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Abstract A lockup period for investment in a hedge-fund is a time period after making the
investment during which an investor cannot freely redeem his investment. Since long lockup
periods have recently been imposed, it is important to estimate the premium an investor
should expect from extended lockups. For this, Derman et al. (Wilmott J. 1(5–6):263–293,
2009) proposed a parsimonious three-state discrete-time Markov Chain (DTMC) to model
the state of a hedge fund, allowing the state to change randomly among the states “good,”
“sick” and “dead” every year. In this paper, we propose an alternative three-state absorbing
continuous-time Markov Chain (CTMC) model, which allows state changes continuously
in time instead of yearly. Allowing more dynamic state changes is more realistic, but the
CTMC model requires new techniques for parameter fitting. We employ nonlinear program-
ming to solve the new calibration equations. We show that the more realistic CTMC model
is a viable alternative to the previous DTMC model for estimating the premium for extended
hedge fund lockups.

Keywords Hedge fund · Continuous-time Markov chain · Lockup premium

1 Introduction

A lockup period for investment in a hedge-fund is a time period after making the investment
during which an investor cannot freely redeem his investment. Hedge funds often require
a lockup period in order to invest in illiquid assets (Aragon 2007). The importance of in-
vestment liquidity was highlighted by the recent financial crisis of 2007–2009 (Golts and
Kritzman 2010; Al Janabi 2013).
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In recent years, there have been long lockup periods. Boyle et al. (2010) found that in
the Hedge Fund Research database the average lockup period for funds with the lockup
condition is one year, with the durations lasting from one to four years. Ang and Bollen
(2009) also observed that typical lockup period is from one to three years. Long hedge
fund lockups has continued during the recent financial crisis. Kazemi (2010) reported that,
during the recent financial crisis, hedge funds with long lockup periods could avoid selling
their assets at distressed prices. Also, Ben-David et al. (2012) found that hedge funds with
short lockup periods are more likely to face selloffs caused by redemptions.

In an asset allocation problem, the risk of investing in a hedge fund under lockup condi-
tion requires appropriate additional returns for bearing the liquidity risk. Thus, it is important
to estimate the premium for bearing extended hedge fund lockups. Derman et al. (2009) and
Ang and Bollen (2009) applied stochastic models for the states of hedge funds to calculate
the premium for an extended hedge fund lockup. We too wish to estimate the premium from
extended hedge fund lockup. In doing so, just as Derman et al. (2009), we take the point of
view of a manager of a fund of funds, who has to choose between two investments in similar
funds in the same strategy category. Thus, we define the premium for extended hedge fund
lockup as the annual fixed rate of return that compensates the difference of expected returns
in two hedge-fund investments, with and without the extended lockup condition; see Sect. 3.
This definition accounts for the lost gains due to the inability to rebalance the investment
portfolio in hedge funds, but not for other lost investment opportunities, so this is a conserva-
tive estimate of the lockup premium. Investors can separately consider the cost of other lost
investment opportunities. We believe that the lockup premium calculated here may be help-
ful for investors to see whether the shareholder restrictions caused by the extended lockup
condition in hedge funds can be offset by the additional returns from the illiquid investment.

Since hedge funds are not required by regulatory authorities to report their returns, data
on returns of hedge funds are relatively limited, compared to data for other securities. Thus,
despite of the importance of extended hedge fund lockups, there has been limited research
on the lockup premium for hedge fund investment; see Sect. 2.

1.1 The initial discrete-time model

Derman et al. (2009) (hereafter, DPW09) proposed a parsimonious discrete-time Markov
chain (DTMC) model that can be calibrated to three observable performance measures from
hedge fund returns: (i) the persistence factor, (ii) the death rate, and (iii) the volatility (as
measured by the variance or standard deviation of annual returns). They fit the model to
hedge-fund return data from the Tremont Advisory Shareholder Services (TASS) database,
using data from 2001–2005. They then applied the fitted DTMC model to calculate the
lockup premium.

The DTMC model in DPW09 is similar in spirit to previous DTMC models used in fi-
nance, such as the DTMC model of yearly bond credit rating migration given on pp. 626–627
of Hull (2003). In bond credit rating, there are easily identified states, namely, the different
credit ratings, ranging from AAA to CCC and default. With these well-specified states, the
transition probabilities are easy to estimate from the observed proportions of changes in
historical data.

The DTMC model for hedge funds in DPW09 is less straightforward. As with bond
ratings, the DTMC was used to model the “state” of the hedge fund, but the state is not so
easy to define. However, the rules for hedge fund lockup suggest a simple framework: In
DPW09, three states were postulated: good, sick, and dead. In a good state, the fund has an
above-average return within the same strategy category of hedge funds for a given period, so
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an investor wants to keep his investment in the fund. In a sick state, the fund shows below-
average performance, so an investor in this fund would want to redeem his investment and
reinvest in another hedge fund in a good state, if allowed. In a dead state, the investor suffers
a low return due to poor performance, and the fund becomes extinct. However, in a dead
state, the lockup condition becomes invalid and the investor receives the remaining balance
from the dead fund. In a dead state, the investor can immediately invest in another fund,
which we take to be in the good state. (The model can incorporate partial redemption of the
investment from a dead fund by assigning an appropriate return value for a dead state.)

From the perspective of the lockup premium, the critical state is the sick state. There is
no extra lockup penalty associated with a good fund or a dead fund, but there is with a sick
fund. With the nominal one-year lockup, we assume that an investor will reinvest in a good
fund every year, if the current fund is not judged to be in a good state. In contrast with an
extended lockup period, the investor will not be able to reinvest when the fund is judged
to be in a sick state. The investor must keep his investment in the sick fund. Meanwhile,
the state of the sick fund will evolve in an uncertain manner. it may continue to produce
mediocre returns and be judged sick, it may get worse and “die,” or it may recover and
become a good fund. The DTMC model was used to capture the likelihood of the different
alternatives.

Of course, the state (“health”) of a hedge fund cannot be directly observed, but symptoms
are observed, notably the stream of returns. In DPW09 the state was estimated by the level of
relative returns. Two thresholds were postulated: U and L, with U > L. A fund is judged to
be in a good state if the relative returns are above U , in a sick state if the relative returns are in
the interval (L,U), and in a dead state if the relative returns fall below L. Assuming that the
three-state DTMC only can have one-step (one-year) transitions to a neighboring state, the
DTMC has three parameters; the three transition probabilities PG,S , PS,G and PS,D . Since
the true state is not observable, an indirect procedure was used to estimate the transition
probabilities. To fit the parameters in the DTMC model based on the TASS hedge fund data,
three important hedge-fund performance measures were used: the performance persistence
factor, the death rate and the standard deviation of annual returns. The transition probabilities
were determined by solving a system of equations.

