
Online Supplement
to

Algorithms for the Upper Bound Mean Waiting Time
in the GI/GI/1 Queue

Yan Chen
Industrial Engineering and Operations Research, Columbia University, yc3107@columbia.edu

Ward Whitt
Industrial Engineering and Operations Research, Columbia University, ww2040@columbia.edu

From the main paper: It has long been conjectured that the tight upper bound of the mean steady-state

waiting time in the GI/GI/1 queue given the first two moments of the interarrival-time and service-time

distributions is attained asymptotically by two-point distributions. The two-point distribution for the inter-

arrival time has one mass point at 0, but the service-time distribution involves a limit; there is one mass

point at a high value, but that upper mass point must increase to infinity while the probability on that point

must decrease to 0 appropriately. In this paper we develop effective numerical and simulation algorithms

to compute the value of this conjectured tight bound. The algorithms are aided by reductions of the spe-

cial queues with extremal intarrival-time and extremal service-time distributions to D/GI/1 and GI/D/1

models. Combining these reductions yields an overall representation in terms of a D/RS(D)/1 discrete-

time model involving a geometric random sum of deterministic random variables (the RS(D)), where the

two deterministic random variables in the model may have different values, so that the extremal steady-

state waiting time need not have a lattice distribution. Efficient computational methods are developed. The

computational results show that the conjectured tight upper bound offers a significant improvement over

established bounds.

Key words : the single-server queue, bounds for the mean waiting time, extremal queues, stochastic

simulation, two-point distributions

History : April 30, 2019; revised November 7, 2019

1. Introduction

In this supplement to the main paper Chen and Whitt (2019) we present additional sup-

porting material. We start in §2 by providing brief overview of Chen and Whitt (2018,

2019) by comparing the classic bounds §2.2 of the main paper to the tight bounds and the

heavy-traffic approximation in equation (9) in the main paper. In §3 we elaborate on the

random walk representation for the steady-state idle time I and discuss both a numerical

1



2

algorithm and a simulation algorithm based on it. In §4 we elaborate on the simulation

algorithms and in §5 we describe the results of additional simulation experiments.

2. A Comparison of Different Bounds and Approximations

To show that the tight UB E[W (F0,Gu∗)] defined in (11) of the main paper provides

a significant improvement, we compared the estimates of the tight UB in the GI/GI/1

model with given first two moments associated with (c2a, c
2
s) = (4.0,4.0), as estimated by

the Minh and Sorli (1983) simulation algorithm, to other bounds and approximations in

Table 1 of the main paper. Comparisons for the other cases (c2a, c
2
s) = (0.5,0.5), (4.0,0.5)

and (0.5,4.0) appear in Tables 1, 2 and 3 here.

We refer to the equations in §2.2 of the main paper. Our algorithms compute the “Tight

UB” in these tables, given in (15) of the main paper, while the LB formula is (10), the new

UB established in Theorem 2 of the main paper is (17), the Daley (1977) bound is (7) and

the Kingman (1962) bound is (6). The common heavy-traffic approximation (HTA) is (9)

in the main paper, i.e.,

E[W ]≈ ρ2(c2a+ c2s)

2(1− ρ)
. (1)

The MRE is the maximum relative error between the new bound in (17) and the tight

UB. The maximum value of the MRE for each of the cases (c2a, c
2
s) = (4.0,4.0), (0.5,0.5),

(4.0,0.5) and (0.5,4.0) were, respectively, 1.2%, 5.7%, 1.5% and 1.9%. In all cases these

occur at approximately ρ=0.5.



3

Table 1 A comparison of the bounds and approximations for the steady-state mean E[W ] as a function of ρ for

the case c2
a
= c2

s
= 0.5. (Equation numbers given in the main paper.)

ρ Tight LB HTA Tight UB new UB δ MRE Daley Kingman
(10) (9) (15) (17) (18) (7) (6)

0.10 0.000 0.006 0.053 0.053 0.000 0.00% 0.056 0.281
0.15 0.000 0.013 0.082 0.082 0.001 0.11% 0.088 0.301
0.20 0.000 0.025 0.113 0.113 0.007 0.54% 0.125 0.325
0.25 0.000 0.042 0.146 0.148 0.020 1.35% 0.167 0.354
0.30 0.000 0.064 0.184 0.189 0.041 2.36% 0.214 0.389
0.35 0.000 0.094 0.228 0.235 0.070 3.16% 0.269 0.432
0.40 0.000 0.133 0.280 0.291 0.107 3.82% 0.333 0.483
0.45 0.000 0.184 0.342 0.357 0.152 4.43% 0.409 0.547
0.50 0.000 0.250 0.414 0.439 0.203 5.72% 0.500 0.625
0.55 0.000 0.336 0.515 0.540 0.261 4.62% 0.611 0.724
0.60 0.000 0.450 0.637 0.669 0.324 4.71% 0.750 0.850
0.65 0.000 0.604 0.800 0.837 0.393 4.45% 0.929 1.016
0.70 0.058 0.817 1.017 1.065 0.467 4.53% 1.167 1.242
0.75 0.188 1.125 1.312 1.388 0.546 5.42% 1.500 1.563
0.80 0.400 1.600 1.822 1.877 0.629 2.95% 2.000 2.050
0.85 0.779 2.408 2.646 2.700 0.716 1.99% 2.833 2.871
0.90 1.575 4.050 4.295 4.355 0.807 1.38% 4.500 4.525
0.95 4.037 9.025 9.284 9.344 0.902 0.65% 9.500 9.512
0.98 11.515 24.010 24.271 24.338 0.960 0.27% 24.500 24.505
0.99 24.008 49.005 49.265 49.336 0.980 0.14% 49.500 49.503

Table 2 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2
a
=4.0 and c2

s
= 0.5 (Equation numbers given in the main paper.)

