X}, j = 1, are i.i.d. exponential random variables with mean /(A + r)-and D is
the number of steps until absorption into state O from state 1 in an associated discrete-time
MC. The absorbing discrete-time MC is a simple random walk on {1, 2, ..., C} which
takes a step up with probability r/(A+r) and a step down with probability /(A + r). In
state C, instead of going up, the walk stays in state C with probability /(A + r); in state
1 the walk is absorbed, instead of going down, with probability M(A + r).

From (10), we obtain

2
Ep) = EP1 g pray < B2 T EWD (10
N+ 7 O\ + r)?
Then
C C :
E(D] = DNy and E[D?Y = ), 2N? — N); R ¢V

=1

where N = (I — Q)7! is the fundamental matrix associated with the absorbing MC on
{1, ..., C} with transition matrix Q, see p. 49 of Kemeny and Snell [1959]. We obtain
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(6) by exploiting the special random walk structure, see p. 149 of Kemeny and Snell [1959].
In particular, we obtain

2c ifp =1,
E[D] = o (13)
d-r ifp # 1, :
(1 - p)A
ac+nec+n Lo |
2 3N + )2 A
ELD?] = 21 + p)? (14
LT (1 — @C + 1D + (2C + 1)pCH! — gty
(1 - p)
ifp # 1,
and
BB = — 2 (1 — QC + e (1 — p) — o2, 15)
N1 - py
from which (6) follows. . n

Thus, for the M/M/I/C model we can nicely characterize the SCVs of the overflow
streams. From Theorem 3.1 we can deduce the following properties. We write g(x) ~
fx) as x = oo if g(x){f(x) > 1 as x — oo.

CoroLLARY. For the M/M//C model, ¢? is increasing in C, increasing in p for p < 1
and decreasinginp forp = 1. AsC = oo, ¢} = (1 + p)/|1 —plforp = 1. Asp = 0
and as p — o0, ¢§ — L.

4. The Brownian Approximation

“The third scheme incorporates the SCVs of the token and job arrival processes in the analysis.
Since the token arrival process at the dedicated bank is deterministic, its SCV _is 0, but
the analysis applies more generally (which is important for the overflow bank in the multi-
class throttle). In Section 4.1 we observe that the stochastic processes of interest associated
with the token bank can be defined in terms of a certain reflection map applied to a net
input process. In Section 4.2 we apply this representation to develop a direct Brownian
approximation. From this Brownian approximation we obtain renewal-process approxima-
tions for the job and token overflow processes, which we apply to analyze the multiclass
throttle in Berger and Whitt [1992]. In Section 4.3 and Section 4.4 we develop refinements.
Then in Section 4.5 we prove supporting heavy-traffic limit theorems. '
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4.1 The Two-Sided Regulator

Let 7(¢) represent the number of tokens in the token bank at time 7, and let O){z) and O(z)
represent, respectively, the number of jobs and tokens to overflow in the interval [0,7].
It is significant that the stochastic processes 7(¢), O;(¢}, and Oy(#) can be represented
exactly as the image of the two-sided regulator reflection map on p. 22 of Harrison [1985]
applied to the net input stochastic process.

N(t) = Ar(t) — 4,(), (16)

where A7{(¢) and A/{r) represent, respectively, the number of tokens and jobs to arrive in
[0,#]. For the three other related models—the leaky bucket, the G/G/1/C queue, and the
two-queue CQN— this representation is not exact, but the error is asymptotically neglig-
ible in the heavy-traffic limit. In other words, the token bank model has the same auton-
omous-service property as the artificial modified system introduced by Borovkov [1965]
and applied by Iglehart and Whitt [1970a,b] to prove heavy-traffic limit theorems for the
GI/G/C queue (and generalizations).

Harrison [1985] considers stochastic processes with continuous sample paths, but the
two-sided regulator is well defined more generally; this follows from Chen and Mandelbaum
[1991a,b]. In particular, let D = D([0, T}, R) be the space of all right-continuous real-
valued functions on [Q, T] with left limits everywhere, as in Billingsiey [1968]. The two-
sided regulator can be defined as the unique map taking x ¢ D with 0 < x(0) = Cinto
(z, I, u) in D?, where 0 < z() = C,

z(@) = x(@) + I@) — u(2), 0=<t=T, (17

{(r) and u(¢) have nondecreas: ag sample paths with /(0) = u(0) = 0, [(z) increases only
when z(¢) = O and u(¢) increases only when z (1) = C; i.e.,

T T
f 2(t) di(e) = f [z(t) — C] du(z) = 0. (18)
0 0

In our application, x, {, u, and z represent sample paths of N(¢), O,(t), Or(t), and T(z),
_ respectively.

4.2 The Direct Brownian Approximation

The direct Brownian approximation is obtained by simply approximating the net input proc-
ess A7(z) - Ay(t) by a Brownian motion (BM) and applying known formulas for the
regulated or reflected Brownian motion (RBM) associated with the two-sided regulator,
ie.,weuse (Z, L, U) = {(Z(¢), L(t), U(#)): 0 < t < t}, where (Z, L, U) is the image
of the two-sided regulator applied to a BM process X = {X(r) : 0 < ¢ < T}. We call
L(¢) and U(t) the Brownian boundary regulator processes. (The processes L(¢) and U(¢) are
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also called the local times of Z(t) at the boundaries 0 and C, respectively.) Then we have
the approximations T(t) = Z(t), O;(¢) = L(1), and O(¢t) = U(t). The resulting form-
ulas are just limits of the M/M/1/C formulas in Section 3, as we will show in Theorem 4.5.

It is natural to choose the drift ¢ and diffusion coefficient o of the BM to match the
asymptotic behavior of Ar(t) — A;(1); ie.,

{—o t
and
2= tim YAAT®O ~AO)_ 2 2 (20)
o t

assuming that Ar(f) and A,(t) are independent (which we have assumed), and assuming

E4r0) , r and Var 4() _, re? (21)
t t
and
EA® L\ aa YEAD 0 22)
1 t

as t — oo. Note that (21) and (22) pertain for renewal processes in which the inter-renewal
times have means ™1 and A7, and SCVs ¢? and ¢ (but also more generally); see Whitt
[1982a, b} for discussion. When the arrival processes are not renewal processes, the varia-
bility parameters ¢? and ¢ in (21) and (22) typically do not correspond to the SCVs of
stationary intervals between points. The specification of the Brownian motion parameters
by (19)-(22) is still appropriate (asymptotically correct) in heavy traffic, but.other variabil-
ity parameters may be more appropriate in lighter traffic. For nonrenewal processes, it
is often difficult to choose truly appropriate values for the parameters c? and cZ; See
Sriram and Whitt [1986] and Fendick and Whitt [1989] for further discussion.

Once we have specified the parameters p and ¢ in (19) and (20), we obtain the desired
approximations from pp. 90-91 of Harrison [1985] or pp. 238-239 of Newell [1982]. Let

)2 _ 26— D
o®  pcl + ok

First, the steady-state number of tokens in the token bank, say T(o0), has approximately
the distribution of Z(c0) (the limiting distribution of Z(t)), which has density
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— ifp=1,

ol Eas

px) = (23)

Beﬂx

] o # 1.

For p < 0, p(x) in (23) is the density of an exponential distribution with mean — 67!
= ¢%/2]u|, conditioned on being in the interval [0, C]. For g >0, C — Z() has the
density of an exponential distribution with mean 8! = ¢%/2u, conditioned on being in
the interval [0,C].

Of course, the density (23) is inconsistent with the discreteness of the token bank, but
it directly yields moments and it can be discretized to yield an approximating probability
mass function, if desired. In particular, a natural candidate for an approximating probability
mass function is truncated geometric distribution, which is the discrete analog of the trun-
cated exponential distribution in (23). For example, when p < 1 (¢ < 0), we would take
the geometric distribution on the nonnegative integers with mean —#~!, conditioned on
being Iess than or equal to C. Of course, for p = 1 (z = 1), we would use the discrete
uniform distribution on the set {0, 1, ..., C}. For further discussion about discretization,
see Kimura [1985] and Section 8.5.

We obtain the approximation for the steady-state mean number of tokens in the bank
directly from (23); it is

C

ifp=1,
2
ET(%) = EZ(x®) = c ) (24)
- = if p # 1.
1—-e% 9
Next, the approximate overflow rates are
< ifp =1,
2C
= t 23 .
o T
and
Ll if p = 1,
20
ri =g = lim 2% = (26)
=+ t 123 N ]fp = 1’
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If we let X(0) = Z(0) £ Z(o), where < denotes equality in distribution, then we also
have &« = EL(1) in (25) and 8 = EU({1) in (26). Note that the overflow rates in (25) and
(26) satisfy the conservation law in (2). From (25) and (26) we see that the approximating
overflow rates N\’ and r’ are continuous functions of the parameters p, o2, and C.
Moreover, the overflow rates A ' and r are increasing functions of o” and decreasing func-
tions of C. For further discussions about the implications of (25), see Section 9.

It is significant that the blocking probabilities A /A and r "/r, which are obtained from
(25) and (26), do not equal the values of the diffusion density at the boundaries. Rather,

r 2 2
A [i] p(0) = [M] (0,
A anJ o 2

] } ) 2 -1 .2
r 2r .2

Moreover, we see from (23) that when p = 1 the density p(x) is insensitive to the SCVs
c? and ¢%, whereas from (25)-(27) we see that the blocking probabilities are not. (Most
previous heuristic diffusion approximations for blocking in G/G/I/C queues have not ex-
ploited (25) and (26); see Section 6 of Coffinann and Reiman [1984] for further discussion.)

From the regenerative analysis on p. 86 of Harrison [1985], we see that L(z) and U(t)
also obey central limit theorems as t — oo, and

@7

lim t' Var L(t) = o} and  Lim ¢! Var UQ) = ob.

’-t—bm . 1—roe

We apply these asymptotic variance constants o} and ¢ to develop renewal-process ap-
proximations for the overflow processes. In particular, we approximate the overflow SCVs
¢} and cf by

G=a'aq and =B (28)
(The use of « and # in (28) is explained by (21) and (22).) At the end of Section 4.5, we
apply Theorem 3.1 and heavy-traffic limit theorems to determine the formulas for of and
o%in (29) below. A direct proof has been provided by Williams [1991].