DPW09 relied heavily on the persistence of hedge fund returns. A persistence level γ

means that “for every 1 percentage point earned above the average in the current year, we
expect to earn γ percentage points above the average in the next year.” We acknowledge
that the existence of persistence in hedge funds is controversial, but DPW09 found strong
evidence based on the TASS hedge fund data. The persistence was estimated in DPW09 by
doing a regression analysis on the hedge fund return data from the TASS database. They
observed non-zero persistence for eight of the eleven hedge fund strategy categories with
95 % statistical significance; see Table 1 of DPW09. (The quality of the TASS data remains
a concern, however.)

Persistence of hedge fund returns suggests that a sick fund tends to remain in a sick
state in the next time period, making the option to redeem one’s investment in such a fund
meaningful. With the persistence of hedge fund returns, the empirically observed lockup
premium, e.g. in Aragon (2007) may explain how the pricing of a sick fund in the lockup
premium calculation can be reflected empirically.

Given the fitted DTMC model, the lockup premium was then calculated as the compensa-
tion for the restricted re-balancing opportunities from a sick state fund to a good state during
the lockup period. Specifically, the calculation is done by comparing the expected return of
the same hedge fund with and without the extended lockup condition. The lockup premium
is the annual fixed rate of return that compensates the difference of expected returns in the
two hedge-fund investments, with and without the extended lockup condition.
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1.2 The proposed continuous-time model

Unfortunately, the DTMC model with yearly transitions has the limitation that the state of
a hedge fund can only change once per year. Since transition was restricted to neighboring
states, it requires at least two years for a fund to transition from good to sick and then sick to
dead. That restriction would not cause a significant problem in the DTMC model if in fact
the state of a hedge fund would only change to a neighboring state in one year. However,
in reality, the fortune of hedge funds can change much more rapidly. Many hedge funds
that made big gains before the financial crisis of 2007–2009 suddenly suffered severe losses
during the crisis. In fact, many of them have still not yet fully recovered from those losses,
even after 2–4 years (Ahmed 2011).

To incorporate a rapid transition of a hedge fund state, we might try to allow a transition
from a good state to dead state in one year in the DTMC model. Unfortunately, however the
analysis in DPW09 does not permit that extension. Simple explicit formulas in the DTMC
model would no longer hold. Furthermore, the calibration method for the DTMC model
would no longer work, because the number of parameters in the Markov chain would in-
crease without changing the number of equations to fit from data.

As a result, we are motivated to consider alternative models that allow the hedge fund
state to change continuously in time. For that purpose, in this paper we propose to model
the state of the hedge fund as an absorbing continuous-time Markov chain (CTMC) or, more
specifically, an absorbing birth-and-death process. With the CTMC model, there are again
three parameters, but now the parameters are the instantaneous transition rates to neighbor-
ing states: There are death rates μG and μS for transitioning from good to sick and from
sick to dead, respectively. And there is a birth rate λS for transitioning from sick to good.
The fund ceases to exist in a dead state, so the dead state is an absorbing state.

With the CTMC model, we still assume that the fund generates returns in discrete time.
We use discrete time because the returns are reported infrequently. We assume that the in-
vestor will be able to redeem his investment from a dead fund at these reporting times,
whenever the fund becomes dead. Thus, from the investor’s perspective, there are only two
relevant states at these reporting times: good and sick. Thus, the successive states at the
return times becomes a two-state ergodic DTMC, whose transition probabilities are deter-
mined by the transient probabilities of the CTMC. We thus need to use the transient tran-
sition probabilities of the absorbing CTMC in order to determine the one-step transition
probabilities of the ergodic DTMC. Given the ergodic DTMC, we can calculate the lockup
premium, much as before; see Sect. 3.

Allowing state changes continuously in time is more realistic and allows greater flexi-
bility in the model fitting. Even though we now allow the state of a hedge fund to change
continuously, we still want to make the model just as parsimonious as the DTMC model,
so that similar model calibration methods can be applied. In fact, the CTMC model actu-
ally uses the same three parameters as the DTMC model to calibrate the model from the
data: persistence factors, variance of returns, and the death probability. However, new cal-
ibration methods are needed. We use the same measures of hedge fund performance. Just
as in DPW09 and Derman et al. (2010), we rely heavily on the persistence of hedge fund
returns. It turns out that we can again fit the three model parameters (now the three transition
rates of the CTMC) to the persistence, the death probability and the annual return volatility.
However, the fitting becomes more complicated. We are no longer able to obtain closed-
form expressions for the parameters (the transition rates of the CTMC, as opposed to the
transition probabilities of the DTMC in DPW09). Instead, we exploit nonlinear program-
ming and an iterative algorithm to carry out the fitting. However, once this algorithm has
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been developed, we are able to fit the parameters as easily and rapidly as before. Moreover,
the flexibility provided by the CTMC allows us to fit to a wider range of parameters. For
example, with the previous DTMC model, the death rate had to be less than 0.06; with the
CTMC model, it can be as high as 0.13.

Overall, we show that the more realistic and flexible CTMC model is also a viable alter-
native to estimate the premium for extended lockup of hedge funds. The estimated lockup
premium is thus presumably more accurate. However, in our numerical experiments we
found that the computed lockup premium as a function of hedge fund performance mea-
sures does not differ greatly from the premium estimated by the DTMC model. We thus
regard this paper as confirming that the previous more rudimentary DTMC model yields
a reasonable approximation. Both highly stylized approaches seem appropriate given the
quality of the data.

The new continuous-time model and calibration methodology are important contribu-
tions themselves. First, these new methods may be useful for similar investigations in the
future. Second, these new methods may also help guide the development of more sophisti-
cated methods in the future with more refined data.

1.3 The rest of the paper

The rest of the paper is organized as follows: We start in Sect. 2 by giving a literature review.
Then in Sect. 3 we carefully define the lockup premium. The new Markov chain models are
then defined in Sect. 4. In Sect. 5 we develop our new algorithms for fitting the parameters.
We indicate how to calculate the lockup premium in Sect. 6. In Sect. 7 we perform sensitivity
analysis, showing how the model parameters and the lockup premium depend on basic hedge
fund performance measures. Finally, in Sect. 8 we draw conclusions.

2 Literature review

We will be brief in our literature review, because an extensive review was given in DPW09.
We will emphasize recent contributions since DPW09.

First, it is good to put the definition of lockup premium in perspective with the broader
literature on liquidity. Clearly, an investor under the lockup condition naturally should re-
quire compensation or additional return from his investment in hedge funds for limited re-
balancing activities during the lockup period, which we define as the lockup premium. Our
definition of the lockup premium corresponds to the liquidity premium in the asset pricing
literature; see Longstaff (1995, 2001) and Browne et al. (2003). As stated in Sect. 1 of this
paper and the above papers, the calculation of the premium can be done by comparing the
expected returns in the two investments, with and without the liquidity condition. This ap-
proach of the liquidity premium calculation is also relevant for accounting regulation (FAS
No. 157, “Fair Value Measurements”) to discount illiquidity in a portfolio (Ang and Bollen
2009).