ρ Tight LB HTA Tight UB new UB δ MRE Daley Kingman
(10) (9) (15) (17) (18) (7) (6)

0.10 0.000 0.025 0.403 0.403 0.000 0.00% 0.425 2.225
0.15 0.000 0.060 0.607 0.607 0.001 0.05% 0.660 2.360
0.20 0.000 0.113 0.816 0.818 0.007 0.21% 0.913 2.513
0.25 0.000 0.188 1.036 1.041 0.020 0.45% 1.188 2.688
0.30 0.000 0.289 1.274 1.283 0.041 0.71% 1.489 2.889
0.35 0.000 0.424 1.538 1.553 0.070 0.96% 1.824 3.124
0.40 0.000 0.600 1.837 1.859 0.107 1.16% 2.200 3.400
0.45 0.000 0.828 2.184 2.214 0.152 1.35% 2.628 3.728
0.50 0.000 1.125 2.595 2.635 0.203 1.51% 3.125 4.125
0.55 0.000 1.513 3.096 3.144 0.261 1.53% 3.713 4.613
0.60 0.000 2.025 3.720 3.777 0.324 1.50% 4.425 5.225
0.65 0.000 2.716 4.519 4.586 0.393 1.45% 5.316 6.016
0.70 0.058 3.675 5.583 5.662 0.467 1.39% 6.475 7.075
0.75 0.188 5.063 7.077 7.165 0.546 1.23% 8.063 8.563
0.80 0.400 7.200 9.317 9.417 0.629 1.06% 10.400 10.800
0.85 0.779 10.838 13.055 13.168 0.716 0.86% 14.238 14.538
0.90 1.575 18.225 20.546 20.668 0.807 0.59% 21.825 22.025
0.95 4.037 40.613 43.033 43.168 0.902 0.31% 44.413 44.513
0.98 11.515 108.045 110.479 110.667 0.960 0.17% 111.965 112.005
0.99 24.008 220.523 222.971 223.167 0.980 0.09% 224.483 224.503



4

Table 3 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2
a
= 0.5 and c2

s
=4.0. (Equation numbers given in the main paper.)

ρ Tight LB HTA Tight UB new UB δ MRE Daley Kingman
(10) (9) (15) (17) (18) (7) (6)

0.10 0.000 0.025 0.072 0.072 0.000 0.00% 0.075 0.300
0.15 0.000 0.060 0.128 0.128 0.001 0.07% 0.135 0.347
0.20 0.000 0.113 0.200 0.201 0.007 0.30% 0.213 0.413
0.25 0.042 0.188 0.292 0.294 0.020 0.68% 0.313 0.500
0.30 0.107 0.289 0.409 0.414 0.041 1.08% 0.439 0.614
0.35 0.202 0.424 0.558 0.565 0.070 1.32% 0.599 0.762
0.40 0.333 0.600 0.746 0.757 0.107 1.47% 0.800 0.950
0.45 0.511 0.828 0.986 1.002 0.152 1.58% 1.053 1.191
0.50 0.750 1.125 1.289 1.314 0.203 1.91% 1.375 1.500
0.55 1.069 1.513 1.692 1.716 0.261 1.45% 1.788 1.900
0.60 1.500 2.025 2.212 2.244 0.324 1.40% 2.325 2.425
0.65 2.089 2.716 2.913 2.950 0.393 1.26% 3.041 3.129
0.70 2.917 3.675 3.875 3.923 0.467 1.23% 4.025 4.100
0.75 4.125 5.063 5.250 5.325 0.546 1.41% 5.438 5.500
0.80 6.000 7.200 7.422 7.477 0.629 0.74% 7.600 7.650
0.85 9.208 10.838 11.075 11.129 0.716 0.48% 11.263 11.300
0.90 15.750 18.225 18.470 18.530 0.807 0.32% 18.675 18.700
0.95 35.625 40.613 40.871 40.932 0.902 0.15% 41.088 41.100
0.98 95.550 108.045 108.307 108.373 0.960 0.06% 108.535 108.540
0.99 195.525 220.523 220.783 220.853 0.980 0.03% 221.018 221.020

From these tables, we see that the range UB − LB is remarkably wide, which largely

can be explained by the LB, which does not depend on the arrival scv c2a. We also see

that the heavy-traffic approximation and all the UBs tend to agree in HT, but not in light

traffic. Moreoever, we see significant improvement going from the Kingman (1962) bound

in (6) to the Daley (1977) bound in (7) to the new UB formula in (17). We also see that

the tight UB in (15) is very well approximated by the UB formula in (17), but it requires

calculating the root of an equation.

