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This paper establishes functional central limit theorems describing the heavy-traffic beha- 
vior of open single-class queueing networks with service interruptions. In particular, each sta- 
tion has a single server which is alternatively up and down. There are two treatments of the up 
and down times. The first treatment corresponds to fixed up and down times and leads to a 
reflected Brownian motion, just as when there are no service interruptions, but with different 
parameters. To represent long rare interruptions, the second treatment has growing up and 
down times with the up and down times being of order n and n 1/2, respectively, when the traffic 
intensities are of order 1 - n -1/2. In this case we establish convergence in the Skorohod M1 
topology to a multidimensional reflection of multidimensional Brownian motion plus a multi- 
dimensional jump process. 
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1. Introduct ion 

In this paper  we establish heavy-traffic limit theorems for open single-class 
queueing networks  with service interruptions. In addit ion to an unlimited waiting 
space and the first-come first-served service discipline, each station has a single ser- 
ver which is alternatively up and down. When  a station is down, service stops bu t  
arrivals continue; when a station comes up, service resumes where it left off. We 
allow the availability o f  these servers to depend on the basic arrival, service and 
rout ing variables; see section 3 for more  details. In particular, we only require that  
a jo int  functional central limit theorem (FCLT)  hold for all the basic processes. 
However ,  the easiest way  to obtain such a joint  F C L T  is to have all the componen t  
processes be independent,  invoking theorem 3.2 of  Billingsley [2]; then the avail- 
ability of  the servers (i.e., the environment  for the model)  must  evolve indepen- 
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dently of the basic arrival, service and routing variables, so that the principal case 
considered is of exogenous (independent) service interruptions. 

By considering service interruptions, this paper extends previous work on 
heavy-traffic limit theorems for open queueing networks in Reiman [25], Johnson 
[21] and Chert and Mandelbaum [6]; see also Coffman and Reiman [8], Harrison 
and Williams [ 19] and Harrison [ 16]. 

We actually consider two different treatments of the service interruptions. The 
standard treatment, presented in section 5, is based on fixed up and down times, 
which leads to a long-run proportion of up time vy at each stationj with 0 < vj < 1 

and a FCLT for the cumulative up time at each station after translation. In this case 
we obtain a limiting reflected Brownian motion (RBM) just as without disruptions 
(theorem 5.2). The service interruptions lead to different parameters for this 
RBM. Our heavy-traffic limit in this case extends results for a single station in 
Fischer [12], Burman [3] and Asmussen [1]. (Burman [3] also establishes a light-traf- 
fic limit and proposes an interpolation approximation.) 

The second treatment allows the up and down times to become longer as the sys- 
tem enters heavy traffic. In particular, we make the traffic intensities in the nth sys- 
tem of order 1 - n -1/2. Then we let the up times be of order n and the down times 
be of order x/n. Asymptotically, the long-run proportion of time each station is up 
is 1, but nevertheless the down times have a significant impact. In particular, the 
limit process is a multidimensional reflection of a multidimensional Brownian 
motion plus a jump process (theorem 4.1). The two different limits dramatically 
show the difference between long rare interruptions and more frequent shorter 
interruptions. 

Our results for long up and down times in section 4 constitute network general- 
izations of corresponding results for a single station in section 3 of Kella and Whitt 
[22]; see [22] for further discussion. As in [22], a significant feature of the analysis 
here is the use of the Skorohod [26] M1 topology on the function space D with time 
domain (0, oo) instead of the standard J1 topology from [26] (which is used in Bill- 
ingsley [2]) on the function space D with time domain [0, oo). In section 2, after 
defining the reflection map and the M1 topology, we show that the fundamental 
oblique reflection map defined in Harrison and Reiman [17] and Reiman [25] is 
Lipschitz in the J1 and M1 topologies on D. 

2. Preliminaries 

In this section we discuss the oblique reflection map and the Skorohod [26] M1 
topology on D. Here we consider the space D([0, T], ]Rn). We will later state results 
for D((O, oo),~n). A sufficient condition for x,---~x in D((0, oo),]R n) is to have 
Xn "-* x in D([a, b], ]R") for the restrictions to [a, b] for all a and b with 0 < a < b < c~; 
see section 2 of Whitt [30]. Elements ofl~" are understood to be column vectors. 
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The reflection map 
We use the reflection map introduced by Harrison and Reiman [17] for continu- 

ous functions and extended to D by Reiman [25]; see also Chen and Mandelbaum 
[4-6] and Mandelbaum [23]. Let the transpose Qt of Q be a substochastic matrix 
(nonnegative with row sums less than or equal to 1) such that Qk--~0 as k---~ c~. 
(For the main results, it actually suffices for Q to be nonnegative with spectral 
radius less than 1. However, propositions 2.2. and 2.3 below do exploit the substo- 
chastic structure. With Markovian routing, Qt corresponds to the routing 
matrix.) 

The reflection map 

(~, r  D([0, T],]Rel) ~ D([0, T],]R 2n) 

associated with Q maps x into a unique (y, z) = (~(x), r such that 

z =  x +  ( I -  Q)y>~O. (2.1) 

and 

yj is nondecreasing with yj(0) = 0, 1 ~<j ~< J ,  (2.2) 

o~176 =O, l <~j<~J. (2.3) 

Condition (2.3) means that yj increases only at times t ~> 0 when zj (t) = 0, 1 ~ j  ~< n. 
As noted by Harrison and Reiman [17], (2.1)-(2.3) is equivalent to (2.1)-(2.2) 

plus 

y =  rex(y)-  ( Q y -  x) T v 0 ,  (2.4) 

where (xV0)  = (Xl V0, . . . ,xelV0)t ,  xl V0 = max{xl,0},x T = (x~,...,xTn) t and 
x~ (t) = sup0,<s,< t Xl (s), t i> 0. (Their arguments remains valid for x ~ D.) 

Harrison and Reiman [17] proved that the reflection map is well defined and con- 
tinuous on C. Johnson [21], p. 67, observed that their argument extends to D with 
the uniform topology. As noted by Chen and Mandelbaum [4], a minor extension 
of the Harrison-Reiman arguments shows that the reflection map is actually 
Lipschitz on D([0, T], 11~ n) with the uniform topology. This in turn implies that the 
reflection map is Lipschitz in the Skorohod [26] J1 and M1 topologies, as we shall 
show below. This extends the elementary one-dimensional Lipschitz result on p. 62 
of Whitt  [27] and section 6 of Whitt [30]. For further discussion of the Lipschitz 
property of reflection maps, see Dupuis and Ishii [9]. 