Tueorem 4.1. For RBM with barriers at 0 and C, drift coefficient g, diffusion coefficient
0%, and ¢ = 2plo?,

2C if 4 = 0,
T 3
alod=8"1oh=1< . 29)
_L28C ac
2(1 — %€y + 49Ce a0,

- 01 — &Y

[
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As in Theorem 3.1, we have a™! 2 = 87! ¢%;. Note that o~ o is an even function of
0; i.e., (e 162)(—0) = (™! 02)(8). Note that o ! o? is independent of ¢7 for x = 0, but
not for p#0. For u # 0, a~! 6% is decreasing in |8| with (@™! 6D(@) — (o™ 0})(0) as
& — 0. Also note that provided C is not too small, the Brownian approximation yields
o' ¢} = —2/8 when r < \ and yields a™! o} = 2/6 when N\ < r. Thus, since 8(p) —
—2/c as p — 0 and 8(p) — 2/c as p — oo, the Brownian approximation yields ¢ =
¢ when r < \ and yields ¢f = ¢ when A < r, consistent with intuition. See Section
6 for further discussion.

Combining (28) and (29), we obtain the Brownian approximation for ¢ and c%. If we
want a full renewal process as anp approximation io the job overflow process, we fit an
inter-renewal distribution on the positive real line to the mean I/A’ for A’ in (25) and the
SCV ¢ in (28); e.g., see Whitt [1982a}. To further match the character of the true job
overflow process, we suggest applying the model structure to obtain additional properties
of the overflow stream. For example, suppose that the job arrival process is a renewal proc-
ess with an interarrival-time distribution that is the mixture of two distributions, one with
small mean and the other with large mean, as with the H, distribution and the bursty on-
off renewal process in Sriram And Whitt [1986]. Then we propose letting the approximating
interoverflow distribution be the mixture of the component distribution in the mixture with
the small mean and an exponential distribution, typically with a much larger mean. Alter-
natively, both components of the mixture in the approximating interoverflow distribution
could be exponential; then the analysis above would only determine the mean of one com-
ponent exponential distribution in the approximation. If the overall arrival process is a
Poisson process, then we would just use the exponential interarrival-time distribution as
one component in the approximating interoverflow distribution. In either case, the overall
mean (\") ! and SCV ¢ determine the remaining two parameters: the mixing probability
and the mean of the additional exponential distribution. This approach exploiis the two
parameters N\’ and ¢ as well as properties of the interarrival-time distribution; see Whitt
[1982a, 1989] for a discussion of fitting and improved approximations.

4.3 The M/M/1/C Refinement

The formulas in (23)—~(29) are extremely appealing for their relative simplicity, but we can
obtain improved numerical accuracy in some cases by making refinements, First, it is reason-
able to require that the approximation be exact for the M/M/1/C case in Section 3. A simple
way to achieve this is to multiply the M/M/1/C values in Section 3 by the ratio of the diffu-
sion values. In doing so we treat the cases p < 1 and p > 1 differently.

Let ET(o; p, 2, ) be the steady-state mean number of tokens as a function of the
parameters p, cZ, and c}; let ETy(ce; p) be the corresponding mean in the M/M/I/C model
with the same p; and let EZ(o0; p, c2, c}) be the diffusion approximation in (24) with
6 = 2(p — D/(pct + c). then the suggested refinement is

Ty o) 0 S
m; p’ £
ET(2; p, &, &) = o a (30)
C - ETM(m, p—l) (005 p7 7, s cr) ifp > 1.
EZ(»; p7', 1, 1)

ifp = 1,
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The idea in treating the case p >>1 differently is to make the adjustment to smaller numbers,
so that we make smaller absolute errors. Note that we switch the roles of ¢ and ¢ when
p > 1in (30). When p > 1, we are looking at the dual queue, which is C minus the
number of tokens, so that the job and token arrival processes switch roles. Also notice
that o(p—l’ C%’ CE) = —6(p, C%, C%)

Similarly, let A '(r, A, ¢Z, ¢2) be the job overflow rate as a function of the parameters,
let Ay (r, A) be the M/M/I/C formula in (5) and let N\ ’p(r, A, ¢Z, c) be the diffusion
formula in (25). Define corresponding quantities for the tokens. Then suggested refined
approximation is '

rh(r, N, &, D

r'ir, \, &, &) = rigr, N
rh(r, A, 1, 1)

(31)
[ 1 —p~ ] [ 2-0XC1+p) _ | ]
=r
—(C+1) ez(l—p)cr(c§+pc§) 1
and
M=r+r—r ifp<l;
NG & D) = Nyt § D0 & D
Ap(r, M, 1, 1)
' (32)
-\ [ p—1 ] 2e-DCI+p) _ ]
pC -1 26-0CE+oD _
and
r=x+r—x ifp>1,
and
NG A @ B) = N d &) = Ngh, ) B N G D)
AL A LD
(33)
2
2C + 1)

Note that we should have A < r’ whenp > 1and r’ < A’ when p < 1, so that we apply
the multiplicative adjustment to what we anticipate will be the smaller rate in (31) and (32),
and then apply the conservation law to determine the other rate. Since 8(r, A, c, ) =
—0(\, 1, &3, &), Nig(r, N = rig(\, 1), and N5, N, &, &) = r'(\, r, ¢}, ¢&). Hence,
there is no need to use the dual queue representation in (32).
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Finally, we define a refined approximation for c%(p, ¢Z, ¢3) in the same way, drawing
on (6), (28), and (29). Let ci(p) be the M/M/I/C formula in (6) and let ¢k (p, ¢}, ¢2)
be the diffusion formula in (28) and (29). The suggested reﬁn_cmcnt is

36, . D = Ho, &, B) = o) DL 0 D), 34)
cio(e, 1, 1)

Since ¢7y = Chy and cjp = cip, there is no need to consider the dual queue.

4.4 The GI/G/l/co Refinement

In this section we incorporate refinements previously developed for single-server queues
with unlimited waiting space. The main idea is to let —6~! in the Brownian approxima-
tion (in (23)—(26) and (29)) be the steady-state mean number of tokens in the token bank
when C = o in the case p < 1. With this refinement, we can use any algorithm or approx-
imation formula for the GI/G/l/ o queue. Below we specify a specific procedure using only
the parameters p, 2, and c%, but it would also be natural to incorporate additional infor-
mation about the arrival processes if it is available. (In Section 4.2 we indicated how to
obtain additional information for the overflow processes.) Some ways to do this are in Whitt
[1989], Fendick and Whitt [1989], and references cited there.

Drawing on Kraemer and Langenbach-Belz [1976] and p. 17 of Whitt [1985], we ap-
proximate the steady-state mean in the GI/G/l/o0 model with interarrival-time mean r
and SCV ¢2, service time mean A~ and SCV ¢, and p = /A < 1 by

m=m@p, ) =p+ P + &) g, &, &), (35)
2(1 — p)

where

o [ DA gy

3 2+
g, & &) = P (36)
—(—-p == |, ¢ > 1. :
o | - ”)ca+4c§]

The function g is always less than or equal to 1. Note that g=1 when ¢? = 1, so that for
the M/G/1/oo queue (35) is exact. Indeed (35) with g eliminated is a reasonable approx-
imation, The correction factor g reflects the fact that m depends not just on the sum c?
+ ¢ but also on the location of the variability. For example, the mean m in a D/M/l/oo
model is less than in.an M/D/1/cc model with the same p. Thus, it is significant that g{p,
cz, ci) is not symmetric in ci and c,2.. _

There are three cases for the approximation: p < 1, p = 1, and p > 1. When p <
L, welet8 = —m™ for m = m(p, ¢, c}) in (35); then we use the approximations in
Section 4.3. The approximations in (30), (31), and (34) are changed only by having the
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diffusion quantities computed in terms of a new 6. Note that § must be recomputed when
the SCVs are both 1 as well as when the SCVs are ¢ and ¢,

For example, for the mean, we use (30) with EZ(o0; p, e, c3) and EZ(o0; p, 1, 1) be-
ing given by (24). However, EZ(c0; p, 2, c}) is now based on § = 0(p, &, &) = —Um(p,
c2, ), where m = m(p, c2, c) is given by (35) in terms of the parameters p, ¢Z, and
%, whereas EZ(c0; p, 1, 1) is based on 8 = 0(p, 1, ) = — Um(p, 1, 1), where m =
m{p, 1, 1) is given by (35) in terms of the parameters p, 1, and 1.

There is no change from Section 4.3 when p = 1. We set § = 0 just as before. When
p > 1, we exploit the GI/G/1/o refinement by working with the dual queue. We switch
the roles of the token and job arrival processes, and look at the number of empty spaces
in the token bank. To perform the approximation, we first replace p by p~, ¢2 by 3, and
¢t by 2. Then we apply the GI/G/l/oo and M/M/I/C refinements above to calculate the
performance measures for the dual queue. The mean in the token bank is then C minus
the mean in the dual queue; the job overflow rate A’ in the token bank is the token overflow
rate r’ in the dual queue; the token overflow rate r’ in the token bank is the job overflow
rate A’ in the dual queue; and the overflow SCVs c%and ¢ in the token bank are the same
as the overflow SCVs in the dual queue (which are equal).

4.5 Supporting Limit Theorems

To provide additional support for the Brownian approximation above, we prove some heavy-
traffic limit theorems. For our first heavy-traffic limit theorem, it is significant that the
two-sided regulator is a continuous map. This was observed without proof in Section 6.8
of Whitt [1969] and in Kennedy [1973]. The continuity was proved explicitly by Chen
and Mandelbaum [1991a,b]; the two-sided regulator arises in the special case of the two-
queue closed network. However, we present a different proof here for this special case,
which we believe is of interest. We actually establish a stronger Lipschitz property for z,
which provides a basis for establishing forms of model stability and rates of convergence;
-see Whitt [1974], Dupuis and Ishii {1991], and Kalashnikov and Rachev [1990], Chen
and Whitt [1991], and Theorem 4.4.

Below let a common subscript index the associated element of the function space D
(defined in Section 4.1}, e.g., (z;, I;, u;) is the image of x; under the two-sided regulator.
‘Let ||+|| be the supremum norm, i.e., |[x] = supy<,<r |x(2)].

TueoreM 4.2. (3) |z — |l = 2]x; — x].
M Ifjx, — x| > 0asn— oo, then |, — 1] 2 Cand |u, — u| = O0asn > x.

