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For a large class of queueing systems in which customers arrive in batches,
Halfin (1983) showed that the delay distribution of the last customer in a
batch to enter service coincides with the delay distribution of an arbitrary
customer when the batch-size distribution 1s geometric. Halfin’s result can be
applied to study the performance of complicated communication systems in
which messages are divided into packets for transmission. Then packets are
customers and the delay of a message is the delay of the last customer in a
batch to enter service. If the assumptions are satisfied and if packet delays
are easier to analyze, then packet delays can be used to calculate message
delays. In this paper, we show that these two delay distributions are stochast-
ically ordered when the batch-size distribution is NBUE or NWUE (new
better or worse than used in expectation). The delays of arbitrary customers
tend to be less (more} when the batch-size distribution is NBUE (NWUE). In
addition to the bounds provided by the stochastic ordering, we also suggest an
approximation for the relation between the two expected delays based on
known results for the M?/G/1 queue having a batch-Poisson arrival process.

I. INTRODUCTION

Halfin' recently showed that for a large class of queueing systems
in which customers arrive in batches the delay distribution of the last
customer in a batch to enter service equals the delay distribution of
an arbitrary customer when the batch size has a geometric distribution.
Halfin’s result is important when we study the performance of com-
munication systems in which messages are divided into packets for
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transmission. Then packets are customers and the delay of a message
is the delay of the last customer in a batch to enter service. Halfin’s
result is useful to approximately describe message delays in compli-
cated communication systems, e.g., with contention-resolving schemes
such as Carrier Sense Multiple Access (CSMA).! In many of these
systems message delay is more important but more difficult to analyze
than packet delay. Halfin provides conditions under which packet
delay results directly yield message delay results.

In this paper we identify conditions on the batch-size distribution
under which the delay distribution of the last customer to enter service
is stochastically greater than or equal to the delay distribution of an
arbitrary customer. We show that it suffices for the batch-size distri-
bution to be NBUE (new better than used in expectation}. The
ordering is reversed for batch-size distributions that are NWUE (new
worse than used in expectation). The batch size B has an NBUE
distribution if its mean is greater than all conditional means given tail
events, i.e., if EB = E(B — n| B = n) for all n. A distribution is NBUE
(NWUE) if it has increasing (decreasing) failure rate. The NBUE and
NWUE properties are now quite standard for stochastic comparisons.
For further discussion, see Barlow and Proschan,? and Whitt.?

As Halfin observed, his result about batch arrivals can be viewed as
a special case of a discrete analog of Poisson Arrivals See Time
Averages (PASTA).* In the same way, our stochastic comparison
results parallel those for customer-stationary and time-stationary
characteristics of queues.®*”’ Random quantities associated with
batches (e.g., delays of the last customer in a batch) constitute an
embedded sequence in the sequence of random quantities associated
with all customers (e.g., the delays of arbitrary customers), just as
customer arrival points or departure points constitute embedded se-
quences in continuous time.

Our approach is similar to that of the East German School (Franken
et al.) because we begin in Section I with a stationary version, what
we call an “equilibrium batch.” In this setting, we easily obtain a
representation of the expected average associated with an arbitrary
customer that makes the desired comparisons and Halfin’s result
transparent. The representation involves the stationary-excess distri-
bution of the batch-size distribution. (From the theory of stationary
point processes, as contained in Franken et al., this can also be viewed
as a consequence of the Palm theory.) '

The relation between what an arbitrary customer sees and what the
last customer in a batch sees can be explained in part as follows. One
customer in each batch is the last customer in the batch, but there are
more customers in big batches than in small batches. Hence, the
distribution of the batch size containing a last customer is the ordinary
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batch-size distribution, but the distribution of the position in a batch
of an arbitrary customer is the batch-size stationary-excess distribu-
tion (see Section II1.2 of Cohen,® Burke,® and Section 5.10 of Cooper'®).
Hence, the relation between the two kinds of delays reduces to the
relation between the batch-size distribution and its associated station-
ary-excess distribution.

These stochastic comparison results are only qualitative. With the
methods we use, we are unable to obtain related quantitative results.
Moreover, the difference between the expected delays obviously will
depend on the context, whereas the qualitative results here generally
hold true. Following Halfin’s example, we make very few assumptions
for our stochastic comparisons. However, in Section III we examine
quantitative results by considering the special case of the MZ/G/1
queueing model, which has a batch-Poisson arrival process. We get
some idea about what to expect in more complicated situations by
examining existing quantitative results for this special case. We use
these results to obtain an approximate quantitative relationship be-
tween expected batch delays and expected customer delays as a func-
tion of the first two moments of the batch-size distribution.