To be complete and to provide explicit Lipschitz bounds, we provide additional 
details. For celR n, let [c[ - [(cl , . . . ,  eel)t[ : (Ic11,..., Icell)' and let Ilcll = ~ ;=1  Icjl. 
For any n x n matrix P, let 

n 

Ilell = max ~ Ie01. (2.5) 
i=1 
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(Note that Ilele211 ~ I le l l l  liP211 and Ilecll ~ I le l l  Ilcll with these definitions.)For 
a n y x e D ,  let Ixl be {Ix(t)[ : 0~<t<~ T},i.e., Ixl = ( Ix l l , . . . ,  Ix, I)', andlet 

n 

Ilxll= sup IIx(t)ll = sup Y~lxj(t)l .  (2.6) 
O<~t<~T O<~t<~T j= 1 

Let Q* = A -1QA where A is diagonal and II Q*ll = ~ < 1. (Existence is noted by 
Harrison and Reiman [17].) Here is the minor extension; it is a consequence of the 
proof in Harrison and Reiman [17]. 

PROPOSITION 2.1 
For any Xl, x2 inD, 

II~(xl) - ~'(x2)l] ~ 

and 

limb(x1) - q~(Xl)[[ ~ (1 + 

HAIIII-1,, [IX1 _ x211 (2.7) IIAII" 
1--oL 

III - QII i -~IIAll" II A-a II) IIx~ - xzll. (2.8) 

Proof  
From Harrison and Reiman [17], 

g/Q,(Ax) = MUQ(X), 

so that 

[[~Q(Xl) - ~Q(X2)[[ = [[A-1A~Q(Xl) - A-1A~Q(X2)[[ 

= [[A-I~Q,(Axl)- A-I~UQ.(Ax2)[I 
~< IIA-111 �9 []~UQ,(Axx) - ~uo.(Zx2)ll 

< IIA_III. [lAx1 - Axzll 
1 - a  

~< ]lxx - x211. IIAII- IIA-111 �9 
1 - - a  

For (2.8), use Ilxl + x211 ~ [Ix1 II + IIx211 �9 [] 

Note that [JAil is the maximal entry of the diagonal matrix A. Hence, 
IlZll �9 II A-ill can be quite large in the bound of proposition 2.1. A different bound 
can be obtained by exploiting the fact that II Q" II -- 7 < 1 because the transpose of Q 
is stochastic. Let ~ be the k-fold iteration of the operator 7rx defined in (2.4). We 
first show that 7rx is an n-stage contraction operator with respect to Q. This proves 
that there is a unique ~u(x) associated with each x. We use proposition 2.2 to estab- 
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lish the convergence ~x(0) --~ ~u(x) as k--~ oo for each x and thus the bounds below 
in proposition 2.3. 

P R O P O S I T I O N  2.2 

Let7  = II a~ll. For anyyl,Y2 ~D, 

II~(yl) - 7r~x(Y2)[[ ~< [[Qklyl - y2lll ~<[[Yl -- Y211 for all k~> 1 

and 

[[~x(Yl) - ~x(y2)ll ~0'[[Yl - YEll for k>~n, 

so that 7r~(yl) --~ ~'(x) as k---* oo. 

P r o o f  
We proceed by induction to establish the first inequality (the second being ele- 

mentary).  First, 

II~(y~)- 7rx(y2)l[ = [ [ ( Q y l -  x )  T v 0 -  ( Q y 2 -  x )  ? v 011 

~< II(Qy~ - x)T _ (Qy2 - x)Tll 

~< II(Qyl - x )  - (Qy2  - x)ll--IIQy~ - Qy2II 

~< [IQIyl - Y21 [l- 

Now suppose that the relation has been established up to k. Then 

II~x § -- ~§ = I I (a~(y l )  - x) T v 0 - (a~x(y2) - x) r v 011 

<~ l l a ~ ( y l )  - a ~ ( y 2 ) l l  

<<. ll a l ~ x ( y l  ) - ~ ( y 2 ) l  ll 

~< IlQk+llyl - y21 II by induct ion.  [] 

P R O P O S I T I O N  2.3 
For any xl, x2 ~ D, 

so that  

[~(X1) -- ~(X2)I  ~ ( I  -- Q)-llxl  - x21, 

II~(x~) - w(x2)ll ~< I I ( t -  Q)-~II" Itxl - x211 
CO 

~< ~ [[Qk[[, 1121 _ XEl[ 
k=O 

n 
~< ~ IlXl - x211 

(2.9) 

(2.10) 
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II~(Xl) -~(x2)ll  4(1 + II1- O i l - l i f t -  Q)-lll)llxl - xzll 

~< 1 + ~  IlXl - x211. (2.11) 

Proof 
As on p. 305 of  Harr ison and Reiman [17], 

lTrnx~ 1 (0) - 7rnx~ 1 (0)l I ~< lOng, (0) - a ~ 2  (~ + I X1 - x2l 

~<(I+  Q + . . .  + Qn)lxl - x2l 

by induction. Since ~1 (0)-+ ~U(Xl) as n--~ oo by proposition 2.2., we have (2.9). 
Since 

I EI~Qk o~ n-1 oo 
~< ~ Ilakll < ~ Ilakll + 7 ~ IlOkll, 

k=0 k=0 k=0 k=0 

we have 

By (2.1) and (2.9), 

so that  

o o  

k=o 1 - 7  1 - 7  

IqS(Xl) - ~b(x2)l = Ix1 + ( I  - Q ) ~ u ( x l )  - x 2  - ( I  - Q)~(x2) [  

~ [x1  - x21 - I -1 (1 -  Q)(~/(Xl)  - -  Ip'(X2))I , 

limb(x1)- ~(x211 ~llXl - x211 + II- QI[" [ l~ (Xl ) -  ~(x2)ll 

~<(1 + I I I -  all" II(x- a)-~ll)llxl - x=ll. [] 

Remarks 
(2.1) The bounds in propositions 2.1 and 2.3 are all tight for the special case in 

which Q = 0, i.e., Q is the matrix of  all O's. This case corresponds to a network o fn  
queues in which each queue has only external arrivals, i.e., the departures from 
each queue immediately leave the network. In proposition 2.1, we can have A --- I 
and a = 0, so that  

II~,(xl) - ~(x2)ll ~< Ilxl - x211 and limb(x1) - 4(x/)l I ~<211x~ - xzll. 