Similar to DPW09, Ang and Bollen (2009) propose a variant of a binomial lattice model
to calculate the lockup premium as a function of the lockup period and notice period. They
estimate the premium for a two-year lockup with a three-month notice period is approxi-
mately 1 %, which is also similar to our result. However, while their model allows a time-
dependent default probability, their model assumes independence of increment returns. We
think that independent increments may not hold, especially for an illiquid investment like a
hedge fund. Our view is supported by e.g., Agarwal and Naik (2000), Edwards and Caglayan
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(2001), Koh et al. (2003), Jagannathan et al. (2010), and DPW09 who all provide support the
existence of persistence in hedge-fund returns in various ways. See, the discussion and the
references in DPW09 and Derman et al. (2010) for the details. Recent studies like Boyson
et al. (2010) which study downside correlations in hedge funds and Stoyanov et al. (2013)
which point out autocorrelation in asset returns also support our view.

There also are a few purely empirical studies, without employing stochastic models. First,
Aragon (2007) empirically compares the performance of hedge funds with and without the
one-year lockup condition. The average difference between returns of the hedge funds with
and without the lockup condition is estimated by 4 to 7 % in Aragon (2007). However,
that study does not differentiate various lockup periods in the data and regards all different
lockup periods as one year. Thus the estimated lockup premium is not a function of the
lockup period. De Roon et al. (2009) also estimate the lockup premium empirically where
an investor has a portfolio of stocks, bonds, and hedge funds. They estimate the three-month
lockup costs the investor 4.11 % annually. However, just as Aragon (2007), they did not
calculate the lockup premium for other lockup periods than three months.

3 Definition of the lockup premium

In this section, we carefully define the premium for extended hedge-fund lockups that we
will use with our new Markov chain models. Since the hedge fund returns in the database are
reported monthly at most, it is reasonable to consider a discrete process. We thus consider
a discrete-time return stochastic process B ≡ {Bi : i = 1,2,3, . . .}. Each time period i in the
process represents an updating time for the returns. We can study the model with different
updating time period Tu for updates, if we wish. For example, Tu = 0.25 implies quarterly
updating of the process B , while Tu = 0.5 represents semi-annual updating of returns. We
assume that the number of updates in a year, k ≡ 1/Tu, is always an integer, which usually
is the case in practice. While Tu = 1 in the DTMC model, 1/Tu can be any integer in the
CTMC model.

We let Bi represent a continuously compounded (random) rate of return for the ith updat-
ing period, by which we mean that eBi is the (random) value at the end of ith updating period
(i · Tu year) of one dollar invested in this investment at the beginning of (i − 1)th updating
period ((i − 1) · Tu year). (Notice that Bi depends on Tu in this definition. For example, Bi

is an annually-updated return process when Tu = 1, whereas Bi is a semi-annually updated
return process when Tu = 0.5.)

Consequently, the (random) total value at the end of n years of one dollar invested in this
investment at the beginning of the first year, Vn,Tu , is the (n · k)-fold product

Vn,Tu = e
∑n·k

i=1 Bi , (3.1)

where k is the number of updating (reporting) periods per year and n is the number of years.
We let rn be the deterministic value for which

enrn = E[Vn,Tu ] (3.2)

for Vn,Tu in (3.1); i.e., we let rn be the constant rate of return, with continuous compounding,
that yields the same expected value E[Vn] over n years. We call rn simply the rate of return
of this investment. What we have done follows common practice. We have “backed out” the
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rate of return rn from the expected cash value E[Vn]. By (3.1) and (3.2), rn can be expressed
directly as

rn = logE[Vn]
n

= 1

n
log

(
E

[
e(

∑n·k
i=1 Bi)

])
, (3.3)

where we use the natural logarithm (base e).
Now consider two different investment opportunities in hedge funds with the same strat-

egy, but one with a conventional 1-year lockup and the other with an n-year lockup con-
dition. Let B1 be the return stochastic processes with the 1-year lockup condition; let B2

be the return stochastic processes with the n-year lockup condition. Let the n-year lockup
premium pn be

pn ≡ r1
n − r2

n, (3.4)

where ri
n is the rate of return of Bi , defined as in (3.3), over an n-year horizon.

Instead of working with Bi directly, we focus on relative return rates for each fund
strategy. To do so, we let αi ≡ E[Bi], the mean return rate for a particular hedge fund strategy
within updating period of return i. This quantity is estimated by the mean of Bi over all funds
within that strategy. Then the (random) relative return rate is

Ri ≡ Bi −E[Bi] ≡ Bi − αi. (3.5)

Combining equations (3.1) and (3.5), we see that the (random) total value at the end of year
n from investor j is

V
j

n,Tu
=

n·k∏

i=1

e(αi+Ri) = e(
∑n·k

i=1 αi )e(
∑n·k

i=1 R
j
i
) (3.6)

and the difference between the expected total returns is

E
[
V 1

n,Tu

] −E
[
V 2

n,Tu

] = e(
∑n·k

i=1 αi )
(
E

[
e(

∑n·k
i=1 R1

i
)
] −E

[
e(

∑n·k
i=1 R2

i
)
])

. (3.7)

Hence, the premium in (3.4) becomes

pn ≡ r1
n,Tu

− r2
n,Tu

= 1

n

[
log

(
E

[
e(

∑n·k
i=1 R1

i
)
]) − log

(
E

[
e(

∑n·k
i=1 R2

i
)
])]

, (3.8)

which is independent of the average rates αi . We need a model that describe the behavior of
R

j

i in (3.8).

4 The new Markov chain models

In this section, we propose a model that uses an absorbing CTMC to model the evolution of
the fund state in time and an ergodic DTMC to model the state of the fund at the updating
times (when returns are reported). (Since there is a positive probability of transition from
good to sick in finite time and a positive probability of transition from sick to dead in finite
time, the absorbing CTMC would eventually end up in the dead state with probability 1
(over an infinitely long horizon), whereas the ergodic DTMC has a proper limiting steady-
state distribution.) In the CTMC model, a fund changes its state in continuous time, but
the investment updates take place in discrete time. This leads us to an ergodic DTMC for
investment update that is based on the CTMC; see Ross (2003) for background on both kinds
of Markov chains.
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4.1 The transition matrix of the absorbing CTMC

Just as in DPW09, our CTMC has three states for a hedge fund: good, sick and dead. Now
we assume that transitions among these states occur according to a CTMC, specifically a
birth-and-death process.

In the DTMC model in DPW09, a hedge fund in a good state cannot reach a dead state
until two years. In contrast, with the CTMC model, a fund can be in a dead within one year.
There is a cost, however: for the CTMC model, we are unable to fit the model parameters
simply by explicitly solving three equations in three unknowns. Instead, we develop an
algorithm to carry out the model fitting numerically. With our algorithm, the parameter
fitting for the CTMC model is not substantially harder than for the DTMC model.