In closing this section, we emphasize that it remains to prove: (i) that (17) is a legitimate

UB and (ii) that the mean E[W (F0,Gu∗)] estimated for the tight UB here is indeed the

tight UB. Theorem 2 of the main paper proves (i) under the assumption that (ii) is correct.

Nevertheless, we have provided strong numerical evidence that the UB is E[W (F0,Gu∗)] in

(11) and Theorem 1 of the main paper, is the tight UB. If that can be accepted, then the

algorithms in the main paper provide effective ways to calculate the tight UB and formula

(17) serves as an excellent approximation.



5

3. Computing the Distribution and Moments of the Idle Time

Theorem 7 of the main paper implies that the steady-state mean waiting time E[W ] in

the extremal F0/Gu∗/1 model can be expressed in terms of the first two moments of the

steady-state idle time I in the D(1/p)/RS(D(ρ), p)/1 model and the parameter vector

(1, c2a, ρ, c
2
s). In this section we show how to develop algorithms to calculate the distri-

bution and moments of I in the D(1/p)/RS(D(ρ), p)/1 model based on a random walk

representation.

3.1. A Random Walk Absorption Representation of the Idle-Time

We first review the random walk representation for the idle time I in the reduced model

D(1/p)/RS(D,p)/1 model given in §8.2.1 of the main paper. Then we discuss a numerical

algorithm. For the reduced model D(1/p)/RS(D,p)/1, the steady-state idle time can be

expressed in terms of a random walk {Yk : k≥ 0} defined in terms of the recursion,

Yk+1 = Yk + ρNk − (1+ c2a), k≥ 1, Y0 ≡ 0. (2)

The random variables ρNk− (1+c2a) are the steps of the random walk. Each step is the net

input of work from one arrival time to the next. Because Nk take values on the positive

integers, the possible steps are kρ− (1+ c2a) for k≥ 1, so that ρNk− (1+ c2a)≥ ρ− (1+ c2a).

As long as Yk ≥ 0, Yk represents the work in the system at the time of the kth arrival,

starting empty. The number of customers served in that busy cycle, Nc, and the length of

a busy cycle, C, are then

Nc = inf {k≥ 1 : Yk ≤ 0} and C =Nc(1+ c2a). (3)

The associated idle-time random variable is distributed as

I
d
=−YNc

, so that 0≤ I ≤ c2a+1− ρ. (4)

3.2. An Idle-Time Simulation Algorithm

Given N i.i.d. copies of I, each obtained via (2)-(4), we can estimate the cdf FI(x)≡ P(I ≤
x), x≥ 0, by the empirical cdf

F̄I(x)≡N−1
N∑

i=1

I(Ii ≤ x). (5)

To estimate the pth moment E[Ip], we can compute the sample mean, using

ĪN ≡R−1
R∑

i=1

N−1
N∑

i=1

Ii, (6)

where R is the number of replications.



6

3.3. A DTMC Numerical Algorithm

If the traffic intensity ρ and the interarrival time 1+ c2a are integer multiples of a common

δ > 0, then the steps of the random walk are confined to a lattice subset of the real line

and the possible values of the idle time lie in a finite subset. In particular, consider the

alternative recursion

Zk+1 =Zk + ρNk/δ− (1+ c2a)/δ, k≥ 1, Z0 ≡ 0. (7)

Clearly, each step in (2) is divided by δ in (7). Hence, Yk = δZk, k ≥ 0. However, now Zk

takes values in the integers. We assume that ρ and the interarrival time 1+ c2a are indeed

integer multiples of a common δ and we use the largest δ with that property.

Thus, from (3) The number of customers served in that busy cycle, Nc, and the length

of a busy cycle, C, are then

Nc = inf {k≥ 1 :Zk ≤ 0} and C =Nc(1+ c2a)δ. (8)

The associated idle-time random variable is thus distributed as

I
d
=−δZNc

. (9)

However, before hitting a nonpositive value, the random walk now must start in some

nonnegative integer state. If the workload RW visits positive states, then it must start

from a strictly positive integer, but we could have two idle times in a row. Then we could

start in 0. Hence, we have

0≤−ZNc
≤ 1+ c2a− ρ

δ
and 0≤ I ≤ 1+ c2a− ρ. (10)

Given the alternative recursion in (7), the random walk takes values in the integers, so we

can calculate the distribution of I by calculating the absorption probabilities of a DTMC

with integer state space. The absorption can take place on a finite subset of nonpositive

integers. Specifically, the state space is the set S ≡ {k : k≥ ρ/δ−(1+c2a)/δ} with absorbing

states {k :−1≥ k ≥ ρ/δ− (1 + c2a)/δ}. We obtain a finite DTMC by truncating the state

space at some level N ; i.e., let the truncated state space be ST ≡ {k : ρ/δ− (1+c2a)/δ≤ k≤
N}, let all transitions that initially go above N go instead to N , so that P is a legitimate

DTMC.