Proof. (a) Any function in D can be approximated arbitrarily closely in the supremum norm
by a piecewise-constant function with finitely many discontinuities; see p. 110 of Billingsley
[1968]. Hence, it suffices to let x; and x, be such piecewise-constant functions. We carry
out the proof by mathematical induction over the successive times at which at least one
of these functions has a jump. Let £, be the n* jump epoch. Suppose that | x; — x| = e.
Let A, = x,(8,) — x(t;) and ', = z,(2,) — z(¢,). We are given that [A,] =< e for all
n. By induction, we establish that
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A, —e=<T <A, +¢ foralln, 37

from which the desired conclusion follows. Note that z;(0) = x;(0), so that 'y = Aj and
(37) holds for n = 0. Suppose that (37} holds for all £ < n. Then, by considering the
possible jumps at ¢,;;, we see that

0 < Ay e izl = Corzi(t,yy) =0,
Pn+l =
I'y + Appy — A, < Apyy € otherwise,

and

0= Ay~ € if50the) =0o0rzi(hy) = C
Pn+1 =
P, + A, — A, = Ay — € otherwise,

(b) Suppose that |x, — x| — 0. As in part (a), it suffices to let x be piecewise con-
stant with finitely many discontinuities in [0, T]. Let z, {, and u be the image of x under
the reflection map. It is easy to see that these functions are also piecewise constant with
discontinuities only at discontinuity points of x. Let #, be the ¥ discontinuity point of x.
It suffices to restrict attention to those subintervals [#, #,,) for which z is at a boundary,
i.e., for which z(#;) = 0 or z(#;) = C, because by part (a), [z, — z]|| @ 0asn = oo}
i.e., for the given z, we can choose ng so that 0 < z,(¢) < Cfor all # = ny and all other
t. Hence, I, u, I, and u, with n = n, are constant everywhere except possibly over these
subintervals {1, #, ;). Moreover, over each of these subintervals it suffices to consider
only the one barrier z is at. We then use the well-known continuity of the one-sided regulator
reflection map over each of these intervals. For example, when there is no upper barrier,
z=x+1by (AN and |5, - L] = lz1 — 22l + |z — xl. L

ExamPLE 4.]. To see that the bound in Theorem 4.2(a) is sharp, let C = 2, x,(¢) = z)(¢)
= 0, and x3(¢) = — I () + Ipay(2), 0 < ¢ = 3 = T, where I(t) is the indicator
function of the set A. Then z,(f) = 2Ip5(1), 0 = t < T, |x; — %] = 1, and [[z; ~
Zy " = 2,

Let d be the metric from p. 111 of Billingsley [1968] inducing the Skorohed J;
topology on the space D. The properties of Theorem 4.2 carry over to (D, d), as is shown
by Proposition 2.4 of Chen and Whiti [1991].

COROLLARY. (2) d(zy, 22) =< 2d(x{, Xp).
®) Ifd(x,, x) > 0asn — oo, thend(l,, I) » 0and d(u,, ) > 0 asn — oo.

ExampLE 4.2. It is interesting that the maps from x to [ and u are actually not Lipschitz.
For x; of bounded variation (as in the token bank), x; = y! + y!, where y! is nonde-
creasing and y! is nonincreasing. We might hope to bound ||§; — 4, and |z, — u,] by
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flyl — ¥l -+ ly4 — yi], but this is not possible either. To see this, suppose that C > €
and let

n—1

W) = D] [Clagmn(®) + (€ + O ligrs 1ymn 1), (38)
k=0
n—1
yit) = Z [(C + lrnn ) + Cliges nrran (O], (39)
k=0
and
n—1
YO = B = — DO, CC + OChgesymanr(t), 0=<t=T (40)
k=0

Then "}’{ - }’5" = & "xx - xz" =& "Zl - Z2" = 0, and [;(z) = 0 for all £, but

n—1

Lt) = Z elior s 1yrnn,1(t), 1)
k=0

so that
di, b) = [ — Ll = Vbl = ne = nlx; — x|l = nd(x;, x).

Theorem 4.2 provides the basis for a heavy-traffic limit theorem, with convergence to
reflected Brownian motion (RBM), where the reflection is by the two-sided regulator. For
this purpose, we consider a sequence of token banks indexed by . The n™ system has
capacity C, and job and token arrival processes Ay = {A;,(f): t = 0} and Ap, =
{Aq(t):r = 0}. Let A;, and Ay, be associated normalized processes, defined by

Ay = An®) = Aant o, 42)

Vn

and

vn

This is the typical normalization associated with the heavy-traffic conditions specified below.
ILet = denote convergence is distribution.
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For the limit theorem, we make the following assumption, which is satisfied when A4,
and Ay, are independent renewal processes with uniformly bounded third moments, but
also more generally.

HEAVY-TRAFFIC ASSUMPTION. Suppose that A, = A, 0 < A < o, r, = r, and Vn(r, —

N\ — pasn— m(sothat)\ =r); CN—-—> C,0< C< oo,asn— oo; and (Az,Aj)
= (J? B, J?—\? B;) in D? as n — oo, where Br and B; are mdependent standard (zero
drift, unit variance) Brownian moﬁons.

To express the limit theorem, consider the process (7,,, 0j,, Og,) defined by the two-
sided regulator applied to (A, — Aj,). Then consider the associated normalized processes
T,, Oy,, and O, defined by

T.(r) = T‘/(ft), 0,0 = M, and Og,(r) = On (nt)

n n n

)

Note that (T,, Oy,, Of,) is the image of the (A5, — Aj,) under the two-sided regulator
for each n. Theorem 4.2 and the continuous mapping theorem, Theorem 5.1 of Billingsley
[1968], imply the following (known) result.

TaeOREM 4.3. Under the heavy-traffic assumption above
(T, 05, Op) = (Z, L, U)in D®  asn — o,
where (Z, L, U) is the image of the two sided regulator with barriers at 0 and C applied

to X = N2 + &) B + pe, B is a standard Brownian motion, and ¢ is the identity map
on [0, T]; i.e., X is a BM with drift # and diffusion coefficient ¢ = .D\(c2 + ¢4).

Proof. Let

Aga(nt) — Ap (1)

t=0. @5
e )

X, =

' By the heavy-traffic assumption and the continuous mapping theorem applied with sub-

traction (which is continuous at functions with continuous paths, see Section 4 of Whitt
[1980D),

X, — Va(r, — \,)e = Jrc2 By — ]\ B; 4 Jri&+2EBinD asn— oo,

where e(t) = t. Since Va(r, — M\ye — pe in D, X, = X. Finally apply the continuous
mapping theorem again with Corollary to Theorem 4.2. u

Theorem 4.3 implies a limit for the proportions of jobs and token blocked Let A (T)
and R,(T) be the proportions of jobs and tokens blocked over the interval [0, 7] in the
r® model; i.e.,
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Ay = 220D g Ry = 220D, 46)
nT nT

CoroLLARY. Under the heavy-traffic assumption,

\/EA,;(T)=>@ and \/ER,;(I):U;T) as n — o
T

for each T,

Harrison [1985] has shown that T7IL(T) = o in (25) and T7'U(T) — B in (26) as
T — oo, By similar regenerative arguments, VA, (T) — Va\! and VaR.(T) — Vnr] as

‘T — o if the job and token arrival processes are independent renewal processes, at least

one of whose interarrival-time distributions is phase type. We conjecture that
VN, > a and Vnr, B asn — o 47

if, in addition, the job and token interarrival times have uniformly bounded third moments
and the heavy-traffic assumption is satisfied; i.e., we conjecture that the iterated limit in
which first T — oo and then n — oo is valid, but we have not yet established it. If we
let X (0) have the distribution of T, () and if X (0) = Z(w) as n — oo, then A\, =
EA(T) and r, = ER,(T), so that the desired result would follow from the corollary to
Theorem 4.3 by uniform integrability. However, there are gaps here as well. Nevertheless,
the corollary provides additional support for the approximation in (25)—(26) and (31)-
(33). In Theorem 4.5 we establish the desired limit for the long-run blocking probabilities
in the M/M/I/C special case.

We can apply part (a) of the corollary to Theorem 4.2 plus strong approximation results
in the literature to obtain a bound on the rate of convergence of T, to Z. For this purpose,
let m be the Prohorov metric on the space of probability measures on D; see p. 238 of
Billingsley [1968]. When we use random elements as arguments of m, we mean their pro-
bability laws.

TueOREM 4.4. Suppose that the token and job arrival processes are renewal processes with

interarrival-time random variables U/, and V¥, in the n* model. Let Vn(r, — A,) = u for
each n.
(a) if E(¢Ys) < o and E(¢*r) < o for ¢ in a neighborhood of the origin, then

log n

m(T, Z) < K
n

for some constant K.
) If EU!, < o and E Vi, < oo for some r-< 2, then
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m(T,, Z) < Kn~¢—DR20+D
for some constant K.

Proof. The condition in (2) implies that

08" nd m(Ag, Jrc; By) < Kylogn

m(Az,, {\G By) = K, v v

for some constants K; and K5, while the condition in (b) implies that
m(Az,, NG B)) = Ky n~07D%) and m(Ag,, Jre? By) = K, nm¢TRRTD,

see Corollary 4.1 of Cs6rgo, Horvath, and Steinebach [1987]. We only discuss (a) because
the remaining argument for (b) is the same. We apply the triangle inequality to get

mX, — Vil — M)e, i@ F AL B) < (K, + K) 105_“,

n

and once more to get

log n

m(xm X) = (X, + Ky) + I \/E(rn - )\n) - ¥ I

n

But, by assumption, Vn(r, — A,) — # = 0. We conclude by applying part (a) of the cor-
ollary to Theorem 4.2 together with Theorem 3.2 of Whitt [1974], which shows that

m(f(Xl)s f(XZ)) = max {ly K} m(Xl’ XZ)
when f is Lipschitz with modulus X. [

In order to prove Theorem 4.1 in Section 4.2, and for its own sake, we now consider the

-heavy-traffic behavior of the steady-state characteristics of the M/M/I/C model in Section

3. The appropriate limiting regime is indicated by the heavy-traffic assumption above, but
now we apply the explicit steady-state formulas from Section 3. Let [x] be the greatest
integer less than or equal to x.

TaeEOREM 4.5. Consider a sequence of M/M/I/C models indexed by n with A, = A = 1
and r, = p, for all n. If Vn(p, — 1) = u and C,/Vrn = C, then

Vup,([xVrn]) — p(x)  for each x, (48)

E[T, ()] :
———= = E[Z(*}], (49)
Vn (
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Vi, = @,  Vnr, = B, (50
and

i:ﬁ—»a_lo% as n — oo, (51

vn  Vn

where the limits are defined in (23)-(29) with ¢> = 2 and 8§ = 7
Proof. Apply (3)-(6) and the fact that
o = (L+ (o — D) DTED ek asn > oo,

because (1 + (o, — 1)@ D" = ¢ and Vr(p, — 1) = p as n — oo. Note that a’n —
a® whena, > aandb, > bwith0 < a < wand — o < b < oo, It is easy to apply
this approach directly for the case p # 0. For ¢ # 0, it is convenient to apply the results
for p # 0 together with the continuity of the RBM quantities in . For example, let p}(x)
be the state probabilities associated with p,; for which p;! < p, and Va(e,, — 1) = p’
<0 as n — co. Similarly, let p;/(x) be the state probabilities associated with p, for which
ol > p,and Vr(p? — ) = u > 0 as n — oo. Then the normalized state probabilities
of interest Vrp,([xVr]) are bounded above and below by

min {Vnpi(C,), VnpX(0)} = Vnp,([xVn]) = max {¥Vap,(0), Vnp,(C,)}.