In our proposed CTMC model we replace the three-state absorbing DTMC in DPW09 by
a two-state absorbing CTMC. The states now are G (Good) and S (Sick); we do not directly
use the state D (Dead) here, but we will be able to account for it. As usual, we specify the
CTMC by specifying its infinitesimal transition rate matrix Q. That means we specify the
birth and death rates. Let μG be the death rate in G, the rate of transition down to state S

from state G. Let λS be the birth rate in state S, the rate of transition up to state G from state
S. Let μS be the death rate in state S, implicitly the rate of transition down to state D from
state S. (The fund may leave state S to go to state D, but gets absorbed in D. We do not
need to include the state D in our transition rate matrix.) Here is the infinitesimal transition
matrix, with the parameters above:

Q = G

S

(−μG μG

λS −(λS + μS)

)

. (4.9)

We now want to derive the time-dependent transition probability matrix P (t) for this
CTMC. It is well-known that P (t) is the solution to the matrix ordinary differential equation

P (t)′ = P (t)Q, P (0) = I, (4.10)

where I is the identity matrix, so that P (t) is the matrix exponential P (t) = etQ. If we
diagonalize Q so that Q = UDU−1, where D is a diagonal matrix and UU−1 = I , then
we can write P (t) = UetDU−1; see Sect. 4.8 and the appendix of Karlin and Taylor (1975).
Since D is a diagonal matrix, the ith diagonal element of etD is related to the corresponding
diagonal element of D, i.e., (etD)i,i = eDi,i t for t > 0. Let Λ(t) be a diagonal matrix of the
form

Λ(t) = G

S

(
eηGt 0

0 eηS t

)

, (4.11)

with the two parameters ηG and ηS being the eigenvalues of the matrix Q, while the columns
of U are the associated right eigenvectors. The resulting formula for P (t) is

P (t) = UΛ(t)U−1. (4.12)

The characterization (4.12) implies that Pi,j (t) = Ai,j e
η1t + Bi,j e

η2t for t ≥ 0 and all state
pairs (i, j), where η1 and η2 are the eigenvalues of Q and Ai,j and Bi,j are appropriate
constants. Since P (0) = I , we necessarily have Ai,i +Bi,i = 1 for i = 1,2 and Ai,j +Bi,j =
0 for i �= j . If 0 > η1 > η2, then asymptotically Pi,j (t) ∼ Ai,j e

−η1t as t → ∞, which means
that the ratio approaches 1. As a consequence, necessarily Ai,j > 0 for all state pairs (i, j);
Bi,j = −Ai,j for i �= j .
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As usual, we find the eigenvalues of Q by finding the determinant of ηI − Q. The char-
acteristic polynomial as a function of the variable η is the quadratic equation

(η + λS + μS)(η + μG) − λSμG = 0, (4.13)

which has two strictly negative roots, as required for the formula in (4.11) to yield bonafide
probabilities. In particular, solving the quadratic equation, we obtain

η = −(λS + μS + μG) ± √
(λS + μS + μG)2 − 4μSμG

2
. (4.14)

Since the term inside the square root can be rewritten as (μG −μS)
2 +λ2

S +2μGλS +2λSμS ,
it is nonnegative. The first term clearly dominates the square root in absolute value. So we
indeed have two negative roots.

Now we find eigenvectors corresponding to the eigenvalues in (4.14). Given eigenvalues,
the eigenvectors form the null space of (Q− ηI), i.e., a matrix U such that (Q− ηI)U = 0.
We arrange eigenvalues ηG,ηS as η matrix:

η =
(

ηG

ηS

)

=
⎛

⎜
⎝

−(λS+μS+μG)−
√

(λS+μS+μG)2−4μSμG

2

−(λS+μS+μG)+
√

(λS+μS+μG)2−4μSμG

2

⎞

⎟
⎠ . (4.15)

Such an eigenvector matrix U , where the columns of U are eigenvectors of Q, can be easily
found by algebraic manipulation or by a symbolic calculation package such as Mathematica.
One such eigenvalue matrix is

U =
⎛

⎝
(λS+μS−μG)−

√
(λS+μS+μG)2−4μSμG

2λS

(λS+μS−μG)+
√

(λS+μS+μG)2−4μSμG

2λS

1 1

⎞

⎠ . (4.16)

Its inverse matrix is then

U−1 =

⎛

⎜
⎜
⎝

− λS√
(λS+μS+μG)2−4μSμG

λS+μS−μG+
√

(λS+μS+μG)2−4μSμG

2
√

(λS+μS+μG)2−4μSμG

λS√
(λS+μS+μG)2−4μSμG

−λS−μS+μG+
√

(λS+μS+μG)2−4μSμG

2
√

(λS+μS+μG)2−4μSμG

⎞

⎟
⎟
⎠ . (4.17)

Thus, we now have derived the components of P (t) in (4.12). We have derived P (t) as a
nonlinear function of μG, λS and μS from (4.15)–(4.17).

4.2 The associated ergodic DTMC

We are now ready to specify the evolution of the hedge fund at successive updating times. We
will characterize these transitions by an ergodic two-state DTMC, whose transition probabil-
ities are obtained from the time-dependent transition probabilities of the absorbing CTMC
developed above.

Since a dead fund is replaced immediately by a good fund at the updating time, we make
an ergodic two-state DTMC with transition matrix

P = G

S

(
1 − PG,S(Tu) PG,S(Tu)

1 − PS,S(Tu) PS,S(Tu)

)

. (4.18)
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We construct P in (4.18) by letting PG,S = PG,S(Tu) and PS,S = PS,S(Tu) and then mak-
ing the DTMC ergodic by letting the row sums be 1. This procedure is tantamount to in-
serting an instantaneous transition from state D to G at time Tu, which is the time of a
single transition in the DTMC. This transition probabilities are used to model the process
R

j

i in (3.8).
As usual, the steady-state vector for this DTMC is obtained by solving the equation

π = πP for a probability vector π ≡ (πG,πS). In this simple 2 × 2 case, we can give the
steady-state probability vector π explicitly as

π ≡ (πG,πS) =
(

1 − PS,S(Tu)

1 − PS,S(Tu) + PG,S(Tu)
,

PG,S(Tu)

1 − PS,S(Tu) + PG,S(Tu)

)

. (4.19)

5 Parameter fitting in the CTMC model

Just as we fit the three parameters p ≡ PG,G, q ≡ PS,G and r ≡ PS,S in the DTMC transition
matrix to performance measures estimated from the TASS data in DPW09, here instead we
fit the three parameters λS , μS , and μG in the CTMC transition rate matrix (4.9) to the three
hedge-fund performance measures.

5.1 The persistence and death fitting equations

The first performance measure for model fitting is the persistence factor of relative returns.
As indicated in the introduction, a persistence level γ means that for every 1 percentage
point earned above the average in the current year, we expect to earn γ percentage points
above the average in the next year. We define a time period Tp to measure the persistence
factor. For example, Tp = 1 implies that the persistence factor is measured with annual rel-
ative returns whereas Tp = 0.5 means that it is measured with semi-annual relative returns.
Papers on persistence of hedge-fund returns use different measurement times ranging from
one quarter to three years (see, Sect. 4 of DPW09 for the details). Thus, allowing variable
Tp could be useful if one has different views of the measurement time for persistence. The
time periods Tu and Tp can be different in our model, while they were both 1 in the DTMC
model.