7

As usual, let Q be the square submatrix of transition probabilities between transient

states and let R be the submatrix of one-step transition probabilities from the transient

states to the absorbing states. Let the fundamental matrix be (I−Q)−1. Then the absorp-

tion probabilities are given by B ≡ (I −Q)−1R. The first column of B corresponds to the

absorption probabilities starting at state 0. We thus can use it to compute the moments

E[I] and E[I2].

3.4. Numerical Experiments for the DTMC Algorithm

To illustrate the DTMC numerical algorithm, we consider the example with c2a = 4. First,

Table 4 shows the results of the DTMC numerical algorithm for two values of ρ= 0.5 and

ρ= 0.8. The required values of δ for these two cases are 1 and 0.2, respectively. We also show

the performance for other (smaller) candidate δ, which satisfy the integer requirement, but

make the state space larger.

Table 4 Performance of DTMC(N) with Different Truncation Levels N and δ

ρ= 0.8 ρ= 0.5

N\δ 0.2 0.1 0.5 0.25 0.1

1 14.831987 14.831987 3.456240 3.436333 3.436333

10 14.862050 14.842114 3.469846 3.473675 3.467565

1× 102 14.913166 14.904170 3.470132 3.470132 3.470163

5× 102 14.916936 14.916816 3.470132 3.470132 3.470132

1× 103 14.916937 14.916936 3.470132 3.470132 3.470132

2× 103 14.916937 14.916937 3.470132 3.470132 3.470132

5× 103 14.916937 14.916937 3.470132 3.470132 3.470132

Table 4 shows that both the truncation level N and the scale factor δ have an impact

on E[W ], but the algorithm converges with six decimal accuracy when N reaches 5× 103.

The running time of algorithm depends on truncation level N . Constructing the N ×N

transition matrix requires computation of order O((N +X)2) =O(N 2), while computing

the inverse matrix of Q. which is done by Gaussian elimination, requires O(N 3). Hence,

the overall complexity of the algorithm is O(N 3).

To elaborate, Table 5 shows the performance of the DTMC algorithm as a function of

N for other ρ. The appropriate δ is used in each case.



8

Table 5 Performance of DTMC Algorithm for Other Traffic Levels

N\ρ 0.95 0.90 0.70 0.60 0.40 0.30

1 74.512312 34.621172 8.372901 5.243412 2.289971 1.493015

10 74.512312 34.696376 8.381077 5.267151 2.296621 1.498390

1× 102 74.568945 34.719782 8.434009 5.294671 2.304104 1.499233

5× 102 74.608460 34.719782 8.441300 5.294825 2.304105 1.499234

1× 103 74.616306 34.721369 8.441305 5.294825 2.304105 1.499234

2× 103 74.619898 34.721484 8.441305 5.294825 2.304105 1.499234

5× 103 74.620917 34.721484 8.441305 5.294825 2.304105 1.499234

1× 104 74.620917 34.721484 8.441305 5.294825 2.304105 1.499234

Finally, Table 6 shows the corresponding performance for ρ = 0.99, for which we need

δ = 0.01, leading to a larger number of possible idle times. Given that the scale is 0.01,

there are 102 possible idle time values, ranging from 0.00 to 4.01 in increments of 0.01, as

indicated in (10). We report the results for different N .

Table 6 Performance of DTMC(N) for ρ=0.99

δ\N 1× 102 5× 102 1× 103 2× 103 3× 103

0.01 394.420259 394.476457 394.496173 394.511729 394.518208

δ\N 5× 103 1× 104 2× 104 4× 104 6× 104

0.01 394.524273 394.529090 394.531611 394.533189 394.533189

Compared with performance of NB algorithm in this case, the DTMC algorithm is less

efficient. The DTMC algorithm needs more than 105 seconds CPU time for N ≥ 2× 104

to attain six decimal places accuracy for ρ= 0.99. In contrast, with only 7× 103 seconds

cpu time, the NB can attains more than 15 decimal places accuracy. That advantage also

holds for lower traffic intensities. For ρ= 0.8, NB only needs around 0.7 seconds CPU time

for 15 decimal places accuracy while DTMC requires around 20 seconds cpu time with

N = 2× 103.



9

4. More about Simulation Algorithms

We now describe the simulation algorithms in more detail.

4.1. The Standard Monte Carlo Algorithm.

The standard Monte-Carlo simulation method to estimate the mean steady-state waiting

time in the GI/GI/1 queue exploits the Lindley recursion in equation (1) of the main

paper. For each successive customer (indexed by n), we obtain a realization of the random

variable Wn. The steady-state mean waiting time can be estimated by the sample average

W̄ ≡ W̄ (N)≡N−1
N∑

n=1

Wn. (11)

From equation (2) of the main paper, we see that the expected value of the estimate W̄ (N)

approaches the limit from below as N increases. Because the sequence {Wn : n≥ 0} is a

regenerative process, with empty times serving as regeneration points, we can apply the

strong law of large numbers to deduce that the estimator is consistent as N → ∞. As

an alternative, we could use the regenerative approach in §IV.4 of Asmussen and Glynn

(2007). In some cases, in order to reduce the estimation bias, within each replication we look

at the long-run average after deleting an initial portion to allow the system to approach

steady state. We exploit the two point distributions to simplify the event generation.