Moreover, the four bounding terms all converge as n — oo and in turn these limits con-
verge to I/Cas u’ t 0 and " } 0. Hence, Vap,([xVn]) = 1/Casn — o when p = 0.
Similar reasoning applies in the other cases. |

We now apply Theorem 4.5 to prove Theorem 4.1, modulo two technical gaps. A direct
proof using properties of RBM has been provided by Williams [1991]. Nevertheless, the
limiting argument below seems to be of considerable interest.

Partial proof of Theorem 4.1. We deduce these properties of RBM by considering the limiting
behavior of the M/M/1/C model. (The same can be done for (23)-(26).) First, for any
‘given C, p and o2, choose C,, N, A, and r, so that C, = Vr C, Vn(r, — A,) = g, and
2\ = ¢, Then the given RBM is the limit of the M/M/I/C models as described in
Theorem 4.3. Next note that the M/M/I/C model has the same regenerative structure as
RBM, as described on pp. 86-89 of Harrison [1985]. By Theorem 4.3 and the continuous
mapping theorem (Theorem 5.1 of Billingsley [1968]}, the processes associated with a single
cycle converge. In particular, consider the first passage time from 0 to 0 after hitting C
applied to T , and Z. This mapping, say 7, is a measurable function on D that is continuous
almost surely with respect to the underlying Brownian motion X. To see this, consider
the first passage times from 0 to C and from C to 0 separately. Focusing only on the up-
ward first passage time (since the downward first passage time is similar), suppose that
Z({0) = X(0) = 0 and let £ be the first passage time of Z to C. Then, with probability
1, X(¢) exceeds X(§) somewhere in every neighborhood to the right of £. For any such
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sample path, this ensures that, for sufficiently large n, Z, will first hit C in any sﬁéciﬁed
neighborhood of £ if Z, is associated with X, for which X, (¢} — X(¢) uniformly on bound-
ed intervals, as occurs with the heavy-traffic limit, Hence,

[7(T,), Op(7(T,)), Op(r(T,))) = [1(2), L((Z)), U(r(Z))] 62

as n — . Now we want to conclude from (52) that we have convergence of the following
moments:

E[7(T,)*] = E[7(Z)¥] fork =1, 2, (53)

E[05,(r(T,))] = EIL((2)F] fork=1,2, D

E[Or (r(T,)*] = E[UGEZN1  fork = 1,2, (55)

E[1(T,)05,(r(T,)] = E@LxZ))], (56)
and

E[#(T,)0r,(r(T,))] ~ E[fZ)U((Z)] asn — co. 6D

First, assuming that (53)-(57) do indeed hold, we establish our desired result. We apply
the alternative formulas for these quantities in Section 3 and the limits in Theorem 4.5
to obtain the explicit formulas. Let 7, be the first passage of time of 7, (thhout normaliza-
tion) from O to O after hitting C,. Then 7, = n7(T}),

OnGT,) = 2250 and 0, (r(T,) = 2258, (58)

vn Vn

Since Oy, is a renewal process,

& = lim Var Op (1)
e EOJn(‘t)

Then, using regenerative structure (e.g., see Section 3 of Glynn and Whitt [1987]}, we obtain

.
Var [ OJn (Tn) - ﬁ' EOJn (Tn)]
EOp(7,) '

T =

(59)

Next, introducing the normalization in (44), we obtain
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) n E 0 i n
g Vv [0;,, Gy - )E[[T&n(;](T ))]]
Vn " E[O, (r(T,))]
7(Z) E[L(1(Z))]
Var [L(T(Z)) -
N . E[T[Z)] = a—‘lo—% as n — oo, (60)

E[L((Z))]

Now we complete the proof by establishing (53)-(57). First, the convergence (53) follows
from p. 151 of Abate and Whitt [1988], where explicit expressions are given for the first
two moments. Next, since.

EOJH(Tn) =\ and EOTH(TH) = r’;,

E7, : Er,

by (50) and (53)

M"—) - oF7(Z). and M = BE7(ZY asn — oo,

Vn Vn
which implies (54) and (55) for £ = 1. The rest we establish by uniform integrability;
see p. 32 of Billingsley [1968]. Here there are two gaps, because we have not performed
two calculations. To establish the uniform integrability, it suffices to show that
E10,,(7(T,))] and E[O,(7(T,))’] are uniformly bounded in z. Since these two are essen-
tially the same, we only discuss the first. For this purpose, we show that E{+(T,)’] and

7(T,) E[O 1, (7(T, )] ] (61)

B [ 0, (7(X,)) —
; E[+(T,)]

are uniformly bounded in » for k£ = 2 and 3, where 8,(Z) is the ¥ cumulant of the ran-
dom variable Z, i.e., the coefficient of #* in the power series representation of log Ee”Z;
see Section 2 of Whitt [1982a]. For k¥ = 2 and 3, the cumulants are the variance and the
third central moment. The uniform boundedness of E[r(T,)’] in » should follow by dif-
ferentiating the transform, which is displayed in Theorem 3.4 of Abate and Whitt [1988],
just as for (53) with & = 1 and 2; this is the first gap. The ¥ cumulant (61) can be ex-
pressed without the normalization as

n k2 g, [OJR(TH)A - -"-"E—EOJ"&‘—)] . (62)
Ty :

Since n Er, — E7(Z), if we multiply and divide by Er, in (62), then we see that it suf-
fices to show that : ’
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p—-2)12 B (O, (1) — ETHEOJH(TM)"ETH) ©63)
Tn

is uniformly bounded in ~». However, by regenerative structure, (63) coincides with

n_(k.-.2)/2 lim Bk(OJn (t )) (64)

= f

For k = 2 and 3, the limit in (64) can be expressed in terms of the first three moments
of the time between overflows, say J, as in (2.7) of Whitt (1982a). Using (7) and the
reasoning in the proof of Theorem 3.1, we see that n”2EJ,, n™>2EJ?, and n™>"?EJ? are
uniformly bounded for £ = 1, 2, and 3, which establishes the desired results; the bound
for EJ} is the second gap. For the case p < 1, the argument using (7) may be simplified
by exploiting the fact that the M/M/1/C busy period is stochastically dominated by the
M/M/1/co busy period, whose first few moments have simple explicit expressions; see Cor-
ollary 3.1.1 of Abate and Whitt (1988). The second and third moments of the busy period
are order (I — p~2) and (I — p)~°, respectively. |

Remark. The argument used in the proof of Theorem 4.1 could also be used to establish
(50) and (51) for GI/M*/1/C models, provided that the uniform integrability Ieadmg to
(53)-(57) can be established.

5. Markov-Chain Approximations

Our fourth approximation scheme for analyzing a token bank is to approximate the general
job arrival process, which has been partially characterized by the parameters A and cZ,
by a convenient special renewal process, and then do an exact Markov chain analysis. The
first approximating renewal process is a batch-Poisson M* process having geometric batch
sizes. Since this MX process is a two-parameter renewal process, we choose the two
parameters—the batch arrival rate A? and the mean batch size m°—so that the parameters
X and ¢} match; i.e.,

AN=MNmP and & =2m*-1. (65)

The batch-size probability mass function is b(n) = (1 — q)¢" ~ !, n = 1, where m®* =
1/(1 — q) or ¢ = (m® — 1)/m®. Since the batch sizes are always at least 1, m® = 1, and
this approximation requires ¢ = 1.

After making the M* approximation, the number of tokens in the dedicated bank coin-
cides exactly with the queue-length process in a GI/M*/1/C model. The number of tokens
in the bank just prior to a token arrival is thus a discrete-time Markov chain (MC), which
has been analyzed in the case of deterministic arrivals by Berger[1991a]. From the
equilibrium vector of this MC, say 7 = {r(0), ..., w(C)}, we obtain the exact token
blocking probability



BROWNIAN APPROXIMATION FOR RATE-CONTROL THROTTLES AND G/G//C QUEUE 33

= (0. (66)
-

We then invoke the conservation law (2) to obtain the job-blocking probabilities; i.e.,

Ny 67)
A A

From the point of view of accuracy with M* job arrival streams, the exact results (66)
and (67) are better than the previous approximations, but (66) is not closed form.

We can use the steady-state distributions at token arrival epochs to compute the steady-
state distribution at arbitrary times (and thus at batch arrival points) for the G/M*/I/C
model. For the special case of Poisson job arrivals (the GI/M/I/C model), there is the relation

prk — 1), 1 <=k =< C,
(68)

pk) = c
Jj=1

where p (k) is the steady-state probability at an arbitrary time; see Heyman and Stidham
[1980].

The approximation just presented requires ¢ = 1. If ¢ < 1, then we could simply
act as if ¢Z = 1 and work with the GIM/I/C model. Alternatively, we could fit a phase-
type renewal process and apply a Markov chain analysis to the GI/PH/1/C model, keeping
track of the phase of service, as in Berger [1991b]. This is the second oclass of approx-
imating renewal processes.

Since the token overflow process is a renewal process in the GI/M*/I/C model, it is
natural to use the SCV ¢# to further partially characterize the token overflow stream. The
interoverflow time is distributed exactly as the first passage time from state C to state C
in the ergodic discrete-time MC with states {0, 1, ..., C} obtained by looking at the

. G/M*//C model at (just before) token arrival epochs. The mean interoverflow time is

1/r’, which we can obtzin from (66). From Kemeny and Snell [1959], we obtain

& = [Wlexe * (m(O)? — 1, (69)

where [W]cxc is the (C X C)™ element of the matrix of the second moments of the first
passage times (measured in number of steps of the Markov chain) given by

W = MQZy A — ) + 2(ZM — E(@M)y,), (70)

M is the matrix of mean first passage times and Z is the fundamental matrix, i.e.,
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M=(U-Z+EZ)A and Z=(I-P+ A7} (70
&

where P is the one-step transition matrix of the Markov chain, 4 is the square matrix with
each row being the equilibrium vector of P, A is the diagonal matrix whose diagonal elements
are the reciprocal of the equilibrium probabilities, 7 is the identity matrix, E is the square
matrix with all entries equal to 1, and ()q, is a2 diagonal matrix whose diagonal equals
that of the argument matrix.

The job overflow process associated with a GI/M*/1/C model is not renewal process,
so it is not so easy to analyze or partially characterize. Of course, the mean job interover-
flow time is 1/A‘, which we can obtain from (67). We do not give a second parameter for
the job overflow stream via this approach.