In proposit ion 2.3 we obtain these same bounds using the first inequality in (2.11), 
because Q = 0, 7 =  0 and n = 1. To see that  these bounds are tight, let 
T = 1, xl (t) = 0, 0 ~< t ~< 1, and xz(t) = -I[1/3,1/2 ) (t) -t-/[1/2,1] ( t ) ,  where Ia (t) is the 
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indicator function of the set A. Then [[Xl-X2ll=llx2[[:l ,  while 

IIr r 2and II~(xl)- ~(x2)ll--Ilv/(x2)ll--- 1. 
(2.2) To see that proposition 2.3 can provide a significant improvement over pro- 

position 2.1, consider the case ofn = 2 and 

;) 
which corresponds to a network of two queues in series. For proposition 2.1, we 
may choose All = x and A22 = y for any positive x and y such that a = x/y  < 1. 
From (2.7), we obtain 

II~(xl) - ~(x2)ll ~ - -  z(1 - z) I lXl -  x211, 

where z = x/y. Hence, we may obtain any modulus greater than or equal to 4, 
with the modulus 4 corresponding to z = 1/2. On the other hand, with proposition 
2.3 we have n = 2 and 7 = 0, so that from (2.10) we obtain 

[[~(Xl) - ~(x2)ll ~21[xl - x2[[. 

The Skorohod topologies 
To treat limit processes with discontinuous sample paths, we will work with the 

Skorohod [26] topologies. Moreover, here we will need the M1 topology as well as 
the familiar J1 topology discussed in Billingsley [2]. It is significant that both the 
Lipschitz property and continuity extend to these topologies when they are estab- 
lished for the uniform topology. Let (D, S) denote D([0, T], ~n) with topology S. 

The M1 topology is defined in terms of parametric representations of the com- 
pleted graphs of the functions. For x ~ D([0, T], ]Rn), the completedgraph ofx is 

F x = { ( s , t ) : s = a x ( t - ) + ( 1 - a ) x ( t ) f o r s o m e a ,  O~a<~l}. (2.12) 

A parametric representation of ]'x is a continuous function (2, t) mapping [0, 1] 
onto -Px such that 7(.) is nondecreasing. Let H(x) be the set of all parametric repre- 
sentations of Ix.  A metric inducing the M1 topology is 

dM,(Xl,X2) = inf {1121-2211v[[tl-7211}; (2.13) 
(Yci,ti)~N(xi) 

/----1,2 

see Skorohod [26] and Pomarede [24]. The M1 topology has most of the properties 
of the J1 topology. For example, when x is continuous, xn --~ x(MI) if and only if 
tlxn - xll --~ 0. Also (D,/141) is Polish; see section II.3 of Pomarede [24]. 

We now observe that continuity and Lipschitz continuity extend easily from 
(D, U) to (D, S) for S = Jl and MI. 
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P R O P O S I T I O N  2.4 

If f : ( D ,  U)--~(D, U) is continuous (Lipschitz with modulus K), then 
f : (D, J1) ~ (D, J1) and f : (D, M1) --+ (D, M1) are continuous (Lipschitz with 
modulus K V 1)). 

Proof 
The standard J1 and M1 metrics are characterized via the uniform metric. For 

J1, from p. 111 of Billingsley [2], we obtain the Lipschitz property via 

dg,(f(xl),f(x2)) = inf {[[f(Xl) o A-f(x2)[I  V IIA -e l l}  
AeA 

~< inf { g l l x l  o ,~ - x211 v I1~ - ell} 
A~A 

~ < ( K V  1) inf {tlxl o , ~ -  x211 v I1~,- ell} 
AeA 

<~ ( K  V 1 ) d j , ( x 1 , x 2 )  . 

For M1, first note that f(11(x)) ~_ Lr(f(x)), where f(II(x)) = {(f(~),7) : (~,7) 
e/-/(x) }. Using (2.13), 

dM~(f(Xl),f(x2)) = inf {n~Cl - x2[I V [171 - t 2 [ [ }  
(~i,ti) e ll(f(x i)) 

i=1,2 

~< inf {ILl(x1) - f ( 2 2 ) l l  v 1171 - 7211} 
(~t,ii) E rl(xi) 

i=1,2 

~< inf { g l l ~  - ~211 v 117~ - h l l }  
(Yci,~i) �9 D(xi) 

i=1,2 

<~ (K V1)dM~(Xl,X2) . 

The continuity follows by similar reasoning. [] 

Hence, the reflection map in (2.1)-((2.3)) is Lipschitz continuous from (D, M1) 
to (D, M1) and from (D, Jx) to (D, J1). This continuity is important even with con- 
tinuous limits to demonstrate measurability, which is needed in the continuous 
mapping theorem, e.g., in Reiman [25]. (There the limit processes have continuous 
sample paths, but the processes converging to them do not.) The Lipschitz prop- 
erty also yields rates of convergence for associated weak convergence theorems, 
applying Whitt  [28]. 

3. An open queueing network with exogenous service interruptions 

The model under consideration consists of J service stations which are subject 
to random service interruptions. A homogeneous customer population arrives 
from outside the network. Each customer arrives at one of these stations and 
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requests service. Upon completion of service at one station, a customer may join 
another station and request service there or may depart from the network. 

Let Aj (t) be the cumulative number of customers who arrive at stationj from out- 
side the network during the interval [0, t], and let Sj(t) be the cumulative number 
of customers who are served at stationj for the first t units of busy time of that sta- 
tion. (Service times are thus associated with the station instead of the customer.) 
We call A - {Aj, 1 ~<j ~<J}, where Aj - {Aj(t), t~>0} and S ---- {Sj, 1 ~<j ~<J}, where 
Sj - {Sj (t), t ~> 0}, the arrivalprocess and the service process, respectively. 

The routing of customers is determined by sequences of indicator random vari- 
ables, {Xkj(l), l = 1,2, . . .  }, k , j  = 1,2 , . . . ,  J, where Xkj(l) = 1 indicates that the lth 
departure from station k goes to stationj. (It is understood that then X~m(l) = 0 
for all m ~ j ,  but this could be changed.) If Xkj(l) = 0 for a l l j  then the (l + 1) st 
departure from station k leaves the system. For each k and j, let 

m 

Rk](m) = ~--~Xkj(I) 
l=1 

be the total number among the first m customers who depart station k that go 
immediately to station j. We call R == _ {Rkj: l<<.k<~J, l<<.j<<,J} with 
Rkj =-- {R~](m) : m ~> 1} the routingprocess. 