The computational precision gradually improves as N → ∞. Unfortunately, the algo-

rithm is not efficient for F0/Gu/1 with large Ms, primarily because the large service times

are rare events, which cause significant problems; e.g., see §VI of Asmussen and Glynn

(2007) and §XIII.7 of Asmussen (2003). Moreover, the standard simulation method is not

efficient under heavy traffic levels because of its slow convergence; e.g., see Whitt (1989).

4.2. Simulation Replications

In order to estimate the overall statistical precision as well as to improve it, for each

simulation experiment, we perform multiple (usually 20−40) i.i.d. replications of the entire

experiment. Thus, E[W ] is estimated by the sample average

W̄R ≡R−1

R∑

i=1

W̄[i], (12)

where W̄[i] is the estimate from the ith replication and R is the number of replications.



10

By using multiple i.i.d. replications, we can construct confidence intervals in the standard

way. In particular, the sample variance is

S2 ≡ (1/(R− 1))
R∑

i=1

(W̄[i]− W̄R)
2, (13)

so that the halfwidth of the confidence interval is CIL= t∗S/
√
R where t∗ ≡ t(R)∗ is the

critical value of the Student statistical t-test with R − 1 degrees of freedom. We use a

95% confidence interval, so t(20)∗ = 2.09. To show the numerical and simulation methods

accuracy, we compare the different computational methods with 95% confidence interval.

4.3. Simulation Efficiency.

We compared the simulation efficiency of the three simulation algorithms in Table 6 of

the main paper. We now elaborate by providing additional simulation results. To compare

statistical efficiency and computational effectiveness, we consider the MC method with

three different N , the RW method with three different N , and the MS method with three

different total simulation time T (Typically, in the Minh and Sorli (1983) simulation algo-

rithm, we implement discrete event simulation. The successive events are classified in three

ways: (i) arrival is next, (ii) departure is next and (iii) next event occurs after given time

T , where T is total simulation length.). For each, 95% confidence intervals as a function of

these parameters as well as the number R of replications numbers and the traffic intensity

ρ are reported in Table 7.

The MS and RW methods are based on sample means from i.i.d. samples and thus

are unbiased estimators, but that is not the case for MC. So the bias is also a concern,

especially for high ρ. Thus, the MC method is even worse than shown. To illustrate the

problem, we compare the RW and MC algorithms for ρ= 0.99 in Table 8. Table 8 shows

the large error for smaller N with MC, but no problem at all with RW.

After comparing the computational outcomes from these three tables, we see that the

MS algorithm clearly is more efficient than the other two simulation algorithms. To elab-

orate, we describe the computational effort. With 100 seconds of CPU time and 100 iid

replications, the MS method can reach 10−4 confidence interval length for most of the

traffic levels, while the MC can only have 10−3 confidence interval length.

Expressed differently, in order to achieve 10−3 or 10−2 confidence interval length for all

traffic levels, the MS method needs at most needs CPU computational time less than 1



11

second, but RW needs several seconds. The MC method is the worst method which has bad

performance in computational cost and accuracy typically for heavy traffic. Even though

it takes more than 200 seconds CPU time with 100 replications and N = 106 copies, the

confidence interval length can still be large than 1 for some heavy traffic levels.

Finally, the MC and MS methods are far easier to generalize. The MC method applies to

many models, while the MS method applies to any GI/GI/1 queue, but the RW method

depends on the detailed special structure. Hence, there exist more strict requirements to

implement the RW method.



12

Table 7 A Comparison of Three Simulation Methods

Confidence Interval Length for the MC method as a Function of N , R and ρ

N = 5× 104 N = 1× 105 N =1× 106

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 5.03E-01 2.60E+00 1.08E+01 3.73E-01 3.33E+00 1.09E+01 1.78E-01 4.88E-01 2.78E+00

30 4.85E-01 2.73E+00 1.11E+01 2.41E-01 1.25E+00 6.91E+00 1.42E-01 3.26E-01 2.90E+00

40 3.90E-01 1.48E+00 9.27E+00 2.66E-01 1.16E+00 4.60E+00 1.28E-01 2.85E-01 2.63E+00

50 3.95E-01 1.55E+00 6.34E+00 3.37E-01 1.04E+00 4.91E+00 1.07E-01 3.47E-01 1.79E+00

60 4.42E-01 1.10E+00 8.84E+00 2.61E-01 1.15E+00 5.14E+00 6.86E-02 3.41E-01 1.58E+00

70 3.32E-01 1.16E+00 7.32E+00 2.59E-01 8.35E-01 4.49E+00 8.67E-02 2.61E-01 1.52E+00

80 3.18E-01 1.29E+00 7.82E+00 2.78E-01 7.22E-01 5.18E+00 8.88E-02 2.78E-01 1.31E+00

90 3.87E-01 1.07E+00 6.35E+00 2.61E-01 9.79E-01 4.28E+00 7.33E-02 2.85E-01 1.29E+00

100 2.99E-01 1.04E+00 4.78E+00 2.14E-01 8.15E-01 3.76E+00 8.02E-02 2.22E-01 1.33E+00

Confidence Interval Length for the RW method with Number of Copies N

N = 1× 102 N = 5× 102 N =1× 103

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 1.77E-02 2.90E-02 2.27E-02 9.47E-03 1.06E-02 9.12E-03 8.13E-03 6.52E-03 7.43E-03