6. More Approximations for SCVs

We developed approximations for the SCVs of the overflow streams in Sections 3-5. We
consider a different approach here, and also consider the stream of admitted jobs. As in
Section 4, let A,(t) and Ay(?) represent, respectively, the number of arriving jobs and
tokens in {0, #]; and let O(¢) and Of{(t) represent the number of jobs and tokens to
overflow in [0, ¢]. Let ¢}, c% and c4 represent the SCVs partially characterizing the job
overflow stream, the token overflow stream, and the admitted stream, respectively. Sup-
pose that A;(r) and Ay{¢) are independent renewal processes with rates A and r, and SCVs
¢ and &
If O;(¢) and Of(t) were renewal processes, then we would have

ime EO;() i~ EOr(r)

(see Whitt [1982a]), so it is natural fo use this large-time behavior as a basis for
approximations.

First, for A sufficiently less than r(p sufficiently greater than 1), we should have

O7(t) = Ap(r) — A;(2), (73)

so that, for suitably large i,

E@r®) — 4,0) o -1

Moreover, in this case the accepted job stream is approximately equal to the job arrival
stream, so that ¢4 =~ ¢ and the admitted stream is nearly a renewal process if the job
arrival stream is.

Second, for r sufficiently less than A (p sufficiently less than 1), we should have
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Oy(t) = A;(t) — Ar(r), (75)
so that, for suitably large ¢,

_— 2 2
C% = C}(p, C%, C?) ~ Val'(A_](t) AT(t)) ~ }\C)Z\ + rc% — X + pcr. (76)
E(A4;() — A7) A-r 1—0p

Unlike the case with p > 1, when p > 1 the admitted stream is not nearly the same as
either arrival stream. For large time, the number of admitted jobs is approximately equal
to the number of arrivals taken, so that we should have ¢ = ¢ by the asymptotic crite-
rion of (72). However, in shorter time the admitted stream reflects the behavior of the job
arrival stream. Thus, if ¢ and ¢? are quite different, then we expect that the admitted
stream will not nearly be a renewal process.

These approximations for the overflow SCVs provide additional support for the Brow-
nian approximation in Section 4, because both approximations (74) and (76) are consistent
with the diffusion approximation in (29): As 8C — — o0, a™! 7 in (29) is asymptotic
to — 2/6, which is (76); as 8C — + oo, « ~ ¢} is asymptotic to 2/8, which is (74).

Recall that we already have an algorithm to compute c% exactly for the GIYM*/1/C model
in Section 5, but (74) is closed form. Note that approximations (74) and (76) apply only
to dominant overflow stream (¢ when p < 1 and ¢ when p > 1). However, these streams
are most important in approximations for the multiclass throttle.

7. The Token-Bank Throttle Compared to the Leaky-Bucket Throttle

In this section we compare the token bank to the leaky bucket. First, we define the leaky
bucket. With the conventional definition, the leaky bucket has a drain rate r and a capacity
C. At a job arrival, if the bucket content is less than or equal to C — 1, then the job is
admitted and the content of the bucket is incremented by 1. Otherwise, the job is rejected
{or marked and admitted). The content of the bucket drains out at the deterministic rate
r. When the bucket is empty, the draining process stops. The draining process starts again
upon the next job arrival. The arrival causes the bucket content to be incremented by 1,
and a new busy period of the bucket begins. Thus, the time epochs at which a unit of con-
tent drains out do not remain synchronous throughout time, but rather undergo a phase
shift each time the bucket empties.

In contrast, for the token-bank throttle, the token arrival process continues to run in-
dependent of the state of the bank and, in particular, when the bank is full. Thus, the token
arrival epochs do remain synchronous throughout time. _

To compare the leaky bucket to the token bank, it is convenient to introduce a second
definition of the leaky bucket that is isomorphic to the classic one above. The new defini-
tion is expressed in terms of a modified token bank. In particular, the leaky-bucket throttle
is isomorphic to a token bank that, as usual, decrements at job admissions and increments
at token arrivals, but where the deterministic, evenly spaced token arrival process stops
when the bank is full and starts again at the next job arrival. Moreover, to analyze the
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while

th(G)z)\rfg(M) Az (G) _ —1-p+

if G =, M. (82)
A A A 1 + py

Proof. First, note that for both the token bank and the leaky bucket, the conservation law
(2) implies that

z\——1—-p+p—

r
For the leaky bucket, r{g/r is given by (78). Thus

MB(G)=1_p+ PPy
A 1+ pp

For the token bank, note that
70, 1) =p + (1 — p)X1 + 7(0, 1)),

where p is the probability of no job arrivals in a token interarrival time; i.e.,

p= f " e N 4G ). (83)
0

Hence, p7(0, 1) = 1 and we have established (80). From (80), we immediately have
rig (G) = rig (G,) when G, <; G,. For the M/M*/1/C model, p in (83) is p/(1 + )
and thus Mg (M) = A (G). For the D/M*/1/C model, p is e Finally, note that
Gy =, G, if G| is the cdf of a deterministic distribution with a unit point mass at the
mean of G,. n

Theorem 7.2 suggests that the token bank produces less blocking than the leaky bucket
when the token stream is smooth. Our next result establishes an ordering the other way
independent of the token interarrival-time distribution, when the capacity of the token bank
is decreased by 1. We also prove that the fluid approximation is a lower bound to the token-
blocking probability when p > 1. Let r¢ be the fluid approximation in (1).

TueOREM 7.3. () For the GUMX/I/C model with p, < 1 and C = 2, N (C) <
Mg (C — D).

(b) For the GI/M/I/C model with C = 2, M (C) = Mg (C — D.

(c) For the G/M/L/C model with p > 1, ‘

r'i‘B (C) > lim

e (C) _p—1 _r1f
r Coeo T P r
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Proof. (a) First note that 7(0, ) = +(C -2, C -~ Dand+(C— k-1, C -1 = 7(C
—2,C— Dforall £k = 1, so that from (78)

rie (©) Pe ifC = 2. 84)
r pp + 7(C—2,C~—1)

Note that 7(C — 2, C — 1) appears on both (77} and (84) when we consider r{g (C) and
rig (C — 1). Hence, rig (C) < rig (C — 1) whenever

p — Dr(C -2, C— 1) = p,. (85)

Inequality (85) is obviously satisfied when p;, =< 1. (b) For the GI'M/I/C model, the argu-
ment above covers the case p << 1. When p > 1, we use the fact that 7(C — 2, C — 1)
is increasing in C, which is easily shown by a coupling argument. (In particular, to com-
pare 7(k, k + 1) and 7(k — 1, k), use the same arrival times and service times. If the
sample path starting in k never reaches O, then r(k, k + 1) = 7(k — 1, k) for that sample
path. However, if the sample path starting in & hits 0, then the two paths move together
afterwards, so that they both reach k at the same time and 7{(k—-1, k) < 7(k, k + 1)
for that sample path.) Moreover, the limit as C — oo is equivalent to an M/G/1 queue.
In particular, by considering C minus the number of tokens in the bank, we see that 7(C
— 1, ) = r(x) as C — o when p > 1, where 7(o0) is the mean number of customers
served in a busy period of an M/G/1 queue with arrival rate \, mean service time ' and
traffic intensity p ~ !. Hence, 7(e0) = (1 — 0~ ™! = p/(p ~ 1) and

H(C—-2,C—-1 =< lim (C—-1,C)=—"_ (86)
which equals py/(p, — 1) in this case. Finally, (86) establishes (c). [ ]

We now show that the token bank blocks fewer jobs than the leaky bucket for common
parameters in the D/M/1/C model, which is a very special case of Budka’s [1990] result. -
We conjecture that this result remains true for the GI/M*/1/C model provided the token
interarrival-time cdf G satisfies G <, M. The necessity of some condition is shown by

. Theorem 7.2.

TaeoREM 7.4. For the D/M/I/C médel, Mg (C) = Mg (O).

Proof. By (77) and (78), it suffices to show that
C-1,0)—-1—p'7(C-2,C-1) =20 (87)

By considering the possible Poisson events in the first token interarrival time, we can write

HC—1,C 2 e 4o e +7C -1, C)
+ (1 —e? —ple Y1 + #C -2, O)
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=e* +p e (L+ #(C — 1, C)
Fl—e? —ple Y +HC—2,C— 1)
+ H{C — 1, O)).

Hence,

e HC - 1,021+ —e?  —ple Yo (C-2,C— 1),
5o that

C—-1,C=e  +(@ —1-pY)oC-2C— 1.

However, by doing a sample path comparison it is possible to show that 7(j + m, k +
m) for j < k is increasing in m, so that

HC—2,C—1)=70,1) =e .
Therefore,

C—-1,C)—-1—-pln(C—-2,C-1)

= ~ D+ (> —e —pTler ) —pler
=fo ) =e? — 27l —120
forallp = 0
because f(0) = 0 and
fx)y =28~ 1—-—x)>0 forallx > 0. ]

We conclude this section by giving some numerical results. Table 1 compares the job
blocking probabilities in the token bank and the leaky bucket for the D/M/1/C model with
capacities 5 and 11. The (exact) leaky bucket results are obtained by applying results for

“the dual M/D/I/C queue with traffic intensity p ! in Kiiin [1976] while the (exact) token

bank results are obtained by the MC analysis in Section 5.

To provide a better understanding, the results are related to the fluid approximation.
First the fluid approximation (1) itself is displayed, it yields A’ = O when A < rand A'>0
when A > r. Second, the other results are displayed after subtracting fluid approximation.
Thus, the other values describe the excess blocking over the fluid approximation.

From Table 1, we see that the fluid approximation provides much of the story. The relative
error in throughput A — A’ for the fluid approximation certainly is not great; the worst
case occurs when p = 1. The excess blocking probabilities for the token bank and the
leaky bucket are similar, but not too close. For example, with capacity C = 5, using the
exact value of one as an approximation for the other would yield relative errors in the
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Table 1. A comparison of job-blocking probabilities A'/\ in the token bank and the leaky bucket for the case
of a deterministic token at rate r and Poisson job arrivals at rate A. The desired fluid rate is subtracted in each
case. The cases C = 10 and 11 are both incuded to illustrate Theorem 7.3 and 7.4.

Bank capacity
cC=11 C=10 c=3
Token bank Leaky bucket Token bank Token bank Leaky bucket
Mr Fluid — fluid — fluid — fluid — fluid — fluid
0.5 0 0.00124 0.00218
0.6 0 0.00429 0.00667
0.7 0 0.00020 0.00028 0.00040 0.0120 0.01671
0.8 (] 0.00191 0.00235 0.00295 0.0279 0.0353
0.9 0 0.0117 0.0132 0.0148 0.0550 0.0644
1.0 0 0.0441 0.0462 0.0484 0.0938 0.1035
1.2 0.16667 0.00237 0.00289 0.00349 0.0259 0.0325
1.4 0.28571 0.00009 0.00013 0.00018 0.00644 0.00951
1.6 0.37500 0.00158 0.00276

excess blocking probability of 10%-50% over the range for 0.7 < p < 1.4. Finally, the
fact that Arg {(C) = N (C) = Mg (C — 1) is illustrated for the case C = 11.