We let YG, YS , and YD represent the annual relative returns that an investor makes at
each updating time from a good, sick, and dead fund, respectively. As before, we will take
these as given parameters, based on the data, but we will also discuss how to get reasonable
estimates of these values below.

We now proceed toward parameter fitting for this new model. We first define an equation
that fits observed persistence within a specific strategy. As in DPW09, we allow different
persistence factors in the states G and S. Paralleling (6.5)–(6.6) in DPW09, we obtain the
new equations

γG · YG = PG,G(Tp) · YG + PG,S(Tp) · YS + {
1 − PG,G(Tp) − PG,S(Tp)

}
YD (5.20)

and

γS · YS = PS,G(Tp) · YG + PS,S(Tp) · YS + {
1 − PS,G(Tp) − PS,S(Tp)

}
YD. (5.21)

Both sides of the equations above represent expected relative returns, starting with a good
or sick state. Both exploit the definition of persistence.
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Fig. 1 Survival probability
curves for the CTMC model with
δ = 0.03,0.06, and 0.09 with
Tu = Tp = Td = 1. The
parameters values
μG,λS,μS,YG,YS,YD , and σ

are from Table 1

Table 1 Parameter values for the CTMC model as a function of δ with YS = −0.15, YD = −0.20, σ = 0.1,
γG = γS = 0.5, Tp = Tu = Td = 1

δ μG λS μS YG YS YD σ ε

0.00 0.2133 0.4798 0.0000 0.0667 −0.15 −0.20 0.1000 2.2626 × 10−7

0.03 0.2191 0.5533 0.1250 0.0684 −0.15 −0.20 0.1000 2.8191 × 10−7

0.06 0.2262 0.7025 0.3495 0.0699 −0.15 −0.20 0.1000 3.1488 × 10−7

0.09 0.2386 1.0980 0.8726 0.0713 −0.15 −0.20 0.1000 5.3025 × 10−6

Next, paralleling Eq. (6.4) in DPW09, we also have an equation based on the probability
of the fund ceasing to exist (dying) within a specified time. Specifically, we introduce an
equation giving the probability of death within the time period Td , where Td may differ
from Tu and Tp ; i.e.,

δ ≡ δ(Td) = πG

{
1 − PG,G(Td) − PG,S(Td)

} + πS

{
1 − PS,G(Td) − PS,S(Td)

}
. (5.22)

Notice that the new model is more flexible because the three times Tu,Tp , and Td can be
different.

With Eq. (5.22), we can derive the survival probability from the CTMC model, which
is closely related to the death probability. At time t , the survival probability of a fund is
defined as

S(t) = PG,G(t) + PG,S(t) for t ≥ 0. (5.23)

Figure 1 displays the survival probabilities for the CTMC model with δ = 0.03,0.06 and
0.09 (and other parameter values from Table 1). The survival probability for δ = 0.09 is
possible only in the CTMC model, since for the DTMC model, r becomes negative when
δ ≈ 0.07. As we see from Fig. 1, median fund life is less than 10 years for δ = 0.09. Since
this median hedge fund life is within the range of Rouah (2006) and Park (2007), it should
be worth considering δ = 0.09. We could not do this before in DPW09.
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5.2 Solving the Three Equations in Three Unknowns

We now show how to solve the three equations (5.20), (5.21) and (5.22) for the three un-
knowns μG, μS and λS . Unfortunately, we have been unable to obtain explicit solutions
for the desired parameters as we did in DPW09. Hence, we develop an effective numerical
algorithm.

Suppose that we start with a candidate initial parameter triple (μG,λS,μS). Given that
parameter triple and the specified time t , we calculate the transition probabilities PG,G(t),
PG,S(t), PS,G(t), and PS,S(t) in (4.12)–(4.14) by calculating the eigenvalues and eigenvec-
tors of the infinitesimal matrix Q in (4.9). Afterwards we calculate the steady-state prob-
ability vector π ≡ (πG,πS) in (4.19) of the two-state DTMC in (4.18). We then calculate
the right-hand sides of the three equations (5.20)–(5.22). Our goal is to have three bonafide
equations, where the two sides of the equations are equal, but in the iteration we will not
achieve that. Based on the errors we see, we update the parameter triple (μG,λS,μS) and
repeat until the errors in the three equations (5.20)–(5.22) are negligible. Notice that Tu,Tu,
and Tp are all constant so they do not add any complexity to the system of equations.

Since we are confronted with a three-dimensional iteration, we do not want to proceed in
a haphazard way. Hence, we apply nonlinear programming to do this iteration. The idea is to
find parameter triple (λS , μS , μG) minimizing errors between the right-hand and left-hand
sides of Eqs. (5.20), (5.21) and (5.22). To formulate a minimization problem, we define
three error functions ε1, ε2 and ε3 as a function of parameter triple (λS,μS,μG) as fol-
lows:

ε1 ≡ ε1(λS,μS,μG) = δ(Tu) − πG

{
1 − PG,G(Td) − PG,S(Td)

}

− πS

{
1 − PS,G(Td) − PS,S(Td)

}
,

ε2 ≡ ε2(λS,μS,μG) = γG · YG − PG,G(Tp) · YG − PG,S(Tp) · YS

− {
1 − PG,G(Tp) − PG,S(Tp)

}
YD,

ε3 ≡ ε3(λS,μS,μG) = γS · YS − PS,G(Tp) · YG − PS,S(Tp) · YS

− {
1 − PS,G(Tp) − PS,S(Tp)

}
YD.

(5.24)

Our objective, then, is to find λS , μS and μG such that ε1(λS,μS,μG) = ε2(λS,μS,μG) =
ε3(λS,μS,μG) = 0. To obtain values of ε1, ε2, and ε3 for a given parameter triple of λS , μS

and μG, we have to calculate PG,G(T ),PG,S(T ),PS,G(T ), which are elements of P (t) ma-
trix in (4.12). As indicated above, this involves finding eigenvalues and eigenvectors of Q
matrix in (4.9). From (4.14), we derived eigenvalues as a function of λS , μS and μG. Given
the eigenvalues, the eigenvectors can be calculated as in (4.16), but also in other ways. Since
Q is only a 2 × 2 matrix, calculation of the eigenvectors for given eigenvalues can be done
easily. One way is to use the Schur decomposition algorithm, as in Anderson et al. (1999),
which is implemented in MATLAB as the eig function. Then Λ(t) can be calculated easily
from (4.11), so we can easily compute the U and Λ matrices numerically. The final step is
to compute PG,G(t), PG,S(t) and PS,G(t) from P (t) = UΛ(t)U−1.

We can obtain the desired parameter triple (λS,μS,μG) by solving the following con-
strained minimization problem:



Ann Oper Res (2013) 211:357–379 369

min
λS ,μS ,μG

max
{|ε1|, |ε2|, |ε3|

}

s.t.