30 1.85E-02 1.83E-02 1.80E-02 6.78E-03 9.34E-03 7.82E-03 5.86E-03 5.07E-03 7.74E-03

40 1.51E-02 1.66E-02 1.73E-02 6.51E-03 8.11E-03 7.92E-03 5.25E-03 4.34E-03 6.14E-03

50 1.35E-02 1.49E-02 1.75E-02 5.84E-03 6.36E-03 7.06E-03 4.27E-03 3.97E-03 4.14E-03

60 1.21E-02 1.17E-02 1.39E-02 4.79E-03 6.02E-03 5.65E-03 3.49E-03 4.54E-03 4.24E-03

70 1.11E-02 1.30E-02 1.24E-02 4.81E-03 5.37E-03 5.84E-03 2.95E-03 3.44E-03 4.17E-03

80 1.14E-02 1.20E-02 1.11E-02 4.92E-03 3.90E-03 5.01E-03 3.08E-03 3.52E-03 3.78E-03

90 8.84E-03 9.94E-03 9.84E-03 4.18E-03 4.34E-03 4.62E-03 2.93E-03 3.15E-03 3.99E-03

100 8.30E-03 8.50E-03 1.09E-02 3.95E-03 4.22E-03 4.46E-03 2.95E-03 3.30E-03 3.42E-03

Confidence Interval Length for the MS method with Simulation Length T

T = 1× 103 T = 1× 104 T = 1× 105

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 1.88E-02 1.91E-02 2.42E-02 5.51E-03 7.87E-03 9.33E-03 1.34E-03 2.01E-03 3.16E-03

30 1.31E-02 1.47E-02 3.78E-02 4.50E-03 5.27E-03 9.97E-03 9.59E-04 1.36E-03 2.43E-03

40 1.01E-02 1.56E-02 2.67E-02 4.04E-03 4.78E-03 8.65E-03 1.19E-03 1.56E-03 2.94E-03

50 1.04E-02 1.39E-02 2.25E-02 3.35E-03 4.02E-03 7.47E-03 8.93E-04 1.46E-03 2.11E-03

60 9.72E-03 1.21E-02 2.39E-02 2.60E-03 3.51E-03 6.65E-03 7.58E-04 1.03E-03 1.91E-03

70 9.32E-03 8.66E-03 1.87E-02 2.51E-03 3.74E-03 5.96E-03 8.77E-04 1.16E-03 1.99E-03

80 8.55E-03 9.71E-03 1.78E-02 2.07E-03 3.31E-03 7.06E-03 8.62E-04 1.16E-03 1.70E-03

90 6.85E-03 8.56E-03 1.59E-02 2.22E-03 3.30E-03 5.74E-03 7.13E-04 9.58E-04 1.57E-03

100 7.74E-03 8.46E-03 1.81E-02 2.14E-03 3.04E-03 4.72E-03 7.49E-04 8.71E-04 1.37E-03



13

Table 8 A Comparison between MC and RW Simulation for ρ=0.99

N = 1× 102 N = 1× 102 N =5× 102 N = 5× 102 N = 1× 103 N = 1× 103

R= 100 E[W ] 95% CIL E[W ] 95% CIL E[W ] 95% CIL

RW 394.533 1.02E-02 394.530 4.57E-03 394.535 3.29E-03

N = 5× 104 N = 5× 104 N =1× 105 N = 1× 105 N = 1× 106 N = 1× 106

R= 100 E[W ] 95% CIL E[W ] 95% CIL E[W ] 95% CIL

MC 182.41 2.43E+01 261.62 3.30E+01 385.48 3.34E+01

5. Additional Simulation Experiments

In order to better understand the computational issues provided by the extremal F0/Gu∗/1

model, we now compare the MC and MS algorithms on three different models: (i) the

F0/Gu/1 with Ms = 1000, (ii) the F0/D/1 model (avoiding the rare large service time) and

(iii) the reduced D(1/p)/RS(D(ρ), p)/1 model obtained from the model reductions.

5.1. A Monte Carlo Simulation Comparison for Three Queues.

We now compare MC simulation performance for three queues F0/Gu/1 with Ms = 103,

F0/D/1 andD/RS(ρ, p)/1 for traffic level ρ= 0.5,0.7,0.9 and report the confidence interval

length based on statistical T test.