8. The Accuracy of the Approximations

In this section we evaluate the approximations by making numerical comparisons, giving
special attention to the Brownian approximation. We primarily focus on the steady-state
mean number of tokens in the token bank, the job and tokens overflow rates, and the SCVs
approximately characterizing the overflow processes. 7

We use several sources of numerical values. First, we solve D/M*/1/C and D/H,/1/C
models exactly using Markov chain analysis, as described in Section 5. Of course, the
standard D/M/1/C model of a dedicated token bank is a special case of both, so the two
analyses provide checks on each other. Next, we use the exact formulas for the M/M/1/C
model in Section 3. We also examine the direct Brownian approximation and two

refinements: the M/M/1/C refinement in Section 4.3 and the GI/(G/1/c0 refinement in Sec-

tion 4.4. For additional comparisons, we use tabled results for GI/G/1/C queues in Kihn
[1976] and Seclen, Ti ijms, and van Hoorn [1985]. Finally, we use a special-purpose FOR-
TRAN simulation of the token bank, primarily to evaluate the variability of nonrenewal
overflow processes.

81 The Steady-State Mean

To understand the numerical accuracy of the direct Brownian approximation, it is natural
to start by considering the M/M/1/o0 model with p < 1. For this special case, there is
the simple relation between the approximate mean and the exact value:
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EZ(OO)=—1= 1+ — p +

¢ 2(1 — p) 1 —-»p

(88)

B | =

Hence, the direct Brownian approximation for the M/M/l/oo mean always has an error
of exactly 1/2. This suggests that we should expect the direct Brownian approximation to
consistently achieve accuracy within about 0.5 in the steady-state mean when the SCVs
¢ and 2 are not too different from 1. Numerical evidence shows that this is the case for
the M/M/I/C model for all p and C.

Formula (88) also indicates that the direct Brownian approximation for the mean can
benefit from some refinement. COf course, any error for the mean in the M/M/1/C model
is eliminated completely by the M/M/I/C and GI/G/1/o0 refinements in Sections 4.3 and
4.4. Another approach to the discrepancy in (88) is to use a different diffusion coefficient;
e.g., instead of (20) let o> = rc? + phci = r(c? + c}). This refinement eliminates the
error in (88), but it does not work so well for the overflow processes; see Sections 8.2
and 8.5 for further discussion.

We now investigate how well the Brownian approximations work for SCVs different from
1. A relatively nice case is the E,/E,/1/C queue, for which both the interarrival times and
service times have E, distributions (Erlang of order 2, convolution of two exponential dis-
tributions), so that ¢Z2 = ¢ = 0.50. Table 2 compares the approximations for the mean
with exact values from Seelen, Tijms and van Hoorn [1985] for the case of C = 11. For
this case the direct approximation is quite good. Indeed, the direct approximation is slightly
better than the M/M/I/C refinement, and only slightly worse than the GI/G/1 refinement.

Table 3 compares several expressions for the steady-state mean number of tokens in
the token bank for several values of the traffic intensity p when the capacity C is 100 and
the SCVs are ¢; =10 and ¢Z =0. This is 2 much more stressful test than the E,/E,/1/11 queue
from the point of view of the SCVs, but it is easier from the point of view of the capacity.

Table 2. A comparison of approximations with the exact value of the steady-state mean for the E,/E,/I/C queue
(not token bank) with C = 11. The exact values come from Seelen, Tijms, and van Hoorn {1985].

Brownian approximations

o E,/E,/1/C exact Direct M/M/1/C refinement GI/G/1/0o refinement M/M/1/C
0.5 0.70 0.75 0.50 0.71 1.00
06 0.98 1.00 0.76 0.99 1.47
0.7 1.42 1.42 1.21 1.41 2.16
0.8 221 2.17 2.05 2.14 311
0.9 3.63 3.55 350 3.18 4.28
1.0 5.62 5.50 3.50 5.50 5.50
1.1 7.43 7.29 7.40 7.36 6.61
1.2 8.61 8.46 8.67 8.49 7.52
1.3 9.28 9.09 9.32 9.13 8.20
L5 9.91 9.75 10.05 9.75 : 9.09
20 10.43 . 10.25 10.50 ‘ 10.29 10.00

Average absolute error 0.10 0.13 0.08 0.68




BROWNIAN APPROXIMATION FOR RATE-CONTROL THROTTLES AND G/G/Y/C QUEUE 43

Table 3. A comparison of expressions for the mean number of tokens in the token bank in the case of capacity
C = 100 with SCVs ¢ = 10 and ¢ = 0. The D/M*/I/C and D/HE/1/C values are the exact values just prior
to token arrivals. The D/HE/1/C model is treated as exact for the average absolute error analysis.

Browning approximations

p=r DIMYuC D/HEIC  Direct M/M/UC refinement  GI/G/1/ce refinement  M/M/1/C

0.50 4.5 6.7 10.0 6.7 2.8 1.0
0.60 7.0 7.2 12.5 9.4 4.9 1.5
0.70 11.2 1.2 16.4 13.5 8.6 2.3
0.80 19.0 18.5 23.1 20.6 16.3 4.0
0.90 33.2 31.2 34.3 32.5 315 9.0
0.95 42.4 39.9 41.8 40.8 40.9 18.4
0.99 50.0 47.6 48.3 48.1 48.2 41.6
1.00 51.9 49.6 50.0 50.0 50.0 50.0
1/0.99 537 51.6 517 51.9 51.8 58.4
1/0.95 60.9 59.7 58.6 59.7 59.5 81.6
1/0.90 69.1 69.6 67.2 68.9 69.8 91.0
1/0.80 81.2 84.6 80.7 82.8 85.9 96.0
1/0.70 88.2 92.5 88.3 90.4 93.1 97.7
1/0.60 92.7 96.4 92.5 94.4 96.3 98.5
1/0.50 94.8 98.3 95.0 96.7 97.9 99.0
Average absolute error

2.1 2.9 1.2 1.1 103

The first value in Table 3 is the D/M*/1/C value, which is based on a geometric batch-
size distribution, so that the job arrival process is a renewal process with ¢t = 10. Next
comes the D/H5/1/C value, which is based on a hyperexponential distribution (mixture of
two exponential distributions) with balanced means and SCV ¢ = 10; i.e., the cdf is

F@t) =1 —p; e "™ — p, g™ (89)

where p; + p, = 1 and pymy = pym,.

Since the D/M*/1/C and D/HE/1/C models are both D/GL/1/C models with ¢ = 10, they
both can be considered as the “exact™ values in this case. As discussed in Whitt [1984a,b]
and Klincewicz and Whitt [1984], when there is more than one possible exact value, it
is desirable to compare the approximation to the set of possible exact values; the two cases
here give a rough idea of the set. The fact that these values are so close when C = 100
and p is near 1 is evidence of the invariance principle associated with heavy-traffic limit;
i.e., the heavy-traffic limit depends on the two probability distributions in the GI/GI/1/C
model only through their first two moments. However, there is quite a range for the two
exact values for p away from L

Also displayed in Table 3 are the direct Brownian approximation, the two refined Brown-
jan approximations and the M/M/I/C formula based on the given p. Since ¢ = 10, we
should not expect that the M/M/1/C model would provide a good approximation, and it
does not, as illustrated by the large error at p = 0.90. The direct Brownian approximation
performs reasonably well, given the range of exact answers. Indeed, the direct Brownian
approximation is about as good an approximation for the D/H3/I/C and D/IM*/1/C models
as each is for the other. The refinements help, but not uniformly so. For example, the
Gl/G/1/o0 refinement does not do very well for small p.
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for the overflow rates perform quite well under heavy-traffic conditions, improving as C
increases and |1 — p| decreases with | (1 — p)C| fixed, but the performance of the direct
Brownian approximation for the overflow rates deteriorates when | (1 — p)C| is large. The
direct Brownian approximation performs spectacularly well when C = 1000, o = 0.999,
and (1 — p)} C = 1 (exact: r’ = 00005806; approximation: r' = 0.0005815) and when
C=100,p =099, and (1 — p) C = 1 (exact: r' = 000568; approximation: r’ = 0.00577).
The direct Brownian approximation perform pretty well when C = 100, p = 0.9, and (1
— p) C = 10 {exact: r' = 0.24 X 1075; approximation: r' = 0.27 X 107, but less well
when C = 10, p = 0.5, and (I — p) C = 5 (exact 7' = 0.24 X 1073; approximation: r’
= 064 X 1073, and when C=100, p = 0.5, and (I — p) C = 50 (exact r' = 0.20 X
10739 approximation: r'=0.56 x 10" 29) Thus we anticipate that the accuracy of the Brow-
nian approximation for the blocking probabilities will decrease as [(1 — p)C| increases
for fixed p or C. More generally, we anticipate that the accuracy will decrease as |(1 —
p)C] increases, but the third and fourth examples above show that this does not always hold.

We remark that the refined approximation based on o* = r(c? + ¢}), which yields
— 871 = p/(1 — p) for M/M/U/oo, does not work as well for the overflow rates. For ex-
ample, when C = 100, p = 0.5, and (1 — p)C = 50, this “refined” approximation is 0.2
x 107*, which is in error by a factor of 10,

Tables 5-7 compare several expressions for the overflow rates. Paralleling Tables 24,
Table 5 is for the E,/E,/1/C queue with C = 1I; Table 6 is for the case C = 100, ¢z =
0, and ¢ = 10; and Table 7 is for the case C=10, ¢ = 0, and ¢} = 4 and 1. Recall that
Table 1 displays blocking probabilities for the token-bank throttle and the leaky-bucket throt-
tle, from which one can calculate overflow rates. Given that we would treat these two throttles
the same with Brownian approximation, Table 1 indicates limitations on the accuracy we
can hope to achieve.

In Tables 5-7, we only display values for the smaller overflow rate (' when r < A
and A* when A < r); the other overflow rate can be obtained from the conservation law
(2). Using a relative error criterion, the larger overflow rates are much easier to approx-
imate accurately because of the deterministic exact component. For example, suppose r
< A, so that we estimate r ' By the conservation law (2}, A’ = (A — r) + r . Let subscripts
ex and ap designate the exact and approximate values. Then the relative error in A’ is

Table 5. A comparison of approximations for the overflow rates with exact values for the E,/E,/1/C queue (not
token bank) with C = 1l and A = 1 from Seelen, Tijms, and van Hoorn [1985].