ε1 = δ(Tu) − πG

(
1 − PG,G(Tu) − PG,S(Tu)

) − πS

{
1 − PS,G(Tu) − PS,S(Tu)

}
,

ε2 = γG · YG − PG,G(Tp) · YG − PG,S(Tp) · YS − {
1 − PG,G(Tp) − PG,S(Tp)

}
YD,

ε3 = γS · YS − PS,G(Tp) · YG − PS,S(Tp) · YS − {
1 − PS,G(Tp) − PS,S(Tp)

}
YD

λS,μS,μG ≥ 0
(5.25)

With (5.25), we regard λS , μS and μG as the variables. Since the transition probabilities
PG,G(t), PG,S(t) and PS,G(t) are functions of the BD rates λS , μS and μG through the
eigenvalue and eigenvector calculation, we must regard (5.25) as a nonlinear programming
(NLP) problem, for which it is natural to apply an iterative procedure. However, since we
only have three variables, we are able to solve the NLP (5.25) easily. One effective way is
to use Sequential Quadratic Programming (SQP), as in Schittkowski (1986). With SQP, at
each iteration, an approximation is made of the Hessian of the Lagrangian function using
a quasi-Newton updating method. That is then used to generate a QP subproblem whose
solution is used to form a search direction for a line search procedure. This algorithm is
implemented in MATLAB via the functions fminsearch and fmincon. Both functions solve
(5.25) within seconds.

5.3 The variance and the return of a good fund

So far, we have assumed that the three returns YG, YS and YD in the three states can be
specified in advance. We can specify one of these, which we take to be YG, by exploiting an
equation for the variance of the relative annual returns in steady state. Since we are focusing
on the relative returns, the variance σ 2 coincides with the second moment.

To express the steady state variance σ 2, we need the steady-state probabilities. Given that
πG and πS are the stationary probabilities for the transition matrix in (4.18), the stationary
probability that the fund dies at the end of Tu years when it starts alive is

π ′
D = πG

[−PG,G(Tu) − PG,S(Tu)
] + πS

[
1 − PS,G(Tu) − PS,S(Tu)

]
(5.26)

We then also define π ′
G and π ′

S accordingly, using (4.19):

π ′
G = πG · PG,G(Tu) + πS · PS,G(Tu)

π ′
S = πG · PG,S(Tu) + πS · PS,S(Tu)

(5.27)

where (πG,πS) is defined in (4.19).
We obtain an expression for the steady-state variance of returns by supposing that the

returns in good, sick and dead states are the deterministic values YG, YS and YD , respectively.
Thus, the variance satisfies the equation

σ 2 = π ′
G · Y 2

G + π ′
S · Y 2

S + π ′
D · Y 2

D, (5.28)

where π ′ is defined in (5.26) and (5.27).
We applied Eq. (5.28) to determine YG for given YS ≡ −1.5σ and YD ≡ −2.0σ , just

as DPW09. To do so, we simply iterate on the two parameters YG and σ 2, using a simple
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bisection search. As in Fig. 7 of DPW09, we found that there is a nearly linear positive
relation between YG and σ 2 for given YS and YD . Thus, we are able to easily achieve any
desired σ , such as σ ≈ 0.1, by iterating YG.

While we can use judgment to specify the values of YS and YD to use as the returns in the
sick and dead states, we can also define these relative returns by exploiting two thresholds
U and L, as in DPW09. We can classify the fund as good, sick or dead if the relative return
falls in the interval [U,∞), (L,U) or (−∞,L], respectively. With this classification, we
can let YS and YD be the average returns in the sick and dead intervals. The fitting algorithm
then provides an estimate of the parameters μG, μS , λS and YG as a function of the time
parameters Tp , Tu and Td , the persistence parameters γG and γS , the death parameter δ and
the relative return parameters YS and YD . As we will illustrate, this provides an opportunity
to do sensitivity analysis.

5.4 Application of the algorithm

Below are parameter values obtained using the NLP in (5.25) and iterating YG values. In
Table 1, ε records the maximum absolute value of errors in Eqs. (5.20), (5.21) and (5.22),
obtained where we elected to terminate the algorithm. We let Tp = Tu = 1 for simplicity but
these may have any values, depending on the time measure from the data.

Unlike the DTMC model, where the parameter r becomes negative if δ exceeds 0.07 for
the base-case parameter values, for the CTMC we can fit the model to δ up to around 0.13.
When δ ≈ 0.13, we observe that the CTMC lockup premium becomes nearly 0.

6 The lockup premium calculation

Once we have fit all the parameters, we can calculate the lockup premium. Denote the initial
state of a fund by S0. For a benchmark case (no extended lockup), at the end of each updating
time (Tu), investor can redeem his money from sick fund and reinvest the money in the good
fund. Thus all funds start with a good state in each time period. In this case, the fund’s
annual return up to n year is

E
[
e

∑n·k
i=1 R1

i |S0 = G
] = [

P (Tu)G,G · eYG + P (Tu)G,S · eYS + P (Tu)G,D · eYD
]n·k

. (6.29)

Now we consider a fund in n-year lockup case. The fund’s expected return up to n year
if the fund is under n-year lockup is

E
[
e

∑n·k
i=1 R2

i |S0 = G
]
. (6.30)

Unlike (6.29), calculation of (6.30) is not immediate, but it can be done by a recursion.
Recall that the transition probability in the CTMC model, P (t), is obtained in (4.18). Define

m(t, s) ≡ E
[
e

∑t
i=1 R2

i |S0 = G,St = s
] · P (t)G,s, (6.31)

where P (t) defined in (4.12) represents the probability of reaching St from G at time t .
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Conditioning on the state of a fund at time t , (6.31) is obtained from the following recur-
sion formulas:

m(t,G) = P (Tu)G,G · eYG · m(t − 1,G) + P (Tu)S,G · eYG · m(t − 1, S)

m(t, S) = P (Tu)G,S · eYS · m(t − 1,G) + P (Tu)S,S · eYS · m(t − 1, S) and

m(t,D) = (
1 − P (Tu)G,G − P (Tu)G,S

)
eYD · m(t − 1,G)

+ (
1 − P (Tu)S,G − P (Tu)S,S

)
eYD · m(t − 1, S),

(6.32)

where m(1,G) = P (Tu)G,G · eYG , m(1, S) = P (Tu)G,S · eYS and m(1,D) = (1−P (Tu)G,G −
P (Tu)G,S)e

YD . Notice that, if a fund becomes dead before year n, it starts with a good state.
Furthermore, the new good fund is now under 1-year lockup instead of n-year. Because of
this, care must be taken for a sample path once a fund becomes dead. We finally have

E
[
e

∑n·k
i=1 R2

i |S0 = G
] = m(n · k,G) + m(n · k,S)

+
n·k∑

t=1

m(t,D)
(
P (Tu)G,GeYG + P (Tu)G,Se

YS
)n·k−t

. (6.33)

Finally, the premium is calculated from (3.8) given that S0 = G.