14

Table 9 A Comparison of Monte-Carlo simulation for Two Queues

Confidence Interval Length for MC for F0/Gu/1 with Ms =103

N =5E+04 N =1E+05 N = 1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 5.03E-01 2.60E+00 1.08E+01 3.73E-01 3.33E+00 1.09E+01 1.78E-01 4.88E-01 2.78E+00

40 3.90E-01 1.48E+00 9.27E+00 2.66E-01 1.16E+00 4.60E+00 1.28E-01 2.85E-01 2.63E+00

60 4.42E-01 1.10E+00 8.84E+00 2.61E-01 1.15E+00 5.14E+00 6.86E-02 3.41E-01 1.58E+00

80 3.18E-01 1.29E+00 7.82E+00 2.78E-01 7.22E-01 5.18E+00 8.88E-02 2.78E-01 1.31E+00

100 2.99E-01 1.04E+00 4.78E+00 2.14E-01 8.15E-01 3.76E+00 8.02E-02 2.22E-01 1.33E+00

Confidence Interval Length for MC for F0/D/1

N =5E+04 N =1E+05 N = 1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 4.60E-03 4.99E-03 1.40E-02 1.72E-03 1.54E-03 3.39E-03 4.25E-04 7.84E-04 1.23E-03

40 3.41E-03 4.31E-03 7.89E-03 1.18E-03 1.36E-03 2.57E-03 3.16E-04 4.25E-04 8.54E-04

60 2.94E-03 3.77E-03 6.14E-03 8.50E-04 1.30E-03 2.22E-03 2.93E-04 3.50E-04 6.49E-04

80 2.63E-03 3.30E-03 5.49E-03 8.19E-04 1.01E-03 1.83E-03 2.56E-04 2.85E-04 4.96E-04

100 2.43E-03 2.89E-03 5.31E-03 8.18E-04 9.07E-04 1.40E-03 1.87E-04 2.86E-04 4.45E-04

Confidence Interval Length of MC for D(1/p)/RS(D(ρ), p)/1

N =5E+04 N =1E+05 N = 1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 6.19E-03 3.40E-02 4.76E-01 4.61E-03 2.08E-02 3.23E-01 1.61E-03 7.61E-03 8.19E-02

40 3.29E-03 2.66E-02 2.92E-01 2.61E-03 2.00E-02 2.19E-01 1.04E-03 6.46E-03 7.13E-02

60 3.03E-03 1.79E-02 2.80E-01 2.07E-03 1.16E-02 1.68E-01 7.27E-04 4.79E-03 6.03E-02

80 2.62E-03 1.89E-02 2.10E-01 2.04E-03 1.19E-02 1.47E-01 5.75E-04 3.67E-03 4.63E-02

100 2.82E-03 1.57E-02 1.90E-01 1.63E-03 9.84E-03 1.23E-01 6.19E-04 3.14E-03 4.83E-02

As expected, Table 9 shows that the model reduction makes the Monte-Carlo simulation

more efficient and accurate. Typically, the simulation is most accurate for F0/D/1.

5.2. A Minh-Sorli Simulation Comparison for Three Queues.

We have shown MS method has the same performance for the two queues F0/D/1 and

F0/Gu/1 as Ms →∞ in §3 of the main paper. So we compare the simulation performance

for F0/Gu/1 with given Ms = 103, F0/D/1 and the queue D/RS(ρ, p)/1.



15

Table 10 A Comparison of Minh-Sorli simulation for Three Queues

Confidence Interval Length of MS for F0/Gu/1

T = 5E+04 T =1E+05 T =1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 1.88E-02 1.91E-02 2.42E-02 5.51E-03 7.87E-03 9.33E-03 1.34E-03 2.01E-03 3.16E-03

40 1.01E-02 1.56E-02 2.67E-02 4.04E-03 4.78E-03 8.65E-03 1.19E-03 1.56E-03 2.94E-03

60 9.72E-03 1.21E-02 2.39E-02 2.60E-03 3.51E-03 6.65E-03 7.58E-04 1.03E-03 1.91E-03

80 8.55E-03 9.71E-03 1.78E-02 2.07E-03 3.31E-03 7.06E-03 8.62E-04 1.16E-03 1.70E-03

100 7.74E-03 8.46E-03 1.81E-02 2.14E-03 3.04E-03 4.72E-03 7.49E-04 8.71E-04 1.37E-03

Confidence Interval Length of MS for F0/D/1

T = 5E+04 T =1E+05 T =1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 4.07E-03 5.04E-03 1.13E-02 3.61E-03 3.96E-03 8.32E-03 1.05E-03 1.33E-03 2.86E-03

40 3.28E-03 4.12E-03 6.79E-03 2.20E-03 2.23E-03 4.18E-03 6.46E-04 8.24E-04 1.72E-03

60 2.57E-03 2.77E-03 6.67E-03 1.75E-03 2.91E-03 3.66E-03 4.85E-04 6.94E-04 1.49E-03

80 2.22E-03 3.05E-03 4.51E-03 1.59E-03 2.04E-03 3.44E-03 5.04E-04 6.27E-04 1.06E-03

100 1.65E-03 2.63E-03 4.27E-03 1.32E-03 1.51E-03 3.49E-03 4.43E-04 5.28E-04 9.82E-04

Confidence Interval Length of MS for D(1/p)/RS(D(ρ), p)/1

T = 5E+04 T =1E+05 T =1E+06

R\ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

20 4.60E-03 5.74E-03 1.10E-02 2.43E-03 4.16E-03 9.07E-03 9.40E-04 9.97E-04 2.54E-03

40 3.82E-03 3.26E-03 6.97E-03 2.43E-03 3.22E-03 5.97E-03 7.31E-04 9.14E-04 1.88E-03

60 2.48E-03 3.33E-03 6.66E-03 1.77E-03 2.34E-03 4.26E-03 5.40E-04 6.64E-04 1.37E-03

80 1.89E-03 2.48E-03 4.68E-03 1.68E-03 2.06E-03 3.11E-03 5.18E-04 6.36E-04 1.16E-03

100 1.89E-03 2.56E-03 3.95E-03 1.16E-03 1.51E-03 3.20E-03 4.33E-04 5.36E-04 9.18E-04

The Minh-Sorli algorithm for all queues have the almost same simulation accuracy,