Let { ( 4 , 4 ) :  1) be a sequence of random variables, where the u~ specifies 
the duration of the kth up time and ~ specifies the duration of the kth down time, 
both for stationj. To be concrete, we assume that all stations start with the begin- 
ning of the first up time. Then the epoch beginning the (l + 1)th up period for sta- 
t ionjis  

l 
T ~ = y ~ ( 4 + d ~ ) ,  l>~1; T ~ = 0 .  

k=l 

We assume that T~ ~ o~ w.p. 1. as l ~ oo for each j, so that there are only finitely 
many up-down cycles in finite time. 

Now define an interruption (indicator) process I=_ {/j,l~<j~<J}, where 
/j = {/j(t), t~>0} and/j( t)  = 1 indicates that stat ionj is up and/j( t)  = 0 indicates 
that stationj is down at time t. Then we have 

1, T~<~t<T~+u~+I, 
= . 

O, rJl q-UJl+l <~t<r~+l, 

for t>~O, 1 <.j<~Jandl>~O. 
Let Zj(O) be the initial queue length (number of customers waiting or in service) 

of station j, 1 <~j<.J, and let Z(O) - {Zj(O), 1 <.j<~J}. The primitive data of the 
model are the arrival process A, the service process S, the routing process R, the 
interruption process I and the initial queue length Z(O), which we assume are all 
defined on a common probability space. The dependence structure among these 
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processes is left for later specification. The processes A, S and I are all assumed to 
be right-continuous, so that they are elements of D. 

The process of primary interest is the queue length process Z -  {Zj, 1 <~j<~J} 
with Zj - {Zj(t), t 1> 0}, where Zj(t) is the number of customers at stationj at time t. 
In order to express the queue length process Z in terms of the primitive model 
data (A, S, R, I, Z(0)), we need to introduce some more notation. Let Uj(t) and 
Dj(t) represent the cumulative up time and down time, respectively, of stationj in 
the interval [0, t] defined by 

/0 uAt) = = l i d s  and  

/0 Dj(t) = t - Uj(t) = l[/j(s) = 01 ds, 

where 1A is the indicator function of the event A. 
Let Bj(t) be the cumulative busy time of stat ionj during the interval [0, t], i.e. 

the total amount of time during [0, t] stationj is serving customers. The busy-time 
process B = {Bj, 1 <~j<<.J}, where Bj =_ {By(t), t>~0}, will be expressed in terms of 
the primitive data below. Then 

Yy(t) = Uj(t) - Bj(t) (3.1) 

is the cumulative idle time of station j (excluding the down time) in the interval 
[0, t]. We can write the queue length process as 

J 

Z j ( t ) = Z j ( O ) + A j ( t ) + E R k j ( S k ( B k ( t ) ) ) - S j ( B j ( t ) ) ,  l<~j<~J. (3.2) 
k=l 

Note that Sj(Bj(t)) gives the actual number of departures from station j during 
[t3, t], so that (3.2) simply expresses the basic conservation of customers at each sta- 
tion: The number of customers present at time t equals the initial number plus the 
arrivals minus the departures. 

To complete the development, we need to specify the busy-time process B. We 
assume that a work-conserving discipline is used at each station, i.e., the server is 
always working at full capacity when customers are present at the station and the 
station is up. Therefore, we must have 

Bj(t) = l[Zj(s)>O]l[Ij(s) = 1]ds. (3.3) 

The cumulative-idle-time processes Y can then be written as 

Yj(t) = l [Zj (s ) -0] l[ / j ( s )  = 1]ds, t~>0. (3.4) 

Similar to the constructive proof of theorem 2.1 in Chert and Mandelbaum [5], 
we can show that for the given primitive data, there exist a unique pair of processes 
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(Z, B) with sample paths in D satisfying (3.2) and (3.3). (It suffices to do an induc- 
tion on the transition epochs of the process (A, S, I).) Clearly, B is continuous in t 
(actually Lipschitz from (3.3)). Thus, (Z, B) is a well-defined stochastic process on 
the underlying sample space. Indeed, since (Z, B) over any interval [0, t] depends 
on Z(0) and finitely many transitions of (A, S, 1) over [0, t], (Z, B) is a measurable 
function of the primitive data. However, the map from (A, S, R, I, Z(0)) to Z is in 
general not continuous, even in the case of a one-queue network without disrup- 
tions, as shown by example in Whitt [29]. The essential difficulty is that subtraction 
is not continuous from D x D to D; see section 4 of [30]. 

Let )~j and #j be the arrival rate and service rate, respectively, at station j ,  let Pjk 
be the long-run average fraction of customers who upon departure from sta t ionj  
join station k, and let vj be the long-run proportion of time that stationj is up. These 
quantities are formally defined as a consequence of the assumptions (which we 
now make) that 

1 
nAj(nt)---~ Ajt and 1 S j ( n t ) +  (3.5) 

1 
- R g l ( [ n t ] )  ~ P k j t  , (3.6) 
n 

1 
- Uj(nt) --~ vjt , (3.7) 
n 

with probability one (w.p.1) as n--~c~ for each k, j  and t>O. Since 
Uj( t ) + D]( t ) = t, limit (3.7) is equivalent to 

1 
-Dj(nt)--~(1 - v j ) t  w.p.1 as n-+oo.  (3.8) 
n 

Limits (3.5)-(3.8) constitute strong laws of large numbers (SLLNs). (These are 
equivalent to functional strong laws of large numbers (FSLLNs); see theorem 4 of 
Glynn and Whitt  [14].) For example, limits (3.5)-(3.6) hold if Aj and Sj are renewal 
processes with finite mean renewal interval for each j, and Rkj(m) is a sum of m 
i.i.d, random variables for each k, j  and m, while limits (3.7)-(3.8) hold if 
{(u~, ~ ) :  k i> 1 } is an i.i.d, sequence with finite means. However, these limits also 
hold more generally. 

As a basis for the limit theorems to follow, we present another representation 
for Z and Y involving the multidimensional reflection map. For each t I> 0, let 

J 

~j(t) =Aj(t) - ~jt + ~-~[Rkj( ( Sk( Bk( t) ) ) -- PkjSk( Bk( t) ) ] 
k=l  

J 

+ ~ Pkj[S~(Bk(t)) -- #kBk(t)] -- [Sj(Bj(t)) - IzjBj(t)], (3.9) 
k=l  
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J J 

rlj(t) = (A] - #j + ~--~l~kPkj)t + IzjDj(t) - ~--~IZkPkjDk(t), 
k=l  k=l  

(3.10) 

Then 

In 'vector notation, 

where 

Xy(t) = Zj(O) +~j(t) + ~Ty(t), t>/O. (3.11) 

J 

Zy(t) = Xl(t ) + #jYj(t) - ~--~/zkPkjYk(t). (3.12) 
k=l  

Z(t)  = X(t)  + M Y ( t ) ,  (3.13) 

M : [I - pt] diag(/z). (3.14) 

Noting that Zj (t) must be nonnegative, we have 

/0 /0 Zj(t)dYj(t) = Z](t)l[Zj(t) = 0 ] l i b ( t ) - - -  l l d t  = 0 .  (3 .15)  

Therefore, the queue length process Z and the cumulative idle time process Y are 
related to X in (3.11) via the reflection mapping defined in section 2; i.e., 
Q = pt, ~ ( X ) =  Z and r  diag(~)Y. 