Brownian approximations

Ovfl. E,/E,/1/C M/M/1/C GU/G/1/feo
r rate exact Direct refinement refinement M/M/1/C
0.6 0.000006 0.0000067 0.000004 (.000023 0.00087
0.7 r' 0.000112 0.000127 ~  0.600085 0.00025 0.00421
0.8 0.00144 0.00152 0.00118 0.00196 0.0148
0.9 0.0119 0.0110 0.0095 : 0.0110 0.0394
1.0 ) 0.0453 0.0455 0.0417 0.0417 0.0833
1.1 0.0139 0.0140 - 0.0121 0.0130 - 0.0468
1.2 A 0.00365 0.00373 0.00301 0.00436 0.0253
1.3 0.00097 0.00097 0.00073 0.00139 0.0135

1.5 ‘ 0.000075 0.000075 0.000047 _ 0.000175 0.00389
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Table 6 A comparison of expressions for the overflow rates in the case of capacity C = 100 with SCVs c;‘: =10
and ¢/ = 0. The job overflow rate A’ is displayed when A = r, while the token overflow rate r’ is displayed
when r < A

Brownian approximations

ovl. M/MILIC GYG/ 1/

r A rate piM¥C DIHBI 1/C Direct refinement refinement M/M/1/C
0.50 1.00 055 x 1077 031 x107% 023 x10™* o080 x10% 027x1072 020 % 107
0.60 1.00 040 x 107% 013 x107% 013 x107F 027 x 107* 020 x 1072 0.26 x 10~%
070 1.00 040 X 107* 023 x 107 075% 1077 036 x 10°% 0.26x 1072 0.7 x 10716
0.80 100 r 0.00109 0.00212 0.00373 0.00272 0.0056 03 x 10710
090 1.00 ' 0.0108 0.0122 0.0157 0.0140 0.0154 0.24 x 1073
0.95 1.00 0.0248 0.0249 0.0291 0.0276 0.0271 0.00028
0.99 1.00 0.0423 0.0408 0.0452 0.0445 0.0435 0.0057
.00 1.00 0.0476 0.0456 0.0500 0.0495 0.0495 0.010
100 0.99 0.0428 0.0403 0.0447 0.0440 0.0435 0.0057
1.00 095 0.0269 0.0230 0.0268 0.0254 0.0253 0.00028
.00 090 M 0.0138 0.0094 0.0122 0.0108 0.0123 0.24 x 1073
1.00 0.80 0.0030 0.00065 0.00136 0.0010 0.0020 03 x 10”10
100 0.70 052 x 1073 066 x 1077 057 x 10°* 027 x107* 015x107% 07 x 10718
1.00 0.60 080 x 107% 010 x107% 065 x107% 0.3 x 107% 034 x 1077 026 x 10722
1.00  ©.50 0.11 x 10~% 072 x 107 010 x 107% 036 x 1071° p9s x 1078 020 x 1070

]MK — }\‘;pl —_ Iréx — ra'pl < 1rt;x _r;pl. (92)
Aex AN—r)+ri Tex

It is typically even easier to estimate the throughput A — A’ accurately because typically
A > 2N/ so that

O = M) = O = ML _ I = Ml I = Ml -
)\—Mx A_Mx Mx

Indeed, for large capacities the throughput and the larger overflow rate are remarkably
well approximated by the simple fluid approximation in (I).

Table 5 shows that the direct Brownian approximations for the overflow rates are spec-
tacularly good for the E,/E,/1/11 model, even better than for the M/M/1/11 model. Conse-
quently, the M/M/I/C refinement, while not bad, is not an improvement. Neither is the
GI/G/l/eo refinement.

The two exact overflow rate values for p near 1 in the case C = 100 in Table 6 give strong
evidence of the heavy-traffic limit. for the 0.8 < p < 1/0.8, the exact overflow rates for
the D/HE/U/C and D/MX/1/C models are quite close and the direct Brownian approxima-
tion is quite good. However, as p moves further away from 1 the difference between the
D/MX/1/C and D/HE/I/C exact values grows. In order to even roughly predict these small
blocking probabilities when p is not near 1 (e.g., when p = 0.5 or 2.0), we evidently need
more-model detail than the arrival rate and the SCVs. (However, the Brownian approxima-
tions perform significantly better than the M/M/1/C approximation, which ignores the SCVs.)
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Table 7. A comparison of expressions for the overflow rates in the case of capacity C = 10 and ¢? = 0. Two
job arrival SCVs are considered: c)% = 4 and I. The job overflow rate A’ is displayed when A < r, while the token
overflow mate ' is dispayed when r << A

Brownian approximations

ovl. M/M/LIC Gl/Gliio
r N ¢ e DHYLC pM¥1ic Direct refinement  refinement  M/M/1/C
05 1.0 1 036 %1077 036 x 1077 023 x 107% 086 x 1075 065 x 107%  0.00024
4 0.0065 0.0019 0.045 0.0171 0.0032 0.00024
06 1.0 1 635 x 1077 035 x107% 013 x 107 072x107% 0.4 x 107%  0.00146
4 0.0173 0.0093 0.063 0.0336 0.0125 0.00146
07 1.0 1 . 0.000115 0.000115 0.00075 0.00050 0.000215 0.0061
4 0.0358 0.0277 0.086 0.0575 0.0322 0.0061
08 10 1 0.00167 0.00167 0.0037 0.00289 0.00205 0.0188
4 0.063 0.060 0.116 0.090 0.065 0.0188
09 1.0 1 0.0122 0.0122 0.0156 0.0134 0.0123 0.046
4 0.100 0.108 0.154 0.132 0.115 0.046
L0 10 1 0.0484 0.0484 0.050 0.0455 0.0455 0.091
4 0.147 0.167 0.200 0.182 0.182 0.091
1.0 09 1 0.0133 0.0133 0.0122 0.0104 0.0143 0.046
4 0.0893 0.1205 0.135 0.1148 0.107 0.046
1.0 08 1 0.00236 0.00236 0.00136 0.00105 0.00331 0.0188
4 0.0731 0.0834 0.080 0.0621 0.0542 0.0188
1.0 07 1 A 0.00028 0.00028 0.000057 0.000038 0.00059 0.0061
a4 0.0168 0.0553 0.040 0.0266 0.0222 0.0061
1.0 06 1 023 x107% 023 x107% 065x107% 035 % 10°% 0.84 x 10°%  0.00146
4 0.0038 0.035 0.0148 0.0079 0.0065 0.00146
1.0 05 1 0115 x 1075 0115 x 1075 010 x 1078 040 x 107° 0.87 x 10™°  0.00024
4 0.00042 0.021 0.0034 0.00128 0.00118 0.00024

For p = 0.8, the GI/G/l/eo refinement performs remarkably poorly, which seems to be
due to the very small numbers involved when |(1 — p)C| is very large. On the other hand,
the GI/G/1/ oo refinement seems to do quite well in Table 7 when |(1 ~ p) C| is never large.

In summary, very small probabilities associated with large [(1 — p)C| seem hard
to estimate accurately. When |(1 — p)C| is not large, the direct Brownian approxima-
tion provides a good rough approximation. The refinements sometimes help, but not
consistently so. As a specific numerical procedure based on the Brownian approxima-
tion, we would suggest the GI/G/1/oo refinement when |(1 — p)C| < 10. The Markov
chain approximations in Section 5 seem better. However, note that the D/MX//C and
D/HE/1/C values are not very good approximations for each other when |{(1 — p)C]| is
large. Thus, when |(1 — p) C| is large, we would try to obtain and exploit additional model
structure.
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83 Overflow SCVs

Surprisingly, the most reliable Brownian approximations for the D/H/1/C model are the
approximations for the overflow SCVs. We begin to hope this will be so when we see how
close the direct Brownian approximation in (29) is to the exact M/M/1/C value in (6} over
the full range of p. Extensive numerical calculations indicate that the maximum percent
error occurs at C = 1. At C = 1, the relative error is QC + 3)/(2C? + 4C + 3), which
is approximately 1/(C + 1) when C is large. Further support is provided by the asymp-
totics in Section 6, which agree with the direct Brownian approximation when |1 — p|
gets large. ‘

Tables 8 and 9 compare expressions for the SCVs partially characterizing the overflow
processes in the cases of Tables 2 and 3. For the D/M*/1/C model we display the exact
SCV c% for the renewal token overflow process, numerically computed as described in Sec-
tion 5. For the D/H3/I/C model, we display simulation estimates. However, it is impor-
tant to note that the overflow processes are not renewal processes in this case. We thus
used simulation to estimate the index of dispersion for intervals (ID]) of the overflow process;
see pp. 70-72 of Cox and Lewis [1966} and Section HI of Fendick and Whitt [1989]. In
particular, let S, be the sum of n consecutive interoverflow intervals. Then the IDI is the
function

Var (S,)

» 4
[E(S)P

v

In) = n

Each value of I(n) is a candidate approximation for the SCV, because for a renewal pro-
cess f(n) is constant, equaling the SCV for all n.

For the D/HE/I/C model, we estimated the IDIs of the two overflow processes for
1 =< n =< 100 using runs of 500,000 arrivals from a special purpose FORTRAN simulation
of the token bank. In some cases, we display two values for each of c% and c7. The first
value is the estimate of /(1), and the second value is the estimate of I(100). In other cases
(when p is not near 1), we display only the two values for the SCV of the dominant overflow
process, because the other overflow process produced too few observations. Based on in-
dependent replications, we conclude that the halfwidths of the 90% confidence intervals

‘for the stated values are less than 5% of the estimates.

Our first conclusion is that, even though the overflow processes are not exactly renewal
processes, they are nearly so. The IDIs are nearly constant for the overflow processes,
just as for the token arrival process in the D/M*/1/C model, which is actually a renewal
process. This is in distinct contrast to the IDIs of the stream of admitted jobs; see Section 8.4.

Our second conclusion, in support of Theorems 3.1 and 4.1, is that the two overflow
SCVs ¢&and ¢ tend to be nearly equal in the D/H3//C model. As p moves away from
1, the SCVs evidently become more different, but then the dominant stream is more .
important.
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Table 8 A comparison of expressions for the SCVs of the overflow processes in the case of capacity C = 100
with ¢ = 10 and &% = 0.