typically F0/D/1 and D/RS(ρ, p)/1 are slightly better than F0/Gu/1. Regarding the com-

putational effort, the cpu time is around 20−100 seconds for F0/D/1 while that is around

50−300 seconds for D/RS(ρ, p)/1 when R increases from 20 to 100. So The model reduc-

tion makes the Minh-Sorli algorithm more efficient.

Tables 9 and 10 show that the inter-arrival-time and service-time model reductions both

make the algorithms more accurate and efficient, but the service-time reduction is slightly

better. Moreover, the Minh-Sorli simulation outperforms Monte-Carlo simulation for any

of the three models.

5.3. The Idle-Time Distribution in Two Queues.

We apply the Minh and Sorli (1983) simulation algorithm to compare the first two moments

of steady-state idle time for the extremal queue F0/Gu∗/1 queue and the M/M/1 queue.



16

For the M/M/1 model with λ= 1, it is well known that both I and Ie are exponential

with mean 1 for all ρ, so that E[I] = 1, E[I2] = 2 and E[Ie] = 1 for all ρ. Nevertheless, as an

independent check, we apply the MS algorithm to both the M/M/1 and F0/Gu∗/1 models.

The results are shown in Table 11.

Table 11 A Comparison of the idle-time Distribution in the F0/Gu
∗/1 and M/M/1 queues, using the

Minh and Sorli (1983) algorithm with T =1E+06

ρ= 0.8 ρ= 0.99

F0/Gu∗/1

R E[I] E[I2] E[Ie] E[I] E[I2] E[Ie]

20 2.453 7.766 1.583 2.111 6.298 1.492

40 2.452 7.765 1.583 2.114 6.307 1.492

60 2.452 7.763 1.583 2.114 6.304 1.491

80 2.451 7.760 1.583 2.114 6.309 1.492

100 2.451 7.760 1.583 2.113 6.306 1.492

ρ= 0.8 ρ= 0.99

M/M/1

R E[I] E[I2] E[Ie] E[I] E[I2] E[Ie]

20 1.000 1.999 1.000 1.000 2.003 1.001

40 0.999 1.997 0.999 0.999 1.994 0.997

60 1.000 1.999 1.000 1.002 2.002 0.999

80 1.000 1.999 1.000 1.001 2.005 1.001

100 1.000 2.001 1.000 1.000 2.002 1.001

Figure 1 shows an estimate of the steady-state idle-time distribution by MS. To get good

precision, we increase T to T = 5E + 09 under ρ = 0.99. We remark that this is also the

steady-state idle-time distribution for model F0/D/1.



17

Figure 1 Simulation estimates of the steady-state idle-time distribution in the F0/Gu
∗/1 model under traffic

level ρ= 0.99.

References

Asmussen S (2003) Applied Probability and Queues (New York: Springer), second edition.

Asmussen S, Glynn PW (2007) Stochastic Simulation: Algorithms and Analysis (New York: Springer), second

edition.

Chen Y, Whitt W (2018) Extremal GI/GI/1 queues given two moments, Columbia University,

http://www.columbia.edu/∼ww2040/allpapers.html.

Chen Y, Whitt W (2019) Algorithms for the upper bound mean waiting time in the GI/GI/1 queue,

Columbia University, http://www.columbia.edu/∼ww2040/allpapers.html.

Daley DJ (1977) Inequalities for moments of tails of random variables, with queueing applications. Zeitschrift

fur Wahrscheinlichkeitsetheorie Verw. Gebiete 41:139–143.

Kingman JFC (1962) Inequalities for the queue GI/G/1. Biometrika 49(3/4):315–324.

Minh DL, Sorli RM (1983) Simulating the GI/G/1 queue in heavy traffic. Operations Research 31(5):966–

971.

Whitt W (1989) Planning queueing simulations. Management Science 35(11):1341–1366.


	Introduction
	A Comparison of Different Bounds and Approximations
	Computing the Distribution and Moments of the Idle Time
	A Random Walk Absorption Representation of the Idle-Time
	An Idle-Time Simulation Algorithm
	A DTMC Numerical Algorithm
	Numerical Experiments for the DTMC Algorithm

	More about Simulation Algorithms
	The Standard Monte Carlo Algorithm.
	Simulation Replications
	Simulation Efficiency.

	Additional Simulation Experiments
	A Monte Carlo Simulation Comparison for Three Queues.
	A Minh-Sorli Simulation Comparison for Three Queues.
	The Idle-Time Distribution in Two Queues.