In Section IV we briefly show how our equilibrium batch can be
~viewed as a time-average limit. Throughout we talk about batch
arrivals to a queue, but as in Wolff* the results apply more generally.
The model need not be a queue, and for a queueing model the process
need not be an arrival process; for an arrival process the customers in
a batch need not arrive together. The batch is simply a label assigned
to random variables, as we explain in Section II.

Il. THE EQUILIBRIUM BATCH

We consider a batch in equilibrium, defined in terms of a positive-
integer-valued random variable B and a sequence of random variables
{Xr, & = 1}, all defined on a common probability space. The variable
B represents the size of the batch and the variable X; is a random
quantity associated with the jth customer in the batch. For example,
X; might be a function of the delay of the jth customer to enter service.
We are only interested in X; for j < B. In fact, we can consider X;
defined only on the subset {B = j}. Hence, we can speak of the basic
data as the random vector (B, Xj, ---, Xa).

The variables X;, X,, --- are typically dependent. Our basic as-
sumption is that the events {B = j} for j = k are independent of the
random vector (X,, ---, X;) for k = 1. This corresponds to the Lack
of Anticipation Assumption (LAA) in Wolff.*

Let the probability mass function (pmf) of B be.defined as

pn=P(B=n)’ n=1,2,"°, (1)
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and let p} be the stationary-excess pmf associated with p,, defined by

Pr=DPn/ X Dn nzl, (2)
B=1
where
Pn= 2 Phr, nzl, (3)
k=n
and
2 b= 2 kpr= EB < o0, (4)
k=1 B=1

We are interested in the relationship between the random quantities -
associated with an erbitrary customer and the last customer in a batch
so we can compare the expected values in these two cases. We interpret
the expected value associated with an arbitrary customer as the
expected value for all customers in the batch divided by the expected
number of customers in a batch. (A way to justify this interpretation
is described in Section IV). Because of our basic assumptions, these.
quantities are

Y pEXy + --- + EX,)
n=1

A= = (5)
2 NP,
n=1
and
L = EXg = } p.EX,. (®)
n=1

The desired relationships between A and L are derived from the
following alternate representation for A,

Theorem 1; A = Sy DPrEX,.
Proof: Change the order of summation in (5) and apply (2) to obtain

o E pk ) - Y oo
A=Y EX, | %5— | =3 EX, [+ = I EX.p:.
n=1 kgl kpk n=1 kzl ﬁk‘ n=1

Corollary 1: (Halfin*) A = L for all {EX,} if and only if p, = pXfor all n
or, equivalently, if p, is geometric, i.e.,

po=01=-pp~?*, n=12 - (7)

for somep, 0 =p=<1.
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0 = W D e+ = W

Proof: Sufficiency is immediate. It is well known that p,, is geometric
if .and only if p, = p¥ for all n (e.g., see Corollary 3.3 of Whitt?).
Necessity is almost as easy: Choose different sequences {EX.}, e.g.,
EX,.=1if n =k, and 0 otherwise.

Remark: Theorem 1 and its corollaries apply immediately to distribu-
tions as well as means. For example, our original sequence X, can be
replaced by f(X,) where f(x) = I.., so that A is the expected
proportion of customers for which X, = x and L = P(Xp = x).

We now establish inequalities between A and L as a function of the
shape of the batch-size pmf p,. These follow immediately from known
stochastic-order relations between p, and p}%.

For two pmf’s pl and p% on the positive integers, we define sto-
chastic-order relations p?, <. p% (ph =, p%) to hold if

Y f(R)pk = X fR)D% (8)
k=1 k=1
for all nondecreasing (nondecreasing and convex) real-valued func-

tions f on the positive integers for which the sums converge.
A pmf p, is NBUE (new better than used in expectation) if

%
I
~18
E'
v
T b 8

P/Pn=EB—-n|Bzn), n=z=1 (9
k=n

and NWUE with the inequality in (9) reversed.

From Theorem 1, we obtain:

Corollary 2: A < L for all nondecreasing sequences {EX,} if and only if
DY <. pn or, equivalently, if p, is NBUE.

Proof: From (6), (8), and Theorem 1, A < L for all nondecreasing
{EX,} if and only if p} =, p,. It is well known that p} =, p, if and
only if p. is NBUE [e.g., see Theorem 3.2 (iii} of Whitt®]. For necessity,
choose EX,, = 1 for n = &, and 0 otherwise.

Remarks: (1) Corollary 2 remains valid with p¥ =, p. instead of =,
which is equivalent to p being NWUE, if either A = L or {EX,} is
nonincreasing {but not both). (2) For Halfin's problem involving
delays, note that the delays of the successive customers in any batch
to begin service are nondecreasing with probability one.