Remark (3.1) 
From section 2, it follows that (Y, Z) is a continuous function of X, but after 

(3.3) we noted that Z is not a continuous function of the primitive data 
(A, S, R , I ,Z(O)) .  The explanation is that X is not a continuous function of 
(a, S, R,I ,Z(0)) .  [] 

To conclude this section, we provide some definitions which classify the stations 
of the network. The details and their validations can be found in Chen and Mandel- 
baum [5]. (From the definition of the routing process, the matrix P =_ (Pjk) is a sub- 
stochastic matrix.) The unique solution of 

x = A + p t (x  A/z), (3.16) 

denoted by A e i s called the effective arrival rate, and 

pj==-A~/#j (3.17) 

is called the traffic intensity of station j. A station j is a non-bottleneck station if 
pj < uy, and a bottleneck station if pj ~> ~.. In the bottleneck case, we call stationj a 
balanced bottleneck if pj = vj, and otherwise, a strict bottleneck. The network is 
referred to as abalancednetwork ifpj = uy for allj. 

We remark that the bottleneck definitions only depend on the parameter four- 
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tuple (A, #, P, v). So we will also say that stat ionj is a non-bottleneck of network 
(A, #, P, v), and that (A, #, P, v) is a balanced network if pj = vj, for all 

j ,  j --- 1 , . . . ,  J, with pj defined through A, # and P. 

4. Dif fus ion limit with jumps for long up and down times 

Consider a sequence of open networks with exogenous service interruptions, 
indexed by n = 1,2, .... We add a superscript n to all processes, variables and para- 
meters, associated with the nth network. In this section, we consider the conver- 
gence of the scaled queue length process (1/x/~)Z n (nt) under the condition that the 
up times are of order n, while the down times are of order v/-n, in addition to the 
usual heavy-traffic assumptions, i.e., (1 - p~) is of order 1/v/-n. This section thus 
contains the network generalization of the heavy-traffic limit theorem in section 3 
of Kella and Whitt [22]. 

(A ) Assumptions on the primitive data 
First, for simplicity, we assume that the routing structures are the same for all 

networks, i.e., R n = R for all n ~> 1. Then we assume that as n --~ oo,jointly 

v~nZn(0) =~ Z(0) in ~J, (4.1) 

~ [An(nt) - )~nnt] ~ A(t) in D J, (4.2) 

1 [Sn(nt ) _ tz~nt] ~ ~S(t) in D J (4.3) 

1 
v~[R([nt]) - Pnt] ~ R(t) in D s2 , (4.4) 

( (  J'U~knn d~ n) a<~j<~J ,k>>. l}~{(ug ,  d k ) , l ~ j ~ J , k > ~ l  } in (~2J) ~ J J (4.5) , ~  , 

v'~(A n - A) ---+ c),, A i>0, and (4.6) 

v/-n(#n- #)--~ cu, # > 0 ,  (4.7) 

where m )--~=1 u~ --~ oo w.p. 1. as m ~ c~ for eachj  and the limit processes A, S and 
have continuous sample paths w.p. 1. (This continuity can be ~laxed, i.e., replaced 
by other assumptions, but in most applications the processes A, S and R are Brow- 
nian motions, which do have continuous sample paths.) Note that we require joint 
convergence of (4.1)-(4.5). The standard sufficient condition is mutual indepen- 
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dence; see theorem 3.2 of Billingsley [2]. However, in some cases of interest it is 
important to relax the independence; e.g., see Fendick, Saksena and Whitt  [11]. 

In this section, we focus on the case of asymptotically balanced open networks. 
First, note that (3.7) and (4.5) imply that vj = 1 for all j; i.e., asymptotically as 
n ---* oo the proportion of time each station is up is 1. (Nevertheless, as in [22], the 
down times have a significant impact on the limit by introducing jumps.) Thus, to 
have the limiting network (A, #, P, v) specified by (4.4), (4.5), (4.6) and (4.7) 
balanced, we assume that 

A = [ I -  pt]#, (4.8) 

where the matrix P is substochastic with pk + 0 as k--+ oo. 

( B) The cumulative down time limit 
In preparation for the main theorem, we establish convergence for the sequence 

of cumulative down-time processes. For this purpose, let Nj (t) be the counting pro- 
cess associated with u{ in (4.5), i.e., 

Nj(t)=sup{m>~O:~-~'~uJk<'t} t~>0, and 

~(t )  

Dj(t) = E dy' t>~O. (4.9) 
k=l 

By the assumption about u~ in section 4(A), P(Nj(t)<oo) = 1 for a l l j  and t. Let 
b n be the normalized cumulative down-time process in model n, defined by 

b~(t) =--~D](nt), t~>0,1 <<.j<~J. (4.10) 

Let/)n ___ {131 , 1 <<.j<<.J} and b --- {/3], 1 <~j<~J} be the associated vector processes 
in D J. Let Disc(x) be the set of discontinuity points ofx in [0, 7]. 

L E M M A  4.1 

If (4.5) holds and 

P Disc(bi) nDisc(bj) )  = ~  = 1, (4.11) 
i=1 j=l ]r 

then 

b n ~ b in D((0, oo),]i(J, M1). 
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Proof 
First apply the Skorohod representation theorem to replace the weak conver- 