7 Sensitivity analysis for the new Markov chain model

In this section we do sensitivity analysis on the three performance measures, γ (γG, γS), δ

and σ , respectively. We also analyze the impact of time periods used to estimate the per-
formance measures, i.e., the updating time (Tu), the time used to compute the persistence
factor (Tp), and the time period for computing the probability of death (Td ) on the lockup
premium.

7.1 How the lockup premium depends on three performance measures

We first study how much the lockup premium depends on the death probability δ. Then,
we see how much the premium depends on the model parameters γ (γG,γS ) and σ . When
changing one performance measure in the sensitivity analysis, we fix all other measures just
as the benchmark case with δ = 0.03 in Table 1.

Table 1 shows the model parameters for δ = 0,0.03,0.06, and 0.09 and Fig. 2 shows the
lockup premium for different δ values. The figures show that as the death probability δ in-
creases, the n-year lockup premium decreases. Notice that the CTMC model can incorporate
the probability of death being 0.09 which is not possible in the DTMC model.

Table 2 shows the model parameters for γ = 0.4,0.5, and 0.6 and Fig. 3(a) shows the
lockup premium for γ = 0.4,0.5, and 0.6. We observe that as the persistence factor γ in-
creases, the n-year lockup premium increases.

We next consider two separate persistence factors, γG and γS . The parameter values are
given in Table 3 and the sensitivity of the lockup premium with respect to γG and γS is
shown in Fig. 3(b). As γG increases and γS decreases, the fund in the state G tends to be
in the same state while the fund in the S state tends to be in other states than the state S in
the next time period. Since there is less chance of being in the state S, it is observed that the
lockup premium decreases.
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Fig. 2 The lockup premium for
the CTMC model (a) and for the
DTMC model (b) for
δ = 0,0.03,0.06, and 0.09. The
parameter values come from
Table 2. Panel (b) is re-reported
from DPW09 for easy
comparison

Table 2 Parameter value sets for
γ ranging from 0.3 to 0.6 γ δ μG λS μS YG YS YD

0.3 0.03 0.3750 0.9646 0.1184 0.0659 −0.15 −0.20

0.4 0.03 0.2868 0.7315 0.1210 0.0670 −0.15 −0.20

0.5 0.03 0.2204 0.5531 0.1240 0.0690 −0.15 −0.20

0.6 0.03 0.1642 0.4142 0.1317 0.0704 −0.15 −0.20

We lastly check the sensitivity of the lockup premium with respect to σ . Our TASS
database analysis estimates σ of annual returns for each year is lower than 0.20 in most
cases. We here highlight the sensitivity of the lockup premium for σ = 0.05,0.10, and 0.15
with γ = 0.5. Table 4 provides the parameter value sets and Fig. 4 shows the corresponding
lockup premiums. We see that the premium increases in σ .
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Table 3 Parameter value sets for
γG and γS

γG γS δ μG λS μS YG YS YD

0.4 0.6 0.03 0.2238 0.4430 0.1041 0.0585 −0.15 −0.20

0.5 0.5 0.03 0.2204 0.5531 0.1240 0.0690 −0.15 −0.20

0.6 0.4 0.03 0.1962 0.6807 0.1612 0.0768 −0.15 −0.20

Fig. 3 The lockup premium for
the CTMC model (a) for
γ = 0.3,0.4,0.5 and 0.6 for
other parameter values in Table 2
and (b) for γG �= γS for other
parameter values in Table 3

7.2 How the lockup premium depends on the three time periods

Calibration of the CTMC model is flexible, allowing the three key performance measures
to be estimated with different time periods. Since the three measures can be estimated inde-
pendently, allowing different time period for each measure could be helpful to an investor
who has different views in these estimation time periods. In this section, we investigate how
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Table 4 Parameter value sets for σ = 0.05,0.10,0.15

σ δ μG λS μS YG YS = −1.5σ YD = −2.0σ

0.05 0.03 0.8434 0.3721 0.5025 0.0342 −0.075 −0.10

0.10 0.03 0.8434 0.3721 0.5025 0.0684 −0.150 −0.20

0.15 0.03 0.8434 0.3721 0.5025 0.1026 −0.225 −0.30

Fig. 4 The lockup premium for
the CTMC model for
σ = 0.05,0.10, and 0.15. The
parameter values come from
Table 4

the lockup premium in the CTMC model depends on the three measurement times Tu,Tp ,
and Td .

We first study how much the lockup premium depends on the updating period Tu. As
Tu decreases, an investor can rebalance his portfolio of hedge funds more frequently. For a
fixed lockup period, as Tu decreases, the investor has more updating frequencies in a year,
which is restricted by the lockup condition. Thus if all the other parameter values are the
same, the lockup premium may increase as Tu decreases. However, at the same time, the
investor more frequently rebalances a fund in the state D with a fund in the state G, which
may decrease the lockup premium. In Fig. 5, we numerically calculate the lockup premium
up to six years for Tu = 0.25,0.5, and 1 year. The parameter values are shown in Table 5.
In order to compare the lockup premium for different Tu, we adjust annual relative return
rates under good, sick, and dead states from ith to (i + 1)th updating time by multiplying
Tu, i.e., TuYG, TuYS , and TuYD . We then fit such parameters to the standard deviation of
return for Tu, i.e., σ

√
Tu. Figure 5 shows that as the rebalance period increases, the lockup

premium decreases. Thus it can be said that the investor requires more compensation for the
lockup condition when there are more rebalancing opportunities that are missed because of
the lockup period.

We also investigate the impact of Tp on the lockup premium. As Tp decreases, the per-
sistence factor is observed in a shorter period. If the persistence factors are the same for
different Tp , the impact of the persistence factor becomes higher with shorter Tp than with
the longer one. Figure 6 shows that the lockup premium is increasing as Tp decreases, if γ

remains the same for each Tp . Table 6 shows the parameter values.
Lastly, we investigate how the lockup premium depends on Td . If the death probability δ

is the same for different Td , the annual death probability with smaller Td tends to produce
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Table 5 Parameter value sets for Tu = 0.25,0.5, and 1

Tu μG λS μS YG YS ≡ −1.5Tuσ
√

Tu YD ≡ −2.0Tuσ
√

Tu σ
√

Tu

0.25 0.5900 0.1084 0.0376 0.1068 −0.038 −0.05 0.0500

0.5 0.4358 0.2758 0.0531 0.0893 −0.075 −0.10 0.0708

1 0.2191 0.5533 0.1250 0.0684 −0.150 −0.20 0.1000

Fig. 5 The lockup premium for
the CTMC model for
Tu = 0.25,0.5 and 1 years. The
parameter values come from
Table 5

more funds in state D for given time period. Figure 7 shows that the lockup premium is
increasing as Td increases. Table 7 shows the parameter values.

7.3 Comparison of the CTMC and the DTMC models

In this section, we compare the lockup premium in the CTMC model (Fig. 2) to the one in
the DTMC model (Fig. 8(a) of DPW09).