D/H3/1/C simulation Brownian approximations
o D/MX/1/C M/M/1/C  GUG/1/eo
! g =ri\ & & exact €&  Direct refinement  refinement  M/M/1/C
0.50 20.8-21.0 10.0 20.0 20.0 8.5 3.0
0.60 25.9-26.3 15.1 24.9 24.9 13.1 4.0
070  31.7- 34.2-34.9 23.3 32.5 32.5 21.0 5.7
0.80  54.7-32.5 47.2-46.8 38.0 443 44.3 36.3 9.0
0.90  66.0-66.9  62.4-62.6 57.6 58.9 58.9 58.9 19.0
0.95  66.7-69.7  70.8-63.8 64.0 64.5 64.7 65.6 37.1
.00  71.6-69.7  65.7-60.1 65.0 66.7 67.3 67.3 67.3
1/0.95  66.4-64.3  62.3-60.2 60.9 64.3 64.4 65.4 37.1
1/0.90  61.9-60.0 62.9-43.4 53.2 57.4 57.4 57.3 19.0
1/0.80  40.3-39.3  43.5- 35.6 37.8 37.8 31.5 9.0
1/0.70  23.7-24.7 22.8 23.3 23.3 16.8 5.7
1/0.60  13.4-15.8 14.9 15.0 15.0 10.0 4.0
1/0.50  6.37-10.1 10.0 10.0 10.0 6.3 3.0

Table 9. A comparison of expressions for the SCVs of the overflow processes in the case of capacity C = 10

and ¢ = 0.
i D/HY/1/C simulation Brownian approximations
5 D/ME/1/C M/M/1IC  GU/G/1/eo
r A & g e exact ¢4 Direct refinement refinement §6  M/M/1/C
05 10 1 1.99-1.97 151 2.00 1.98 1.87 2.00 298
4 5461  73-15 3.95 5.53 5.58 3.99 8.00 298
: 06 1.0 1 2.48-2.46 .196_ __ 249 2.55 2.32 2.50  3.87
4 6.7-6.6  8.0-8.3 5.07 5.89 6.03 533  10.00 3.87
07 1.0 1 3.74~ 3.31-326  2.73 3.25 3.40 3.08 333 4.99
f 4 7573 8688 5.90 6.20 6.50 638 1333  4.99
i 0.8 10 1 4.75-4.60  4.09 4.43 4.76 4.46 500  6.17
! 4 81-82 8.9-90 6.29 6.45 6.94 6.95 2000 6.17
09 1.0 1 5658 64-64 584 58 646 638 1000  7.05
‘ 4 8588 9.1-9.1 6.29 6.61 7.25 7.26 400 7.05
1.0 1.0 1 6656 7.3-7.1 6.57 6.67 7.36 7.36 — 7.36
4 8791 9.0-89 6.04 6.67 7.36 7.36 — 7.36
1.0 09 1 5550 6.6-5.8 5.46 5.74 6.29 6.47 9.00  7.05
4 8791 86-88 5.62 6.60 7.24 7.25 3600  7.05
1.0 08 1 3.61-367 4.3-38 3.64 3.78 4.07 4.81 400 617
4 8082 7.8-74 5.04 6.33 6.82 6.86 1600  6.17
10 07 1 228227 213- 2.30 2.33 2.44 3.52 233 4.99
4 6877 6.8-6.1 434 5.79 6.07 6.07 9.33 4.9
10 06 1 1.49-1.47 1.50 1.50 1.53 2.74 1.50  3.87
4 48-60 4942 3.59 4.91 5.02 4.82 6.00  3.87
1.0 05 1 1.00-0.96 ' 1.00 1.00 1.00 224 .00 298
4 2941 30 2.84 3.78 3.81 3.53 400 298
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Tables 8 and 9 also contain the direct Brownian approximation, the two refinements,
the M/M/1/C approximation and the approximation in Section 6 (the last only in Table
9). Our third conclusion is that the direct Brownian approximation does remarkably well,
especially when we apply it to the dominant stream. (However, the case ¢ = 4 in Table
9 is perhaps an exception. Note that the direct Brownian approximation is better than the
D/MX/I/C exact value for c% as an approximation for ¢ and ¢% in the D/H5/1/C model
though.) The M/M/I/C refinement differs very little from the direct approximation, while
the GI/G/l/co refinement seems to produce a worse approximation. The approximation in
Section 6 is also very accurate for p not near 1, but as p — 1 the approximation in Section
6 deteriorates dramatically. :

We conclude that the direct Brownian approximations of the overflow SCVs are suffi-
ciently accurate for parametric-decomposition approximations as required for the multiclass
throttle in Berger and Whitt [1992]. For the D/M/1/C dedicated banks in the multiclass
throttle in Berger and Whitt [1992], we use the exact value of the token overflow SCV
c% and the direct Brownian approximation for the job overflow SCV c2. However, the
Brownian approximation for ¢&seems to be as good as the exact value for engineering pur-
poses. The D/M/I/C exact analysis seems most important for determining the overflow rates.

84 The Accepted Job Stream

In Section 6 we indicated that the accepted job stream should be nearly a renewal process
with ¢ =~ ¢ when p > 1, but the accepted job stream should not be nearly a renewal
process when p < 1. When p < 1, we should have ¢ ~ ¢ using the asymptotic behavior
of the arrival process, but the SCV of a stationary interval should reflect ¢ as well aS .
This analysis is substantiated by Table 10, which plots the IDI values I(1) and 7(100) for
the accepted job streams in the cases of Tables 3 and 4. For p > 1, we have I(1) = I(100)
~ c3. For p < 1, I(100) is substantially less than I(1).

Table 10. Values of the index of dispersion for intervals (IDI) for the accepted steam of jobs in the D/H}/1/C
model estimated from simulation.

C=10,8=1 C=10,c¢ =4 C=100,c =10
r A K1) 1(100) (1) 1(100) K1) 1(100)
0.5 1.0 0.37 0.0077 1.84 0.17 - 4.9 1.04
0.6 1.0 0.49 0.015 2.21 0.33 6.0 1.95
0.7 1.0 0.61 0.033 2.55 0.57 7.0 3.3
0.8 1.0 0.73 0.14 2.85 0.89 8.0 5.1
0.9 1.0 0.85 0.20 3.12 1.27 8.9 7.0
1.0 1.0 0.93 0.44 3.35 1.71 9.6 8.8
1.0 0.9 0.98 - 0.74 3.56 2.23 9.9 9.9
1.0 0.8 1.00 0.92 3.75 2.84 10.0 10.3
1.0 0.7 1.00 0.97 3.89 3.53 10.1 10.4
1.0 0.6 1.00 0.98 3.97 3.96 10.0 10.1

1.0 0.5 1.00 0.96 4.01 4.12 10.1 10.3
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85. A Refinement to the Brownian Approximation for Discreteness

In (88) we noted that the direct Brownian approximation for the mean in the M/M/l/oo
model is off by exactly 1/2. Looking at the M/M/1/C formulas in (3)-(6) and the correspond-
ing RBM formulas in (23)-(29), we see that C tends to appear in the RBM formula where
C + 1 appears in the corresponding M/M/I/C formula. It turns out that both these discrepan-
cies can be removed by introducing a refinement to account for the discreteness. In par-
ticular, motivated by continuous-distribution approximations for discrete distributions, we
suggest approximating the M/M/I/C model, by RBM with barriers at —1/2 and C + 1/2
instead of at 0 and C. We then approximate the steady-state pmf value p(k) by the integral
k+t4 p (x) dx.

f_bf course, this discreteness refinement could be applied more generally, but it obvi-
ously could make the approximate mean negative in some cases. However, at least for the
M/M/1/C model this refinement is effective. With this discreteness refinement, the approx-
imate mean for the M/M/1/ce model is shifted by 1/2, so that the error in (88) is eliminated
completely. Moreover, the distance between the two barriers for RBM is now C + 1 in-
stead of C, so that C + 1 tends to appear in the new formulas instead of C.

The improvement provided by this discreteness refinement is dramatically demonstrated
in the case p = 1. Since

1 1 1

— -

C C+1 CC+1D

there are errors of UC(C + 1) in the RBM approximations for the M/M/1/C pmf in (3)
and the overflow probabilities in (5) which are eliminated by the refinement, while the
RBM approximation for steady-state mean remains exact. The error for the overflow SCV
in (6) when p = 1 is reduced from 2/3 + /3(C + D) w0 1/3(C + 1.

We can also show that the refinement leads to improved approximations when p # 1.
Let Agpy and rgpy be the direct RBM approximations in (25) and (26); and let Aggy*
and rggy* be the refinement for discreteness with (C + 1) substituted for C. ‘

TueoreM 8.1. Consider the M/M/I/C model for which 8 = — 2(1 — p)/(1 + p).
(a) If p < 1, then
A-r : A—r AN—r
res_— - < rfpt=— < Mpgy= -
p~ €D _ q G 0C _ 1

(b) If p > 1, then

- - Y
r—A < May® = r—A < Ny = r
©+y _ S+ _ &C — 1

}\l‘

P

Proof. We only treat (a) since the argument for (b) is similar. It suffices to show that
—log p > — 0, but
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i Y
—logp=—log(l — (1 - p)) = >, L2V 95)
k=1
while
Lal2-p_ 2-p) _Sa-pf g 6)

1+p 2-(Q=p) 1o 2

From (95) and (96), we can also derive expressions for the asymptotic errors as p —
1, e.g., we obtain

—logp - (-6) =
12 8 80

We apply (95)—(97) to obtain the following resuit.

THEOREM 8.2. When p < 1, the relative error is

ro— ol —6(C+l) _ _—(C+Dlogp 2
| RBM|=3 € =(l p) +O(1"“P)3.

r’ et 12

. The asymptotic behavior in Theorem 8.2 also applies to the difference between the means
in the M/M/1/o0 and M/M/1/C models (i.e., if we omit the p/(1 — p) termin (4) whenp # 1.

9. Insights from the Brownian Overflow Rate Formula

- Even though the direct Brownian approximation for the job overflow rate in (25) is not

especially accurate when |(1 — p)C| is large, we contend that this simple Brownian for-
mula can provide important insights for system design (especially when |(1 — p)C]| is in-
deed not large). We consider the case ¢ = 0, which occurs in standard token banks. (A
similar analysis can be done for ¢Z > 0.) An application of particular interest is the polic-
ing function in ATM networks, where (25) could be used fo provide guidance in setting
parameters of the token bank to be appropriate for the service contract with the end user
and to avoid falsely marking or dropping cells. In this application, relevant values of p
are greater than 1. Equation (25) can also be used to provide insight into the marking or
dropping rates when the user violates the service contract, in which case p would be less
than 1.

Also the Brownian approximation (25) with ¢Z = 0 can be applied to finite waiting
room queunes with constant service times as in, for example, output buffers for fixed-length
ATM cells. To represent ATM cell buffers in our token bank framework we are interested

(1 - P)3 + (l - 9)4 + 11(1 - p)S + 0(1 - p)ﬁ. (97)
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for the SCVs of the overflow processes seem suitable for engineering applications, and are
being applied to analyze the multiclass throttle in Berger and Whitt {1992]. For the overflow
processes in the D/H,/1/C and D/M*/1/C token banks, we suggest using renewal-process
approximations based on the exact overflow rates computed as described in Section 5 and
the Brownian SCVs in (29).
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