gence assumed in (4.5) by w.p.1, convergence. Then it is elementary that 
b~(t) --~ Dj(t) w.p.1, for each t that is not a discontinuity point of bj(t).  Since hi( t )  
and D)t) are nondecreasing, this implies convergence in D((0, c~), 11~, M1); see the 
remark after theorem 7.1 on p. 82 of Whitt [30]. This M1 convergence holds for any 
closed time interval [a, b] provided that a and b are not points of discontinuity of 
b with positive probability. Since 0 could be a point of discontinuity of D with posi- 
tive probability, we work with the open time interval (0, oo). However, so far this 
argument only takes care of one coordinate at a time; i.e., this argument yields the 
convergence in the product space D((0, er ]R, M1): whereas we want to establish 
the more difficult convergence in D((O, c~), IR J, M1), which involves only a single 
parametric representation. For this purpose, note that since (4.11) holds with 
P(Ny(t) < oo) = 1 for eachj and t, the limit process b has only finitely many discon- 
tinuities in [0, T] w.p.1. Let .4 = Disc(D) N {0} ~ {ti: 1 <<.i<~m} for one sample 
point. Then we can establish convergence D n -+D in D([si, Si+l], ]~J, ms) for each 
i, 1 ~< i ~< m - 1, where si -- (ti + ti+l)//2 by constructing the appropriate parametric 
representation needed for the one coordinate that has a discontinuity in (si, Si+l). 
Since Dj has no discontinuities in (si, si+l) for the other j ,  we have b~ ~ Dj uni- 
formly on [si, Si+l] for these otherj  and thus also in the M1 topology using the same 
parametric representation as used for the coordinate with the discontinuity. 
Finally, we piece together the parametric representations to obtain one parametric 
representation for the interval [Sl, Sm-l]. In particular, for the subinterval [si, S/q-S] 
consider the parametric representations mapping [(i - 1) / (m - 1 ), i~ (m - 1)] onto 
Fb, and F b, 1 ~< i ~< m - 1. This yields standard parametric representations map- 
ping [0, 1] onto Fb, and F b associated with time interval [Sl, sin-l]. (Necessarily the 
parametric representations of D map (i - 1)/(m - 1) and i /(m - 1) into (D(si), si) 
and (b(si+s), si+l), respectively, so the endpoints match. Since this argument works 
for any T > 0 and any J1,0 < d 1 < Sl when we replace Sl by s~, we have established 
convergence in D((0, c~),~S, Ms). Since this holds for each sample point after 
applying the Skorohod representation theorem, we have the claimed weak conver- 
gence for the original processes. 

Remarks 
(4.1) The standard sufficient condition for the discontinuity condition (4.11) is 

to have the sequences {u~: k~> 1 } be mutually independent with ~-'~km=S UJk having a 
continuous cdf for each m I> 1 and j  >/2. This does not require that the random vari- 
ables within each sequence be mutually independent. If the random variables 
u~, k/> 1, are mutually independent, then )--~k'n= S UJk will have a continuous cdf for all 
m ifu{ does. 

(4.2) To see that we do not have convergence in the standard J1 topology in 
lemma 4.1, note t h a t / ~  is continuous for each n, while b is not. (In the Js topology, 
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the maximum jump functional is continuous.) To see that we need not have conver- 
gence for the time interval [0, ~ ) ,  suppose that p(u11 'n = v/-~) = P(d  = = 1 
so that  P(u] = O) = P(d~ = 1) = 1. Then, from (4.5), we have P(/~I (0) = 0) 1 
but P(D1 (0) > O) > O. 

THE MAIN LIMIT THEOREM 

To state the main limit theorem, let 

Zn(t) - - ~ Z n ( n t )  , 

1 ~:n(t ) - --~ yn(nt ) ,  

- -~-n [Bn(nt) - nt], t>~O, (4.12) 

be the scaled queue-length, cumulative-idle-time and cumulative-busy-time pro- 
cesses, respectively. 

THEOREM 4.1 

If (4.11) and the assumptions of section 4(A) hold, then 

where 

(~n,~,,  ~:., b~ ~ (Z,B, I:,D) in D((0, c~),]R4J, MI) , 

= ~b(X) and I: = diag(#-l)~,(X). 

::(t) = 2(0)  + + 
J 

~j(t) = ~lj(t) + ~[Rkj(/zkt) + Pej&k(t)]-  Sj.(t) 
k=l 

9(t) = (c;~- [ I -  pt]c~)t + [ I -  pt] diag(/z)b(t), 

B(t) = - b ( t ) -  ~(t)  

with b in (4.9), and (~/, 4) the reflection map in section 2. 

for each j ,  

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Remarks  
(4.3) Let wjn(t) represent the workload in remaining service time at node j at 

time t in model n. Let lY/" - W n ( n t ) / ~  be the associated normalized vector work- 
load process. By essentially the same argument as in sections 5.5 and 6.8 of Chert 
and Mandelbaum [6], we can conclude that l~ n ~ l~ as n ~ oc jointly with the pro- 
cesses in theorem 4.1 in D((0, ~ ) ,  IR 5J, M1), where 1~ --- diag(#-l)Z. This result 
can be regarded as a diffusion analog of Little's law. 

(4.4) In theorem 4.1 we made no assumptions of independence for the arrival, 
service and routing processes. In many applications (e.g., when A] and S] are 
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renewal processes and the routing R is Markovian), the limit processes ~1, S and/~ 
in (4.2)-(4.4) will be Brownian motions, in which case ~ in (4.15) will be as well. 

Proof  of  theorem 4.1 
By assumption in section 4(A), the limits in (4.1)-(4.5) hold jointly. By the Skor- 

ohod representation theorem, there exists a probability space on which versions 
of all stochastic processes and random variables in (4.1)-(4.5) are defined with con- 
vergence holding almost surely, where the topology on D is uniform convergence 
on compact subintervals (u.o.c.). From these new versions of primitive data, we 
can construct new versions of the stochastic processes of interest, namely, 
(2n ~n ~n, bn) as indicated in section 3. Then the proof amounts to showing that 
the new version of ( ~ ,  ~n, y, ,  D n) converges almost surely to the associated limit 
(Z, B, Y, D) in the M1 topology. 

For simplicity, we use the same notation for the new versions of all processes 
and random variables. Specifically, we will prove 

(~n,~n, ~zn,bn)___~(~,~, Y,D) in D((- ,  oo),R4J, M1) 

(almost surely) as n --+ oo under assumptions (4.6)-(4.8) and 

z"(0) u . o . c .  ~ (4.18) 

v~[An(nt) 1 - Annt]~A(t) ,  u.o.c., (4.19) 

1 
v~[Sn(nt) - #nnt]--+ &(t), u.o.c., (4.20) 

1 Pkjnt]--*Rkj(t), U.O.C. (4.21 

n ' ,l<~j<~J,k>>.a -+ (u~,d~), l<.j<~J,k>~l , 

(almost surely) as n ~ oo. 
We use the following lemma, which is proved at the end of this section. 

L E M M A  4.2 

Under the assumptions above, 

1 
x/-~B~(nt)---~t, u.o.c., asn--+oo, l<. j<.J .  