We obtain another corollary using the stochastic-order relation <
defined in (8). )
Corollary 3: A < L for all nondecreasing convex sequences {EX,} if and
only if p} =i, p. or, equivalently, if p, new is better than py used in
expectation, L.e., if
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Proof: Follow the proof of Corollary 2 using the convexity to treat <.
The characterization of p% =<; p. follows easily from the fact that
pL <. p?if and only if ¥, pk = 3%, p% see Definition 3.1(iv) and
Theorem 3.2(iv) of Whitt.?

Mi. The M*/G/1 QUEUE

To illustrate the qualitative results and obtain some related quan-
titative results, we now consider the special case of the M2/G/1 queue
having a batch-Poisson arrival process (see Section 5.10 of Cooper').
Let Wy, W,4, and Wy be the equilibrium delay (waiting time before
beginning service) of the first customer in a batch, an arbitrary
customer, and the last customer in a batch. Let r and ¢® be the mean
and variance of the service time; let m and ¢° be the mean and variance
of the batch size B; and let B* have the batch-size stationary-excess
distribution p} in (2), which has mean

EB* = ¥ np¥= (6> + m? + m)/2m. (10)
n=1
Let X be the rate of the Poisson process and, for stability, assume that
Amr < 1.
From Cooper, we obtain

E(Wr) = 2(9%1;7( mm*—”—z) (11)
From Theorem 1 and (10), we obtain
E(Wa) = E(We) + 3, pitn = Ir
= E(Wg) + [E(B*) — 1]r
= E(Wp) + m =17 6—27 (12)

2 2m-’
From (8), we obtain
E(Wp) = E(Wr) + (EB - 1)r
= E(Wr) + (m — 1)1 (13)

Let c% be the squared coefficient of variation of the batch-size B,
i.e., the variance of B divided by the square of the mean. We can
rewrite (12) as

E(W,) = E(Wg) + [m{ck + 1) — 1]7/2, (14)
so that EW, = EWL if and only if
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met +1<m, (15)

which is consistent with Corollaries 1 through 3 in Section II because
m = 1/p and ¢k = 1 — p for the geometric distribution in (7).

In applying Theorem 1, we should observe that the lack of antici-
pation (LAA) assumption holds for the M?/G/1 queue. Moreover, the
Poisson property is only used to get (11); (12) and (13) remain valid
provided that the LAA assumption holds. For example, the LAA
assumption holds if the intervals between batch arrivals are a station-
ary sequence independent of the successive batch sizes.

Formulas (11) through (14) suggest an approximation for more
general systems:

E(Wa) — E(Wg) _ m{ck+1) —1
E(Wy.) — E(Wr) 2(m — 1)

(186)

IV. LIMITING AVERAGES

Instead of using the framework defined in Section II, we could also
begin with a sequence of random vectors {(Bg, Xu, - -+, Xen), B = 1},
where B, represents the size of the kth batch, indexed in order of
arrival, and X,; represents the random quantity of interest (delay, etc.)
associated with the jth customer to enter service in the kth batch. Let
By, take values on the positive integers and let X; be nonnegative for
each % and j. Let Y, be the random quantity associated with the kth
customer indexed, first according to the batch and then according to
the order of entering service, defined by

Yk=X-jm, B1+..-+Bj_1+m=kEBl+"'+Bj

fork=1.
The limiting average value of Xj; over all customers is naturally
defined by

n

Y Y.
A = lim &2—. amn

n—wo n

We shall work with the related quantity A defined by

n Bg

% T Xy
A = lim =2 (18)
Y By
) k=1
In most situations, the limits A and A exist and are equal.
We are interested in the relation between A and the limiting average

value of X;; over the last customer in each batch, defined by
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E XkBk
L = lim =——. (19)
n—o T
We assume that there exists a random vector (B, X, -- -, Xp) such
that
2 Be
lim “=ln =EB < ' (20)
and
n B
2 2 X B
lim =5 — = E § X< oo, (21)
n—sco n J=1
go that
B
EY X;
a j=1
== 22
A 7B (22)
We also assume that
2 X Ligy = 5
MnEL—jr———=P@%=ﬂE&. (23)

To obtain (23) it is natural to assume that the basic independence
assumption holds for each &, i.e., {Bg = j} is independent of (Xy, -« -,
Xea) for all J, J = n. From (23), we have

I = EX5. (24)

For eqgs. (20} through (24) to be valid, in addition to the basic
independence assumption, it suffices for the basic sequence {(B,
Xu, - -+, Xwn), k = 1} to be stationary and ergodic.

With (22) and (24) we obtain the framework defined in Section II.
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