First, we observe that the lockup premiums in the DTMC model and the CTMC model
have similar values. However, we also observe that the lockup premium in the CTMC model
is slightly larger than for the DTMC model under the same performance measures and
lockup period.

We compare the transition probabilities in the DTMC and CTMC models under the same
performance measures and measurement times (benchmark case) in order to understand this
difference. We see that the transition probabilities from the state G to G in both models
are almost the same (0.850 in the DTMC model, 0.846 in the CTMC model) and so are the
transition probabilities from G to S. The probabilities from S to G are also similar (0.358
in the DTMC model and 0.365 in the CTMC model). However, the difference in transition
probabilities from S to S (0.493 in the DTMC model and 0.543 in the CTMC model) is
relatively bigger than the differences in other probabilities. Thus, a fund in the state S is
more likely to stay in S in the next time period in the CTMC model than in the DTMC
model, which makes the lockup premium slightly bigger in the CTMC model.

The transition probability from the state S to the state D in the DTMC model (0.132) is
bigger than that (0.092) in the CTMC model. Recall that once a fund becomes dead in the
state D, the lockup condition is not valid any more and the fund is replaced with a fund in
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Table 6 Parameter value sets for Tp = 0.25,0.5, and 1

Tp μG λS μS YG YS ≡ −1.5Tuσ YD ≡ −2.0Tuσ

0.25 0.8163 2.0287 0.1103 0.0156 −0.15 −0.20

0.5 0.4182 1.0431 0.1148 0.0322 −0.15 −0.20

1 0.2191 0.5533 0.1250 0.0667 −0.15 −0.20

Fig. 6 The lockup premium for
the CTMC model for
Tp = 0.25,0.5 and 1 years. The
parameter values come from
Table 6

Table 7 Parameter value sets for Td = 0.25,0.5, and 1

Td μG λS μS YG YS ≡ −1.5Tuσ YD ≡ −2.0Tuσ

0.25 0.2744 3.5967 3.3273 0.0726 −0.15 −0.20

0.5 0.2262 0.7022 0.3491 0.0699 −0.15 −0.20

1 0.2191 0.5533 0.1250 0.0684 −0.15 −0.20

Fig. 7 The lockup premium for
the CTMC model for
Td = 0.25,0.5 and 1 years. The
parameter values come from
Table 7
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the state G, decreasing the lockup premium. This can also increase the lockup premium in
the CTMC model.

Comparing the three equations (5.20)–(5.22) that are used to parameter fitting in the
CTMC model to (6.4)–(6.6) in DPW09 in the DTMC model, we see that the difference is
additional terms in (5.20) and (5.22) that incorporate the transition from G to D in one
time period. As a result of these additional terms, the transition probability from S to S is
larger and the transition probability from S to D is smaller in the CTMC model than in the
DTMC model. We thus conclude that the lockup premium in the CTMC model increases
slightly by allowing the transition from G to D in one year, which is caused by allowing the
transition from the state G to the state D within one time period. We, however, observe that
the difference of the lockup premium in the DTMC model and in the CTMC model can be
as high as one percentage point (e.g. four-year lockup premium with δ = 0.03) and can be
even higher than one percentage point for the premium for five-year lockup or longer.

8 Conclusion

In this paper, we have developed new Markov chain models to calculate the premium from
extended hedge-fund lockups. As in our previous paper DPW09, we use a highly stylized
three-state model to represent the state of a hedge fund, using the states “good,” “sick” and
“dead.” Since investors can redeem their investment (or part of it) and reinvest if the fund
dies, the important state for extended hedge fund lockup is the sick state.

We define the lockup premium as a compensation to the investor for the opportunity cost
of restricted re-balancing activities; see Sect. 3. In order to calculate the lockup premium,
we compare two identical hedge funds with and without extended lockups. The premium is
the fixed annual rate of return that makes the expected returns of the two funds the same.

The new CTMC model for the state of a hedge fund allows the fund state to change
continuously in time. The previous DTMC model in DPW09 required transitions from good
to dead to take at least two years. With the new CTMC model, that restriction is removed.
The CTMC model also provides increased flexibility in modeling and performance-measure
estimation. First, the CTMC model allows flexible performance measure estimation, e.g.,
semi-annually or quarterly from the data. Second, the CTMC model allows wider ranges of
acceptable performance measures than the DTMC model does.

In Sect. 4 we gave an explicit representation of the ergodic two-state DTMC model based
on the three CTMC model parameters μG, μS and λS . In order to calibrate these three
parameters, in Sect. 5 we developed a nonlinear programming algorithm, which can be easily
solved numerically with MATLAB. In order to calibrate the standard deviation of returns, σ ,
we used an efficient iterative search algorithm. Thus we succeeded in developing an efficient
algorithm to carry out the model fitting. The model fitting yields the parameters μG, μS , λS

and YG plus the premium for extended lockup as a function of the time parameters Tp ,
Tu and Td , the persistence parameters γG and γS , the death parameter δ and the relative
return parameters YS and YD , where the parameters γG, γS , δ, YS and YD can be estimated
from historical data, as we illustrated by applying the TASS data. We then can compute the
premium for extended lockup as a function of the number n of years of extended lockup and
again the time parameters Tp , Tu and Td , the persistence parameters γG and γS , the death
parameter δ and the relative return parameters YS and YD .

We then conducted sensitivity analysis to show how the premium for extended lockup
depends on the variables. The sensitivity analysis quantifies how the lockup premium in-
creases as a function of the persistence factor γ and the standard deviation σ , but decreases
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as a function of the death probability δ. We also have examined how the lockup premium
depends on different values of measurement times, Tu, Tp and Td . We conclude that the im-
pact of three performance measures—δ, γ and σ—have a significant impact on the lockup
premium just as we saw for the DTMC models in DPW09. Also, we conclude that while the
impact of Tp are relatively smaller on the lockup premium, the impact of Tu and Td can be
significant.

The numerical values of the lockup premium with the new Markov chain models are very
similar to those for the previous DTMC model. We thus conclude that the more rudimentary
DTMC model does not suffer greatly from its restriction to yearly updating. A slight increase
in the lockup premium in the new model can be caused by allowing the transition from good
to sick within one year. However, the difference of the lockup premium in the DTMC model
and in the CTMC model can be as high as one percentage point or even higher than that (e.g.
for four-year lockup premium with δ = 0.03), which can significantly change investment
decision in practice.

Our approach in this paper may also be useful to study the appropriate premium for an
extended lockup in other investment opportunities, provided that they have the good-sick-
dead structure treated here. For example, the methods here may be useful to study private
equity funds, where limited partners are expected to maintain their interest in the fund until
it is unwound, typically over a ten-year life. The papers by Wu and Olson (2010a, 2010b)
suggest that there may possibly be applications more broadly in enterprise risk management,
where vendor selection may be binding for a long period. As a topic for future research,
it may be interesting to adjust our model to incorporate regime-switching models based
on continuous-time Markov chain to capture volatile state transitions; see Wahab and Lee
(2011), Aigner et al. (2012) and the references therein for regime-switching models.
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