(4.22) 
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From (3.9), we see that 

J 1 

J 1 

n B] t) n By(nt)] 
- # ] n  n ]" (4.23) 

Using lemma 4.2 and the composition map (a deterministic version of the ran- 
dom-time-change theorem; see sections 3 and 5 of Whitt [30] and 5.1 .D of Chen and 
Mandelbaum [6]), we see that as n --~ oo 

1 v/-~](nt ) -+ ~j(t), u.o.c . ,  (4.24) 

where ~j is as defined in (4.15),j = 1 ,2 , . . . ,  J, andis continuous. 
By lemma 4.1, 

;Dn(nt)--'~b(t) as n---*oo. (4.25) in D((O, cx~),IRJ,M1) 

From (3.10), we see that 

-~nrln(nt) = x/~(A n -  [ I -  pt]#n) + [I- pt] diag(#n)-~Dn(nt) 

= (x/~(A n - A ) -  [ I -  Pt]v/-n(#n- #))t + [I- Pt]diag(#")-~nDn(nt ) . (4.26) 

From (4.6), (4.7), (4.8), (4.25) and (4.26), we obtain 

--~nrln(nt)--+Cl(t) in D((O, oo),]~J, M1) (4.27) 

as n ---~ oo, for 7) in (4.16). 
From (3.11), we obtain 

ff~n(t) ~--~1 Xn(nt) =__~nZn(O) +_~n,n(nt) +__~nr/,(nt) ' t>~O 

By (4.18), (4.24), (4.27) plus the measurability and continuity w.p. 1 with respect 
to the limit ((, rl) of addition (recall that ( is continuous; see theorem 4.1 of Whitt 
[30], we have 

~/~Xn(nt)'~X(t) in D((0, N J,M1) (X3)~ (4.28) 
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as n--+ c~ for ~" in (4.14). Moreover, by the assumed joint convergence in (4.1)- 
(4.5), we can actually have the joint convergence 

(-~nXn(nt),--~nDn(nt))) ---~(ffE(t),b(t)) in D((O, oo),]R21, M1) (4.29) 

as n--+ oo. The parametric representations used for/~n _+ b can be used with all 
other processes.) Then 

1 yn(nt)=diag(#_l)~u(_~nXn(n.))(t) ' (4.30) t) =_ 

Z~(t) ---~nZn(nt) = (o(--~nXn(n.))(t ) and (4.31) 

~ 1 Bn(t) = [Un(nt)-nt]---~yn(nt) 

=-Dn(t)-  Yn(t). (4.32) 

by the reflection map representation in section 3. Hence, we have 

(~n,~,n,j~/n, ~,j0n)_.+(.~-,~,~, ~r,b) inD((0, oo),]RS1, Ml) 

as n--~ c~ by continuity of the oblique reflection mapping using (4.29)-(4.32) and 
section 2. [] 

Proof oflemma 4.2 
Since 

I~ 1 I l l f n t  n n I Bn(nt) - Bn(ns) = n[Jns I[Z~(u)>O,L~(u) = 1]du 

f tl[Z~(nu)>O,L~(nu) 1]du ~<lt s I (4.33) 

the sequence {n-lBn(nt), n>>. 1} is uniformly Lipschitz. By Ascoli's theorem, any 
subsequences of {n-lB ~, n >>. 1} has an u.o.c, convergent subsequence. So we only 
need to prove any u.o.c, limit of any subsequence is the same and given by t. With- 
out loss of generality (for ease of notation), assume 

1Bn(nt)-'-~B(t), u.o.c, as n--~oo. (4.34) 
n 

We will show that B(t) = t. From (4.23), (4.19)-(4.21) and (4.33) it implies that 

l~n(nt)--~0, u.o.c., asn---~oo (4.35) 
n 

Note that 
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lrln(t ) = ont + [ I - /~]  diag(/z n) Dn(t) , 
n n 

whereO n = A n - (I  - P~)/z n --~0 as n---~ oo. Hence, 

~rln(nt)-"~O, u.o.c., as n---~c~, (4.36) 

because #n __~ # by (4.7) and  

1Dn(nt)'-+O, u.o.c., as n--~oo (4.37) 
n 

as a consequence o f l e m m a  4.1. Combin ing  (4.18), (4.35) and (4.36), we have 

1Xn(nt)--~J((t)==-O, u.o.c., a s n - - ~ o o .  (4.38) 
n 

F r o m  the cont inui ty  and the uniqueness of  the reflection mapping ,  we have 

l yn(nt)-(o(1Xn(n.)](t)- '-~Ir(t)=-c~(J()(t)=-O, u.o.c., a sn - -~oo  (4.39) 
n \ n  / 

Since 

Bn(t) = un(t) - Yn(t) = t -  Dn(t) - yn(t),  (4.40) 

we prove B(t) = t by using (4.37) and (4.39). [] 

5. D i f fus ion  limit with fixed up and d o w n  times 

We now establish the diffusion limit corresponding to the up and  down  times 
j,n d~n) being independent  o f n  instead of  growing with n as specified by (4.5). In  U k ~  

part icular ,  we keep all the assumptions  of  section 4(A) except (4.5) and  assume 
instead tha t  

~ 1  [Dn(nt) - (1 - un)nt] -+ D( t) in DS (5.1) 

joint ly  with (4.1)-(4.4), where D(t) has cont inuous  sample paths  w.p. 1 and  

x/~(u n -  v)---~c~,, 0~<v~<l, (5.2) 

as n ~ oo. No te  tha t  (5.1) and (5.2) imply t h a t  

/~[Dn(nt) - (1 - v)nt]--~D(t) - c~t in D s (5.3) 

by virtue of  theorems 4.4 and 5.1. of  Billingsley [2]. 
e j,n ilj,n~ A sufficient condi t ion for (5.3) with c~ = 0 is for the variables (u k , a k ) to be 

independent  of  n, mutua l ly  independent  and have a c o m m o n  distr ibut ion as k i> 1 
for each j .  Then  the up-down processes are J independent  al ternat ing renewal pro-  
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cesses. (Of course, (5.3) holds with c~j = 0 for all j under many other conditions 
too.) 

Before stating the general result under (5.1) and (5.2), we describe the limit 
(5.3) in the alternating-renewal-process case. In this alternating-renewal-process 
context, suppose that Eu j = Uj, Var u j = ~j ,  0 < ~ j  < oe, Ed{ = dj and 
Vard~ = 4 ,  0 < . ~  <oe.  Then (5.3)is valid with vj = uj/(uy + dj) and c~] = 0 for 
all j ,  and D _= (D1,. . . ,  D j) being composed of J independent zero-mean one- 
dimensional Brownian motions with diffusion (variance) constants specified 
below. 

T H E O R E M  5.1 

In the alternating-renewal-process context above, (5.3) is valid with 
vj = uj/(uj + dj) and c~j = 0 for all j ,  and the variance constant for the j th  coordi- 
nate Brownian motion is 

3 2 = Aj(I- Ajdj)2dj + Ajdj ~ j ,  (5.4) 

where Aj = 1/(dj + uj). 

Proo f  
We use the continuous mapping theorem with the functions in Whitt [30]. Simi- 

lar results are established in section 3 of Glynn and Whitt [13]. In particular, let 
n n 

S ~ n = ~ U  j ,  Sn a = ~ d  j and S n = S ~ n + S n  a, n~>l. (5.5) 
k=l  k=l  

By the independence and moment assumptions above 

[S[nt] - (Uj + dj)nt, S~nt] -- dnnt] =~ (auyBu( t) + CrdjBd( t), trdjBd(t) ) 

in D([0, oo), R2, J1), (5.6) 

where Bu and Bd are independent standard (mean 0, variance 1) Brownian 
motions. Let N(t )  be the renewal counting process associated with the partial sums 
Su and let Aj = 1 / (dj + uj). By the inverse map in section 7 of [30], 

[N(nt) - Aynt, S[dt] - djnt] =~ [-Aycr,jBu(Ajt) - AjcrdjBa( Ajt), aajBd(t)] 

in D([0, oo), I1~ 2, J1) (5.7) 

By composition plus translation in section 5 of [30], 

1 
~ [Sd(nt) -- Aydjnt] =~ aajSd(Ajt)-- djAjaujSu(Ajt) - djAjadjBa(Ajt) 

in D([0, ~ ) ,  1~, J1)- (5.8) 

By theorem 4 1 of [2], Sa. .  has the same FCLT behavior as Dj(t). Hence, (5.3) is 
�9 ~, t)  

validwith (1 -vy)  = Ajdj = dj/(uj + dj), c~j = Oand 
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/)j(t) = (1 - Aidj)adjBa( Ayt ) - Ajdi~r~yB.( Ajt ) 
d (Aj(1 /~jr q_ 3 2 1/2 -_ - ~,; aj ~ j )  ~ ( 0 ,  (5.9) 

where & denotes equal in distribution and B is a standard Brownian motion. [] 

Now to have an asymptotically balanced network, instead of (4.8), we assume 
that 

J 

Rate in t o j  --- Aj + ~--~Pkj#kVk = #jvj = Rate out o f j  for each j .  (5.10) 
k=l 

Let ~n and ~,-n be defined as in (4.12), but redefine B" as 

1 
J~n(t) = ~ [ B ~ ( n t ) -  ~nt], t>~O. (5.11) 

Paralleling lemma 4.2, we use the following lemma, which we prove at the end of 
this section. 

L E M M A  5.1 

msn--+~,  

Bn(nt) 
* ut w.p.1 

n 
in  D([O, oo),]~J, J1) . 

Here is our main result in this section. We omit the proof because it is similar to 
the proof of theorem 4.1. 

T H E O R E M  5.2 

If the assumptions of section 4.1 hold with (5.1), (5.2) and (5.10) instead of 
(4.5), then 

(Z",B", Y " , b " )  = ~  (Z,J~, ~' ,b) in D([0,oo),/~4J, J1) , 

where Z, ~r, 3(, ~ and b are defined as in (4.13), (4.14), (4.17) and (5.1), 

J 

~(t) = ;lj(t) + ~[k,,j(~,,,,,,,t) + P,,j~,,(~,,~t)]- ,~j(,~t) 
k=l 

for each j ,  (5.12) 

and 

I ' ] ~j(t) = c~j - (~jc.j + ~jc.j) + ~ ekj(~kcvk + ~ )  
k=l 

J 

+ ~jbj(t) - Y~l~kPkjbk(t) for each j .  
k=l 

(5.13) 
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Remarks  (5.1) 
In the standard case A, R, S and 1) are independent zero-mean Brownian 

motions, in which case ~" is a Brownian motion and Z is regulated Brownian 
motion (RBM) as in Harrison and Reiman [17]. The service interruptions affect the 
limit though the asymptotic up-time parameters ~ appearing as deterministic 
time changes in some terms in ~j in (5.12) and by the additional term 
] z j D j ( t )  - -  Z~=I #kPkjbk(t) in eli(t) in (5.13). I fD is a zero-mean Brownian motion 
with covariance matrix C, then (I - pt) diag(#)D is a zero-mean Brownian motion 
with covariance matrix (I - pt) diag(#) C diag(#) (I - P); see p. 82 of Feller [10]. 

Proo f  o f  lemma 5.1 
To establish lemma 5.1, proceed as in the proof of lemma 4.2, but note that 

now B(t) = ut. From (5.3), we see that 

1Dn(nt ) - ' -~(1-u) t ,  u.o.c. (5.14) 
n 

instead of (4.37). Then apply (4.38)-(4.40) to obtain the desired result. [] 

6. Concluding remarks 

We have established heavy-traffic limits for two cases of open queueing net- 
works with exogenous service disruptions. The "standard" case of fixed up and 
down times was treated in section 5; it leads to an RBM limit so that it falls within 
the domain of much existing theory, e.g., Harrison and Reiman [17], Reiman [25], 
Harrison and Williams [ 18,19] and Chen and Mandelbaum [6]. 

What we regard as more interesting is the case of long up and down times (of 
order n and v/-n, respectively) which was treated in section 4; it is the network gener- 
alization of the heavy-traffic limit in section 3 of Kella and Whitt [22], which was 
briefly discussed in remark 5.6 in [22]. Unlike the one-dimensional case in [22], we 
have yet to obtain useful descriptions of the stationary distribution of the limiting 
multidimensional "jump- diffusion" process. 

Unlike [22], we have not discussed the case of service interruptions or vacations 
occurring whenever a station becomes empty. Heavy-traffic limits for the case 
also follow, just as in [22], by treating the subintervals between successive vacations 
separately, but we do not present the details. As for the case of exogenous service 
interruptions treated explicitly here in section 4, it remains to describe the station- 
ary distribution of the limiting multidimensional "jump-diffusion" process. 

We have also not discussed closed networks, but irreducible dosed networks 
can be treated similarly, drawing on Chen and Mandelbaum [4-6]. 

Chen and Mandelbaum [7] have recently established strong approximation for 
open queueing networks. These results can be extended to the models considered 
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here,  thus  p rov id ing  ra tes  o f  convergence  for  the  l imit  t h eo rem s  es tabl ished here;  
see H o r v a t h  [20] and  G l y n n  and  Whi t t  [15] fo r  re la ted  work .  
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